RESUMO
Early detection of drug-drug interactions (DDIs) can facilitate timely drug development decisions, prevent unnecessary restrictions on patient enrollment, resulting in clinical study populations that are not representative of the indicated study population, and allow for appropriate dose adjustments to ensure safety in clinical trials. All of these factors contribute to a streamlined drug approval process and enhanced patient safety. Here we describe a new approach for early prediction of the magnitude of change in exposure for cytochrome P450 (P450) CYP3A4-related DDIs of small-molecule anticancer drugs based on the model-based extrapolation of human-CYP3A4-transgenic mice pharmacokinetics to humans. Victim drugs brigatinib and lorlatinib were evaluated with the new approach in combination with the perpetrator drugs itraconazole and rifampicin. Predictions of the magnitude of change in exposure deviated at most 0.99- to 1.31-fold from clinical trial results for inhibition with itraconazole, whereas exposure predictions for the induction with rifampicin were less accurate, with deviations of 0.22- to 0.48-fold. Results for the early prediction of DDIs and their clinical impact appear promising for CYP3A4 inhibition, but validation with more victim and perpetrator drugs is essential to evaluate the performance of the new method. SIGNIFICANCE STATEMENT: The described method offers an alternative for the early detection and assessment of potential clinical impact of CYP3A4-related drug-drug interactions. The model was able to adequately describe the inhibition of CYP3A4 metabolism and the subsequent magnitude of change in exposure. However, it was unable to accurately predict the magnitude of change in exposure of victim drugs in combination with an inducer.
Assuntos
Antineoplásicos , Citocromo P-450 CYP3A , Interações Medicamentosas , Itraconazol , Rifampina , Animais , Humanos , Camundongos , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Citocromo P-450 CYP3A/metabolismo , Citocromo P-450 CYP3A/genética , Indutores do Citocromo P-450 CYP3A/farmacologia , Inibidores do Citocromo P-450 CYP3A/farmacologia , Inibidores do Citocromo P-450 CYP3A/farmacocinética , Interações Medicamentosas/fisiologia , Itraconazol/farmacologia , Itraconazol/farmacocinética , Camundongos Transgênicos , Rifampina/farmacologia , Rifampina/farmacocinéticaRESUMO
Olverembatinib (HQP1351) is a BCR-ABL1 tyrosine kinase inhibitor with promising clinical activity. It is approved in China for the treatment of patients with chronic myeloid leukemia harboring drug-resistant mutations, such as T315I. In vitro studies suggested that metabolism of olverembatinib is primarily mediated by cytochrome P450 (CYP3A4). The effects of CYP3A4 inhibition and induction on the pharmacokinetics of olverembatinib were evaluated in an open-label, 2-part, fixed-sequence study in healthy volunteers. In Part 1 of this study, 16 participants received a single oral dose of olverembatinib (20 mg) and the oral CYP3A4 inhibitor itraconazole (200 mg). In Part 2, 16 participants received a single oral dose of olverembatinib (40 mg) and the oral CYP3A4 inducer rifampin (600 mg). To measure pharmacokinetic parameters, serial blood samples were collected after administration of olverembatinib alone and combined with itraconazole or rifampin. Coadministration of olverembatinib with itraconazole increased the peak plasma concentration of olverembatinib, its area under the time-concentration curve (AUC)0-last, and AUC0-inf by 75.63%, 147.06%, and 158.66%, respectively. Coadministration with rifampin decreased these same variables by 61.27%, 74.21%, and 75.19%, respectively. These results confirm that olverembatinib is primarily metabolized by CYP3A4 in humans, suggesting that caution should be exercised with concurrent use of olverembatinib and strong CYP3A4 inhibitors or inducers.
Assuntos
Indutores do Citocromo P-450 CYP3A , Inibidores do Citocromo P-450 CYP3A , Citocromo P-450 CYP3A , Interações Medicamentosas , Voluntários Saudáveis , Itraconazol , Rifampina , Humanos , Masculino , Itraconazol/farmacocinética , Itraconazol/administração & dosagem , Itraconazol/farmacologia , Inibidores do Citocromo P-450 CYP3A/farmacocinética , Inibidores do Citocromo P-450 CYP3A/administração & dosagem , Inibidores do Citocromo P-450 CYP3A/farmacologia , Adulto , Rifampina/administração & dosagem , Rifampina/farmacocinética , Rifampina/farmacologia , Indutores do Citocromo P-450 CYP3A/administração & dosagem , Indutores do Citocromo P-450 CYP3A/farmacocinética , Indutores do Citocromo P-450 CYP3A/farmacologia , Feminino , Adulto Jovem , Citocromo P-450 CYP3A/metabolismo , Pessoa de Meia-Idade , Administração Oral , Área Sob a Curva , Inibidores de Proteínas Quinases/farmacocinética , Inibidores de Proteínas Quinases/administração & dosagemRESUMO
BACKGROUND: Cystic fibrosis (CF), an inherited autosomal recessive disorder, is linked with high morbidity and mortality rates due to bacteria, filamentous, yeast and black yeast-like fungi colonisation in the upper respiratory tract. Although Candida species are the most common fungi isolated from CF patients, azole-resistant Aspergillus fumigatus (ARAf) is a big concern for invasive aspergillosis. Notably, the exact prevalences of Aspergillus species and the prevalence of ARAf isolates among Iranian CF patients have yet to be previously reported and are unknown. We aimed to investigate the prevalence of ARAf isolates in CF patients among Iranian populations by focusing on molecular mechanisms of the mutations in the target gene. METHODS: The 1 year prospective study recovered 120 sputum samples from 103 CF patients. Of these, 55.1% (86/156) yielded Aspergillus species, screened for ARAf using plates containing itraconazole (4 mg/L) and voriconazole (1 mg/L). According to the CLSI-M38 guidelines, antifungal susceptibility testing was performed using the broth microdilution method. In all phenotypically resistant isolates, the target of azole agents, the cyp51A gene, was sequenced to detect any possible single nucleotide polymorphisms (SNP) mediating resistance. RESULTS: Of 120 samples, 101 (84.2%) were positive for filamentous fungi and yeast-like relatives, with 156 fungal isolates. The most common colonising fungi were Aspergillus species (55.1%, 86/156), followed by Candida species (39.8%, 62/156), Exophiala species (3.8%, 6/156) and Scedosporium species (1.3%, 2/156). Forty out of 86 (46.5%) were identified for section Fumigati, 36 (41.9%) for section Flavi, 6 (7%) for section Nigri and 4 (4.6%) for section Terrei. Fourteen out of 40 A. fumigatus isolates were phenotypically resistant. The overall proportion of ARAf in total fungal isolates was 9% (14/156). cyp51A gene analysis in resistant isolates revealed that 13 isolates harboured G448S, G432C, T289F, D255E, M220I, M172V, G138C, G54E and F46Y mutations and one isolate carried G448S, G432C, T289F, D255E, M220I, G138C, G54E and F46Y mutations. Additionally, this study detects two novel cyp51A single-nucleotide polymorphisms (I242V and D490E). CONCLUSIONS: This study first investigated ARAf isolates in Iranian CF patients. Due to a resistance rate of up to 9%, it is recommended that susceptibility testing of Aspergillus isolates from CF patients receiving antifungal treatment be a part of the routine diagnostic workup. However, extensive multicentre studies with a high volume of CF patients are highly warranted to determine the impact of ARAf on CF patients.
