Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 445
Filtrar
1.
Toxicon ; 250: 108121, 2024 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-39389208

RESUMO

Emamectin benzoate is an avermectin bio-insecticide commonly used for managing several insect pests including Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae), a major polyphagous pest of many cultivated crops. The current study was conducted to evaluate the effects of emamectin benzoate on the fitness of S. litura populations exhibiting differential susceptibility to insecticide. The selection process and all the bioassays were carried out using 6-day-old 2nd instar larvae of S. litura. A field-collected population of S. litura was divided into two groups: one selected with emamectin benzoate for eight generations (EB-Sel) and the other kept unexposed (Unsel-Lab) to insecticide in the laboratory. An increase in resistance ratio from 1.71-fold in the F1 generation to 22.54-fold in the F8 generation of the EB-Sel population was observed compared to the Unsel-Lab (F8) population. The EB-Sel and Unsel-Lab populations were treated with their respective lethal and sub-lethal concentrations which resulted in an extended development period, decreased larval survival, and adult emergence along with increased morphological abnormalities in adults. Significant reductions were observed in both male and female longevity, fecundity, egg hatching, net reproductive rate (R0), intrinsic rate of increase (rm), and finite rate of increase (λ) in EB-Sel and Unsel-Lab populations. Higher concentrations of the insecticide also reduced the relative fitness (Rf) of S. litura larvae, with maximum effect at LC50 of the EB-Sel population where the Rf value was 0.32 compared to the Unsel-Lab population. Both populations have been affected by emamectin benzoate exposure, however, the impact was more pronounced in the EB-Sel population indicating fitness costs. Our results suggested the fitness cost linked to emamectin benzoate resistance in S. litura which might favor managing insecticide resistance by reducing the frequency of resistant alleles by removing selection pressure. Consequently, our research provides significant insights to devise better pest management strategies for S. litura.


Assuntos
Resistência a Inseticidas , Inseticidas , Ivermectina , Larva , Spodoptera , Animais , Ivermectina/análogos & derivados , Ivermectina/toxicidade , Spodoptera/efeitos dos fármacos , Inseticidas/toxicidade , Larva/efeitos dos fármacos , Feminino , Masculino
2.
Carbohydr Polym ; 345: 122553, 2024 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-39227095

RESUMO

The requirement to improve the efficiency of pesticide utilization has led to the development of sustainable and smart stimuli-responsive pesticide delivery systems. Herein, a novel avermectin nano/micro spheres (AVM@HPMC-Oxalate) with sensitive stimuli-response function target to the Lepidoptera pests midgut microenvironment (pH 8.0-9.5) was constructed using hydroxypropyl methylcellulose (HPMC) as the cost-effective and biodegradable material. The avermectin (AVM) loaded nano/micro sphere was achieved with high AVM loading capacity (up to 66.8 %). The simulated release experiment proved the rapid stimuli-responsive and pesticides release function in weak alkaline (pH 9) or cellulase environment, and the release kinetics were explained through release models and SEM characterization. Besides, the nano/micro sphere size made AVM@HPMC-Oxalate has higher foliar retention rate (1.6-2.1-fold higher than commercial formulation) which is beneficial for improving the utilization of pesticides. The in vivo bioassay proved that AVM@HPMC-Oxalate could achieve the long-term control of Plutella xylostella by extending UV shielding performance (9 fold higher than commercial formulation). After 3 h of irradiation, the mortality rate of P. xylostella treated by AVM@HPMC-Oxalate still up to 56.7 % ± 5.8 %. Moreover, AVM@HPMC-Oxalate was less toxic to non-target organisms, and the acute toxicity to zebrafish was reduced by 2-fold compared with AVM technical.


Assuntos
Ivermectina , Mariposas , Raios Ultravioleta , Ivermectina/análogos & derivados , Ivermectina/química , Ivermectina/farmacologia , Ivermectina/toxicidade , Animais , Mariposas/efeitos dos fármacos , Inseticidas/química , Inseticidas/farmacologia , Inseticidas/toxicidade , Celulose/química , Celulose/análogos & derivados , Derivados da Hipromelose/química , Concentração de Íons de Hidrogênio , Liberação Controlada de Fármacos
3.
Ecotoxicol Environ Saf ; 284: 116964, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39260218

RESUMO

Avermectin (AVM), a compound derived from the fermentation of Avermectin Streptomyces, has insecticidal, acaricidal, and nematicidal properties. Widely employed in agriculture, it serves as an effective and broad-spectrum insecticide for pest control. Although the toxicity of AVM at low doses may not be readily apparent, prolonged and extensive exposure can result in poisoning. To investigate the toxic effects of AVM on the body, this study established rat models of AVM poisoning with both low and high concentrations of the compound. Fifteen male rats were randomly assigned to one of three groups (n=5 per group): a control group, a low-concentration group, and a high-concentration group. The low-concentration group was administered an oral dose of 2 mg/kg AVM once daily for a duration of seven days, while the high-concentration group received an oral dose of 10 mg/kg AVM once daily for the same period. This study examined the impact of AVM on liver function and gut microbiota in rats using weight monitoring, liver function indicator detection, liver metabolomics sequencing, colon barrier function testing, and gut microbiota sequencing. The findings of this study demonstrated that exposure to 2 or 10 mg/kg AVM for seven days can lead to a notable decrease in rat weight, as well as induce liver dysfunction and metabolic disturbances. Additionally, AVM exposure can disrupt the composition of the intestinal microbiota and impair the integrity of the colon mucosal barrier, causing downregulation of Occludin expression and upregulation of inflammation-related protein expression levels such as IL-1ß, Myd88, and TLR4. Furthermore, bioinformatics analysis revealed a significant association between liver dysfunction and dysbiosis of the gut microbiota. These findings have implications for the agricultural use of AVM and its potential contribution to environmental pollution. Consequently, individuals involved in AVM usage should prioritize safety precautions and monitor liver function.


Assuntos
Colo , Microbioma Gastrointestinal , Inseticidas , Ivermectina , Fígado , Animais , Ivermectina/análogos