Assuntos
Antifúngicos , Aspergillus fumigatus , Azóis , Fibrose Cística , Sistema Enzimático do Citocromo P-450 , Farmacorresistência Fúngica , Proteínas Fúngicas , Testes de Sensibilidade Microbiana , Humanos , Fibrose Cística/microbiologia , Fibrose Cística/complicações , Irã (Geográfico)/epidemiologia , Aspergillus fumigatus/efeitos dos fármacos , Aspergillus fumigatus/genética , Aspergillus fumigatus/isolamento & purificação , Farmacorresistência Fúngica/genética , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Estudos Prospectivos , Prevalência , Sistema Enzimático do Citocromo P-450/genética , Azóis/farmacologia , Azóis/uso terapêutico , Proteínas Fúngicas/genética , Masculino , Feminino , Aspergilose/microbiologia , Aspergilose/epidemiologia , Aspergilose/tratamento farmacológico , Adulto , Criança , Adolescente , Polimorfismo de Nucleotídeo Único , Adulto Jovem , Escarro/microbiologia , Itraconazol/farmacologia , Voriconazol/farmacologia , Voriconazol/uso terapêutico , Pré-Escolar , MutaçãoRESUMO
Candida parapsilosis was introduced as the second most responsible for nail involvement. The colonization of biotic and abiotic surfaces by Candida spp. can result in the formation of biofilms, which possess a high level of resistance to typical antifungal agents. Since Candida spp. can produce biofilm mass on the surface of the nails, dermatologists should consider appropriate antifungals to eliminate both the planktonic and biofilm cells. The aim of this research was to determine the antifungal efficacy of itraconazole against C. parapsilosis sensu lato biofilm formations, in addition to its static effects. Ten C. parapsilosis sensu lato isolates were enrolled in this study. The use of itraconazole results in the accumulation of reactive oxygen species (ROS) during treatment. In order to verify the correlation between ROS and itraconazole-induced cell death, the viability of cells was analyzed by administering the ROS scavenger Ascorbic acid. The apoptotic features of itraconazole were analyzed using the Annexin V-FITC method. Based on current data, it was found that the generation of intracellular stresses by itraconazole is not observed in cells upon ROS inhibition, emphasizing the importance of intracellular ROS in the apoptotic mechanism of itraconazole. Targeting the oxidative defense system is a powerful point to use ROS-inducing antifungals as a superior choice for more effective therapies in case of recalcitrant onychomycosis.
Assuntos
Antifúngicos , Biofilmes , Candida parapsilosis , Farmacorresistência Fúngica , Itraconazol , Onicomicose , Espécies Reativas de Oxigênio , Itraconazol/farmacologia , Humanos , Biofilmes/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Onicomicose/tratamento farmacológico , Onicomicose/microbiologia , Antifúngicos/farmacologia , Farmacorresistência Fúngica/efeitos dos fármacos , Candida parapsilosis/efeitos dos fármacos , Candida parapsilosis/isolamento & purificação , Apoptose/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Feminino , Unhas/microbiologia , Unhas/efeitos dos fármacosRESUMO
BACKGROUND: Cognitive impairment associated with schizophrenia predicts poor functional outcomes, but currently no efficacious pharmacotherapies are available. AIMS: Four phase I trials examined the safety, tolerability and pharmacokinetics of the phosphodiesterase 2 inhibitor BI 474121, along with potential drug-drug interactions. METHODS: Trial 1 evaluated single rising doses (SRDs) of BI 474121 versus placebo in healthy males. The influence of drug formulation and food on drug bioavailability was also examined. Trial 2 evaluated SRD of BI 474121 versus placebo in healthy Japanese males. Trial 3 evaluated multiple rising doses of BI 474121 in healthy young (with/without midazolam) and elderly (without midazolam) participants versus placebo. Trial 4 investigated interactions between itraconazole and single-dose BI 474121 in healthy males. RESULTS/OUTCOMES: No deaths, serious adverse events (AEs), severe AEs or protocol-specified AEs of special interest were observed. BI 474121 absorbed rapidly during fasting, achieved maximum concentration of analyte in plasma and dose proportionality via tablet formulation, and decreased in a multiphasic manner. BI 474121 steady state occurred within 11 days of multiple oral administration. Multiple doses increased BI 474121 plasma concentrations, but did not alter the time course of plasma concentrations. Urinary excretion of unchanged BI 474121 was negligible. No clinically relevant inhibition or induction of CYP3A4 by BI 474121 was observed. Itraconazole co-administration produced higher exposures of BI 474121 versus BI 474121 alone. CONCLUSIONS/INTERPRETATION: BI 474121 demonstrated favourable safety and pharmacokinetic profiles in healthy Caucasian and Japanese individuals, supporting further clinical development.
Assuntos
Interações Medicamentosas , Voluntários Saudáveis , Itraconazol , Humanos , Masculino , Adulto , Pessoa de Meia-Idade , Itraconazol/efeitos adversos , Itraconazol/administração & dosagem , Itraconazol/farmacocinética , Itraconazol/farmacologia , Adulto Jovem , Idoso , Disponibilidade Biológica , Interações Alimento-Droga , Relação Dose-Resposta a Droga , Midazolam/farmacocinética , Midazolam/administração & dosagem , Midazolam/efeitos adversos , Inibidores de Fosfodiesterase/farmacocinética , Inibidores de Fosfodiesterase/efeitos adversos , Inibidores de Fosfodiesterase/administração & dosagem , Método Duplo-Cego , FemininoRESUMO
BACKGROUND: As a rare subcutaneous infection, protothecosis is easily misdiagnosed. Similar to other subcutaneous infection, there is no unified standard for treatment, for cases not suitable for surgery, clinicians often use antifungal drugs based on their experience, and the course of treatment varies from several months to several years. Based on the fact that there are few relevant materials and researches on photodynamic therapy (PDT), we conducted a study based on a clinical case that used oral itraconazole combined with 5-aminolevylinic acid photodynamic therapy (ALA-PDT) to treat a patient with cutaneous protothecosis caused by Prototheca wicherhamii. METHODS: Different concentrations of ALA and different light doses were used to investigate the effects of ALA-PDT on the growth inhibition of P. wickerhamii in vitro with Colony-counting Methods. And we used transmission electron microscopy (TEM) to visualize the structural changes and the effects of ALA-PDT treating on cellular structures of the P. wickerhamii. Futher, we performed the susceptibility test of P. wickerhamii to itraconazole before and after ALA-PDT in vitro. RESULTS: We have successfully treated a patient with cutaneous protothecosis caused by P. wickerhamii by using combination therapy in a total of 9-week course of treatment. In vitro, ALA-PDT can inhibit the growth of P. wickerhamii when the ALA concentration was 5 mg/mL (P < 0.01), and this effect became stronger as the concentration of ALA or light dose is increased. Using TEM, we confirmed that ALA-PDT can disrupt the cell wall structure and partition structure of P. wickerhamii, which may contribute to its inhibitory effect. Further studies showed that the MIC of itraconazole for P. wickerhamii was decreased after ALA-PDT. CONCLUSIONS: ALA-PDT combined with oral itraconazole can be used to treat cutaneous protothecosis. Accordingly, ALA-PDT can destroy the cell wall and partition structure of P. wickerhamii leading to an inhibitory effect on it in vitro, and the effect is enhanced with the increase of ALA concentration and light dose. Also, the sensitivity of P. wickerhamii to itraconazole is observed increased after ALA-PDT. So our study provides a theoretical basis for the promising treatment against cutaneus protothecosis.
Assuntos
Ácido Aminolevulínico , Antifúngicos , Itraconazol , Fotoquimioterapia , Fármacos Fotossensibilizantes , Prototheca , Itraconazol/farmacologia , Itraconazol/uso terapêutico , Prototheca/efeitos dos fármacos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Fotoquimioterapia/métodos , Humanos , Ácido Aminolevulínico/farmacologia , Ácido Aminolevulínico/uso terapêutico , Masculino , Feminino , Pessoa de Meia-IdadeRESUMO
Aim: To assess the functional relevance of a putative Major Facilitator Superfamily protein (PF3D7_0210300; 'PfMFSDT') as a drug transporter, using Candida glabrata for orthologous protein expression.Methods: Complementary Determining Sequence encoding PfMFSDT was integrated into the genome of genetically engineered C. glabrata strain MSY8 via homologous recombination, followed by assessing its functional relevance as a drug transporter.Results & conclusion: The modified C. glabrata strain exhibited plasma membrane localization of PfMFSDT and characteristics of an Major Facilitator Superfamily transporter, conferring resistance to antifungals, ketoconazole and itraconazole. The nanomolar inhibitory effects of the drugs on the intra-erythrocytic growth of Plasmodium falciparum highlight their antimalarial properties. This study proposes PfMFSDT as a drug transporter, expanding the repertoire of the currently known antimalarial 'resistome'.
[Box: see text].
Assuntos
Antifúngicos , Antimaláricos , Candida glabrata , Proteínas de Membrana Transportadoras , Plasmodium falciparum , Plasmodium falciparum/genética , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/metabolismo , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Candida glabrata/genética , Candida glabrata/metabolismo , Candida glabrata/efeitos dos fármacos , Antimaláricos/farmacologia , Antimaláricos/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Itraconazol/farmacologia , Cetoconazol/farmacologia , Humanos , Membrana Celular/metabolismoRESUMO
BACKGROUND: Over the past decades, the increasing incidence of recurrent dermatophytosis associated with terbinafine-resistant Trichophyton has posed a serious challenge in management of dermatophytosis. Independent reports of failure of treatment and high minimum inhibitory concentrations (MIC) of antifungals are available, but data correlating MIC and clinical outcomes is still sparse. Therefore, the present study was conducted to evaluate the outcomes of systemic treatment of dermatophytosis and its correlation with MIC of the etiological agents isolated from such patients. METHODS: Retrospective analysis of 587 consecutive patients with dermatophytosis was done from March 2017 to March 2019. Demographic and clinical details of the patients were noted, along with the results of direct microscopy and fungal culture. The isolates were identified by sequencing the internal transcribed spacer region of rDNA. Antifungal susceptibility testing was performed following the CLSI M38 protocol. Mutation in the squalene epoxidase (SE) gene was detected by DNA sequencing and ARMS-PCR. Based on the culture-positivity and prescribed systemic antifungal, patients were categorised into Group I culture-positive cases treated with systemic terbinafine and Group II culture-positive cases treated with systemic itraconazole, each for a total period of 12 weeks. RESULTS: In the present study, 477 (81.39%) were culture-positive; however, 12 weeks follow-up was available for 294 patients (Group I-157 and Group II-137) who were included for statistical analysis. In both groups [Group I-37/63 (51.4%) and Group II-14/54 (58.3%)], a better cure rate was observed if the initiation of therapy was performed within <6 months of illness. Treatment outcome revealed that if therapy was extended for 8-12 weeks, the odds of cure rate are significantly better (p < .001) with either itraconazole (Odd Ratio-15.5) or terbinafine (Odd Ratio-4.34). Higher MICs for terbinafine were noted in 41 cases (cured-18 and uncured-23) in Group I and 39 cases (cured-16 and uncured-23) in Group II. From cured (Group I-17/18; 94.4% and Group II-14/16; 87.5%) and uncured (Group I-20/23; 86.9% and Group II-21/23; 91.3%) cases had F397L mutation in the SE gene. No significant difference in cure rate was observed in patients with Trichophyton spp. having terbinafine MIC ≥ 1or <1 µg/mL (Group I-p = .712 and Group II-p = .69). CONCLUSION: This study revealed that prolonging terbinafine or itraconazole therapy for beyond 8 weeks rather than the standard 4 weeks significantly increases the cure rate. Moreover, no correlation has been observed between antifungal susceptibility and clinical outcomes. The MIC remains the primary parameter for defining antifungal activity and predicting the potency of antifungal agents against specific fungi. However, predicting therapeutic success based solely on the MIC of a fungal strain is not always reliable, as studies have shown a poor correlation between in vitro data and in vivo outcomes. To address this issue, further correlation of antifungal susceptibility testing (AFST) data with clinical outcomes and therapeutic drug monitoring is needed. It also highlights that initiation of the treatment within <6 months of illness increases cure rates and reduces recurrence. Extensive research is warranted to establish a better treatment regime for dermatophytosis.
Assuntos
Antifúngicos , Itraconazol , Mutação , Esqualeno Mono-Oxigenase , Terbinafina , Tinha , Trichophyton , Adolescente , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem , Antifúngicos/uso terapêutico , Antifúngicos/farmacologia , Farmacorresistência Fúngica/genética , Itraconazol/farmacologia , Itraconazol/uso terapêutico , Testes de Sensibilidade Microbiana , Estudos Retrospectivos , Esqualeno Mono-Oxigenase/genética , Terbinafina/uso terapêutico , Terbinafina/farmacologia , Tinha/tratamento farmacológico , Tinha/microbiologia , Resultado do Tratamento , Trichophyton/efeitos dos fármacos , Trichophyton/genéticaRESUMO
Introduction. Sporotrichosis is a subcutaneous infection caused by dimorphic Sporothrix species embedded in the clinical clade. Fungi have virulence factors, such as biofilm and melanin production, which contribute to their survival and are related to the increase in the number of cases of therapeutic failure, making it necessary to search for new options.Gap statement. Proton pump inhibitors (PPIs) have already been shown to inhibit the growth and melanogenesis of other fungi.Aim. Therefore, this study aimed to evaluate the effect of the PPIs omeprazole (OMP), rabeprazole (RBP), esomeprazole, pantoprazole and lansoprazole on the susceptibility and melanogenesis of Sporothrix species, and their interactions with itraconazole, terbinafine and amphotericin B.Methodology. The antifungal activity of PPIs was evaluated using the microdilution method, and the combination of PPIs with itraconazole, terbinafine and amphotericin B was assessed using the checkerboard method. The assessment of melanogenesis inhibition was assessed using grey scale.Results. The OMP and RBP showed significant MIC results ranging from 32 to 256 µg ml-1 and 32 to 128 µg ml-1, respectively. Biofilms were sensitive, with a significant reduction (P<0.05) in metabolic activity of 52% for OMP and 50% for RBP at a concentration of 512 µg ml-1 and of biomass by 53% for OMP and 51% for RBP at concentrations of 512 µg ml-1. As for the inhibition of melanogenesis, only OMP showed inhibition, with a 54% reduction.Conclusion. It concludes that the PPIs OMP and RBP have antifungal activity in vitro against planktonic cells and biofilms of Sporothrix species and that, in addition, OMP can inhibit the melanization process in Sporothrix species.
Assuntos
Anfotericina B , Antifúngicos , Melanogênese , Inibidores da Bomba de Prótons , Sporothrix , Esporotricose , Humanos , Anfotericina B/farmacologia , Anfotericina B/uso terapêutico , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Itraconazol/farmacologia , Melaninas/biossíntese , Melaninas/metabolismo , Melanogênese/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Inibidores da Bomba de Prótons/farmacologia , Inibidores da Bomba de Prótons/uso terapêutico , Sporothrix/efeitos dos fármacos , Sporothrix/metabolismo , Esporotricose/tratamento farmacológico , Esporotricose/microbiologia , Terbinafina/farmacologiaRESUMO
The Trichophyton mentagrophytes complex comprises a group of dermatophyte fungi responsible for various dermatological infections. The increasing drug resistance of this species complex, especially terbinafine resistance of Trichophyton indotineae, is a major concern in dermatologist practice. This study provides a comprehensive analysis of T. mentagrophytes complex strains isolated from patients in Hue City, Vietnam, focusing on their phenotypic and genetic characteristics, antifungal susceptibility profiles, and molecular epidemiology. Keratinophilic fungi from dermatophytosis culture samples were identified morphologically and phenotypically, with species and genotypes confirmed by internal transcribed spacer sequencing and phylogenetic analysis. Antifungal susceptibility testing was carried out to evaluate their susceptibility to itraconazole, voriconazole, and terbinafine. The 24% (n = 27/114) of superficial mycoses were phenotypically attributed to T. mentagrophytes complex isolates. Trichophyton interdigitale, mainly genotype II*, was predominant (44.4%), followed by T. mentagrophytes genotype III* (22.2%), T. indotineae (14.8%), T. tonsurans (11.2%), and T. mentagrophytes (7.4%). While all isolates were susceptible to itraconazole and voriconazole, half of T. indotineae isolates exhibited resistance to terbinafine, linked to the Phe397Leu mutation in the SQLE protein. This study highlighted the presence of terbinafine-resistant T. indotineae isolates in Vietnam, emphasizing the need to investigate dermatophyte drug resistance and implement effective measures in clinical practice.
Species diversity within the Trichophyton mentagrophytes complex isolated from dermatophytosis in Hue City, Vietnam, was observed. Terbinafine-resistant T. indotineae isolates were detected for the first time in Vietnam, emphasizing the importance of implementing antifungal susceptibility testing to effectively manage and prevent the spread of resistant isolates.
Assuntos
Antifúngicos , Farmacorresistência Fúngica , Genótipo , Testes de Sensibilidade Microbiana , Filogenia , Terbinafina , Tinha , Humanos , Vietnã , Antifúngicos/farmacologia , Terbinafina/farmacologia , Tinha/microbiologia , Arthrodermataceae/efeitos dos fármacos , Arthrodermataceae/genética , Arthrodermataceae/classificação , Arthrodermataceae/isolamento & purificação , Masculino , Análise de Sequência de DNA , Itraconazol/farmacologia , DNA Espaçador Ribossômico/genética , Feminino , Pessoa de Meia-Idade , DNA Fúngico/genética , Epidemiologia Molecular , Adulto , TrichophytonRESUMO
Novel treatments are needed to reduce inflammation, improve symptoms, address exacerbations, and slow disease progression in bronchiectasis. Cathepsin C (CatC) inhibition promises to achieve this through reduction of neutrophil-derived serine protease (including neutrophil elastase [NE] and proteinase 3 [PR3]) activation. Here, we present the phase I characterization of the novel CatC inhibitor, BI 1291583. Five phase I trials of BI 1291583 in healthy subjects are presented: a single-rising-dose study (NCT03414008) and two multiple-rising-dose studies (NCT03868540 and NCT04866160) assessing the safety, tolerability, pharmacodynamics, and pharmacokinetics of BI 1291583; a food effect study (NCT03837964); and a drug-drug interaction study (NCT03890887) of BI 1291583 and itraconazole. BI 1291583 was safe and well tolerated across the doses tested in these trials. Most adverse events (AEs) were mild or moderate in intensity, with no serious AEs, AEs of special interest or deaths reported in any trial. Drug-related skin exfoliation was not reported more frequently in subjects treated with BI 1291583 compared with placebo. BI 1291583 was readily absorbed, and pharmacokinetics were supra-proportional over the dose ranges assessed. Additionally, BI 1291583 inhibited CatC in a dose-dependent manner, inhibited downstream NE activity, and decreased PR3 levels. No food effect was observed. Co-administration of multiple doses of itraconazole increased BI 1291583 exposure approximately twofold. Due to these promising phase I results, a multinational phase II program of BI 1291583 in adults with bronchiectasis is ongoing (Airleaf™ [NCT05238675], Clairafly™ [NCT05865886], and Clairleaf™ [NCT05846230]).
Assuntos
Bronquiectasia , Catepsina C , Voluntários Saudáveis , Humanos , Bronquiectasia/tratamento farmacológico , Masculino , Adulto , Feminino , Catepsina C/antagonistas & inibidores , Catepsina C/metabolismo , Pessoa de Meia-Idade , Adulto Jovem , Relação Dose-Resposta a Droga , Itraconazol/administração & dosagem , Itraconazol/farmacocinética , Itraconazol/efeitos adversos , Itraconazol/farmacologia , Interações Alimento-Droga , Método Duplo-Cego , Adolescente , Interações MedicamentosasRESUMO
Aim: Evaluate the anticandidal effect of Croton heliotropiifolius Kunth essential oil and its interaction with azoles and N-acetylcysteine (NAC) against planktonic cells and biofilms.Materials & methods: Broth microdilution and checkerboard methods were used to evaluate the individual and combined activity with fluconazole and itraconazole (ITRA). The antibiofilm effect of the oil was assessed in 96-well plates alone and combined with ITRA and NAC, and cytotoxicity determined by MTT.Results: The oil inhibited all Candida species growth. The activity was enhanced when associated with ITRA and NAC for planktonic cells and biofilms in formation. The effective concentrations were lower than the toxic ones to V79 cells.Conclusion: C. heliotropiifolius Kunth essential oil is an anticandidal alternative, and can be associated with ITRA and NAC.
Candida is a type of fungus that can cause disease in people. In recent years, the number of available drugs to treat this disease have declined. It is important to search for new drugs. Plants are often used to improve health, so we tested the essential oil of a plant called Croton heliotropiifolius to see if it could kill the fungus. We found that the essential oil could kill the fungus, and could be used with other drugs to improve their effects.
Assuntos
Acetilcisteína , Antifúngicos , Biofilmes , Candida , Croton , Itraconazol , Testes de Sensibilidade Microbiana , Óleos Voláteis , Croton/química , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Itraconazol/farmacologia , Antifúngicos/farmacologia , Acetilcisteína/farmacologia , Biofilmes/efeitos dos fármacos , Candida/efeitos dos fármacos , Sinergismo Farmacológico , Animais , Linhagem Celular , Fluconazol/farmacologia , CricetinaeRESUMO
A drug-drug interaction (DDI) trial of cytochrome P450 3A (CYP3A) is a necessary part of early-phase trials of drugs mainly metabolized by this enzyme, but CYP3A DDI clinical trials do not have a standard design, especially for Chinese people. We aimed to offer specific recommendations for CYP3A DDI clinical trial design. This was an open, three-cycle, self-controlled study. Healthy subjects were given different administration strategies of CYP3A4 perpetrators. In each cycle, blood samples were collected before and within 24 h after the administration of midazolam, the CYP3A indicator substrate. The plasma concentrations of midazolam and 1-hydroxymidazolam was obtained using liquid chromatography tandem mass spectrometry assay. For CYP3A inhibition, itraconazole exposure with a loading dose could increase the exposure of midazolam by 3.21-fold based on maximum plasma concentration (Cmax), 8.37-fold based on area under the curve Pharmacology Research & Perspectives for review only from zero to the time point (AUC0-t), and 11.22-fold based on area under the curve from zero to infinity (AUC0-∞). The data were similar for itraconazole pretreatment without a loading dose. For CYP3A induction, the exposure of rifampin for 7 days decreased the plasma concentration of midazolam ~0.27-fold based on Cmax, ~0.18-fold based on AUC0-t, and ~0.18-fold based on AUC0-∞. Midazolam exposure did not significantly change when the pretreatment of rifampin increased to 14 days. This study showed that itraconazole pretreatment for 3 days without a loading dose was enough for CYP3A inhibition, and pretreatment with rifampin for 7 days could induce near-maximal CYP3A levels.
Assuntos
Inibidores do Citocromo P-450 CYP3A , Citocromo P-450 CYP3A , Interações Medicamentosas , Itraconazol , Midazolam , Humanos , Midazolam/farmacocinética , Midazolam/administração & dosagem , Midazolam/sangue , Midazolam/análogos & derivados , Itraconazol/farmacologia , Itraconazol/administração & dosagem , Citocromo P-450 CYP3A/metabolismo , Masculino , Adulto , Inibidores do Citocromo P-450 CYP3A/farmacologia , Inibidores do Citocromo P-450 CYP3A/administração & dosagem , Adulto Jovem , Rifampina/farmacologia , Rifampina/administração & dosagem , Voluntários Saudáveis , Feminino , Indutores do Citocromo P-450 CYP3A/farmacologia , Área Sob a Curva , Projetos de Pesquisa , Ensaios Clínicos como Assunto , População do Leste AsiáticoRESUMO
Itraconazole (ITZ) is one of the broad-spectrum antifungal agents for treating fungal keratitis. In clinical use, ITZ has problems related to its poor solubility in water, which results in low bioavailability when administered orally. To resolve the issue, we formulated ITZ into the inclusion complex (ITZ-IC) system using ß-cyclodextrin (ß-CD), which can potentially increase the solubility and bioavailability of ITZ. The molecular docking study has confirmed that the binding energy of ITZ with the ß-CD was -5.0 kcal/mol, indicating a stable conformation of the prepared inclusion complex. Moreover, this system demonstrated that the inclusion complex could significantly increase the solubility of ITZ up to 4-fold compared to the pure drug. Furthermore, an ocular drug delivery system was developed through dissolving microneedle (DMN) using polyvinyl pyrrolidone (PVP) and polyvinyl alcohol (PVA) as polymeric substances. The evaluation results of DMN inclusion complexes (ITZ-IC-DMN) showed excellent mechanical strength and insertion ability. In addition, ITZ-IC-DMN can dissolve rapidly upon application. The ex vivo permeation study revealed that 75.71% (equivalent to 3.79 ± 0.21 mg) of ITZ was permeated through the porcine cornea after 24 h. Essentially, ITZ-IC-DMN exhibited no signs of irritation in the HET-CAM study, indicating its safety for application. In conclusion, this study has successfully developed an inclusion complex formulation containing ITZ using ß-CD in the DMN system. This approach holds promise for enhancing the solubility and bioavailability of ITZ through ocular administration.
Assuntos
Antifúngicos , Itraconazol , Ceratite , Agulhas , Solubilidade , beta-Ciclodextrinas , beta-Ciclodextrinas/química , Itraconazol/química , Itraconazol/administração & dosagem , Itraconazol/farmacologia , Itraconazol/farmacocinética , Animais , Ceratite/tratamento farmacológico , Antifúngicos/farmacologia , Antifúngicos/química , Antifúngicos/administração & dosagem , Sistemas de Liberação de Medicamentos , Suínos , Córnea/metabolismo , Córnea/efeitos dos fármacos , Administração Oftálmica , Simulação de Acoplamento Molecular , Disponibilidade Biológica , Povidona/química , Álcool de Polivinil/químicaRESUMO
Lorlatinib is a pharmaceutical ALK kinase inhibitor used to treat ALK driven non-small cell lung cancers. This paper analyses the intersection of past published data on the physiological consequences of two unrelated drugs from general medical practice-itraconazole and cilostazol-with the pathophysiology of ALK positive non-small cell lung cancer. A conclusion from that data analysis is that adding itraconazole and cilostazol may make lorlatinib more effective. Itraconazole, although marketed worldwide as a generic antifungal drug, also inhibits Hedgehog signaling, Wnt signaling, hepatic CYP3A4, and the p-gp efflux pump. Cilostazol, marketed worldwide as a generic thrombosis preventative drug, acts by inhibiting phosphodiesterase 3, and, by so doing, lowers platelets' adhesion, thereby partially depriving malignant cells of the many tumor trophic growth factors supplied by platelets. Itraconazole may enhance lorlatinib effectiveness by (i) reducing or stopping a Hedgehog-ALK amplifying feedback loop, by (ii) increasing lorlatinib's brain levels by p-gp inhibition, and by (iii) inhibiting growth drive from Wnt signaling. Cilostazol, surprisingly, carries minimal bleeding risk, lower than that of aspirin. Risk/benefit assessment of the combination of metastatic ALK positive lung cancer being a low-survival disease with the predicted safety of itraconazole-cilostazol augmentation of lorlatinib favors a trial of this drug trio in ALK positive lung cancer.
Assuntos
Aminopiridinas , Cilostazol , Resistencia a Medicamentos Antineoplásicos , Itraconazol , Humanos , Itraconazol/farmacologia , Itraconazol/uso terapêutico , Cilostazol/farmacologia , Cilostazol/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Aminopiridinas/farmacologia , Aminopiridinas/uso terapêutico , Pirazóis/farmacologia , Pirazóis/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Reposicionamento de Medicamentos , Lactamas/farmacologia , Lactamas/uso terapêutico , Quinase do Linfoma Anaplásico/metabolismo , Quinase do Linfoma Anaplásico/antagonistas & inibidores , Quinase do Linfoma Anaplásico/genética , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/farmacologiaRESUMO
Cytochrome P450 (CYP) 3A4 is an enzyme involved in the metabolism of many drugs that are currently on the market and is therefore a key player in drug-drug interactions (DDIs). ACT-1004-1239 is a potent and selective, first-in-class ACKR3/CXRC7 antagonist being developed as a treatment for demyelinating diseases including multiple sclerosis. Based on the human absorption, distribution, metabolism, and excretion (ADME) study results, ACT-1004-1239 is predominantly metabolized by CYP3A4. This study investigated the effect of the strong CYP3A4 inhibitor, itraconazole, on the pharmacokinetics of single-dose ACT-1004-1239 in healthy male subjects. In the open-label, fixed-sequence DDI study, a total of 16 subjects were treated. Each subject received a single dose of 10 mg ACT-1004-1239 (Treatment A) in the first period followed by concomitant administration of multiple doses of 200 mg itraconazole and a single dose of 10 mg ACT-1004-1239 in the second period. We report a median of difference in tmax (90% confidence interval, CI) of 0.5 h (0.0, 1.0) comparing both treatments. The geometric mean ratio (GMR) (90% CI) of Cmax and AUC0-∞ was 2.16 (1.89, 2.47) and 2.77 (2.55, 3.00), respectively. The GMR (90% CI) of t1/2 was 1.46 (1.26, 1.70). Both treatments were well-tolerated with an identical incidence in subjects reporting treatment-emergent adverse events (TEAE). The most frequently reported TEAEs were headache and nausea. In conclusion, ACT-1004-1239 is classified as a moderately sensitive CYP3A4 substrate (i.e., increase of AUC ≥2- to <5-fold), and this should be considered in further clinical studies if CYP3A4 inhibitors are concomitantly administered.
Assuntos
Inibidores do Citocromo P-450 CYP3A , Citocromo P-450 CYP3A , Interações Medicamentosas , Itraconazol , Humanos , Masculino , Itraconazol/farmacocinética , Itraconazol/administração & dosagem , Itraconazol/farmacologia , Adulto , Inibidores do Citocromo P-450 CYP3A/farmacocinética , Inibidores do Citocromo P-450 CYP3A/administração & dosagem , Inibidores do Citocromo P-450 CYP3A/farmacologia , Adulto Jovem , Citocromo P-450 CYP3A/metabolismo , Pessoa de Meia-Idade , Voluntários Saudáveis , Área Sob a CurvaRESUMO
Commercial topical formulations containing itraconazole (poorly water soluble), for mycotic infections, have poor penetration to infection sites beneath the nails and skin thereby necessitating oral administration. To improve penetration, colloidal solutions of itraconazole (G1-G4) containing Poloxamer 188, tween 80, ethanol, and propylene glycol were prepared and incorporated into HFA-134-containing sprays. Formulations were characterized using particle size, drug content, and Fourier-transform infrared spectroscopy (FTIR). In vitro permeation studies were performed using Franz diffusion cells for 8 h. Antimycotic activity on Candida albicans and Trichophyton rubrum was performed using broth micro-dilution and flow cytometry, while cytotoxicity was tested on HaCaT cell lines. Particle size ranged from 39.35-116.80 nm. FTIR and drug content revealed that G1 was the most stable formulation (optimized formulation). In vitro release over 2 h was 45% for G1 and 34% for the cream. There was a twofold increase in skin permeation, fivefold intradermal retention, and a sevenfold increase in nail penetration of G1 over the cream. Minimum fungicidal concentrations (MFC) against C. albicans were 0.156 and 0.313 µg/mL for G1 and cream, respectively. The formulations showed optimum killing kinetics after 48 h. MFC values against T. rubrum were 0.312 and 0.625 µg/mL for the G1 and cream, respectively. Transmission electron microscopy revealed organelle destruction and cell leakage for G1 in both organisms and penetration of keratin layers to destroy T. rubrum. Cytotoxicity evaluation of G1 showed relative safety for skin cells. The G1 formulation showed superior skin permeation, nail penetration, and fungicidal activity compared with the cream formulation.
Assuntos
Antifúngicos , Candida albicans , Coloides , Itraconazol , Antifúngicos/farmacologia , Antifúngicos/administração & dosagem , Candida albicans/efeitos dos fármacos , Itraconazol/farmacologia , Itraconazol/administração & dosagem , Itraconazol/química , Humanos , Animais , Trichophyton/efeitos dos fármacos , Testes de Sensibilidade Microbiana/métodos , Química Farmacêutica/métodos , Tamanho da Partícula , Pele/metabolismo , Pele/efeitos dos fármacos , Pele/microbiologia , Absorção Cutânea/efeitos dos fármacos , Linhagem Celular , Células HaCaT , Unhas/efeitos dos fármacos , Unhas/microbiologia , Unhas/metabolismo , ArthrodermataceaeRESUMO
Onychomycosis, a fungal nail infection, is primarily caused by dermatophytes, yeasts, and non-dermatophyte moulds (NDMs). The incidence of this disease and the predominance of specific pathogens vary across different regions and evolve. This study aimed to elucidate the epidemiology of onychomycosis and the pattern of causative pathogens in Beijing, and to ascertain the in vitro antifungal susceptibility profiles of Trichophyton rubrum against itraconazole (ITR), terbinafine (TER), and fluconazole (FLU). Involving 245 patients of onychomycosis with positive fungal culture results, the study implemented internal transcribed spacer (ITS) sequencing of ribosomal DNA (rDNA) on all collected samples. The mean age of the participants was 37.93 ± 13.73 years, with a male-to-female ratio of 1.53:1. The prevalence of toenail infections was significantly higher than that of fingernails. Distal and lateral subungual onychomycosis (DLSO) were the most frequent clinical classifications. PCR results indicated that dermatophytes were the most prevalent pathogens, followed by yeasts and NDMs, among which T. rubrum was the most dominant dermatophyte. TER demonstrated high sensitivity to T. rubrum. However, in clinical settings, some patients with onychomycosis exhibit a poor response to TER treatment. The relationship between in vitro antifungal sensitivity and clinical effectiveness is complex, and understanding the link between in vitro MIC values and clinical efficacy requires further investigation.
Assuntos
Antifúngicos , Fluconazol , Dermatoses do Pé , Itraconazol , Testes de Sensibilidade Microbiana , Onicomicose , Terbinafina , Humanos , Onicomicose/microbiologia , Onicomicose/tratamento farmacológico , Onicomicose/epidemiologia , Masculino , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Feminino , Adulto , Pessoa de Meia-Idade , Terbinafina/farmacologia , Terbinafina/uso terapêutico , Dermatoses do Pé/microbiologia , Dermatoses do Pé/tratamento farmacológico , Itraconazol/farmacologia , Itraconazol/uso terapêutico , Fluconazol/farmacologia , Arthrodermataceae/efeitos dos fármacos , Adulto Jovem , Dermatoses da Mão/microbiologia , Dermatoses da Mão/tratamento farmacológico , Dermatoses da Mão/epidemiologia , China/epidemiologia , Prevalência , Trichophyton/efeitos dos fármacos , Idoso , AdolescenteRESUMO
Enteroviruses cause viral diseases that are harmful to children. Hand, foot, and mouth disease (HFMD) with neurological complications is mainly caused by enterovirus 71 (EV71). Despite its clinical importance, there is no effective antiviral drug against EV71. However, several repurposed drugs have been shown to have antiviral activity against related viruses. Treatments with single drugs and two-drug combinations were performed in vitro to assess anti-EV71 activity. Three repurposed drug candidates with broad-spectrum antiviral activity were found to demonstrate potent anti-EV71 activity: prochlorperazine, niclosamide, and itraconazole. To improve antiviral activity, combinations of two drugs were tested. Niclosamide and itraconazole showed synergistic antiviral activity in Vero cells, whereas combinations of niclosamide-prochlorperazine and itraconazole-prochlorperazine showed only additive effects. Furthermore, the combination of itraconazole and prochlorperazine showed an additive effect in neuroblastoma cells. Itraconazole and prochlorperazine exert their antiviral activities by inhibiting Akt phosphorylation. Repurposing of drugs can provide a treatment solution for HFMD, and our data suggest that combining these drugs can enhance that efficacy.
Assuntos
Antivirais , Reposicionamento de Medicamentos , Sinergismo Farmacológico , Enterovirus Humano A , Itraconazol , Antivirais/farmacologia , Enterovirus Humano A/efeitos dos fármacos , Enterovirus Humano A/fisiologia , Chlorocebus aethiops , Animais , Células Vero , Itraconazol/farmacologia , Humanos , Niclosamida/farmacologia , Doença de Mão, Pé e Boca/virologia , Doença de Mão, Pé e Boca/tratamento farmacológicoRESUMO
Introduction. The development of new antifungal drugs has become a global priority, given the increasing cases of fungal diseases together with the rising resistance to available antifungal drugs. In this scenario, drug repositioning has emerged as an alternative for such development, with advantages such as reduced research time and costs.Gap statement. Propafenone is an antiarrhythmic drug whose antifungal activity is poorly described, being a good candidate for further study.Aim. This study aims to evaluate propafenone activity against different species of Candida spp. to evaluate its combination with standard antifungals, as well as its possible action mechanism.Methodology. To this end, we carried out tests against strains of Candida albicans, Candida auris, Candida parapsilosis, Candida tropicalis, Candida glabrata and Candida krusei based on the evaluation of the MIC, minimum fungicidal concentration and tolerance level, along with checkerboard and flow cytometry tests with clinical strains and cell structure analysis by scanning electron microscopy (SEM).Results. The results showed that propafenone has a 50% MIC ranging from 32 to 256 µg ml-1, with fungicidal activity and positive interactions with itraconazole in 83.3% of the strains evaluated. The effects of the treatments observed by SEM were extensive damage to the cell structure, while flow cytometry revealed the apoptotic potential of propafenone against Candida spp.Conclusion. Taken together, these results indicate that propafenone has the potential for repositioning as an antifungal drug.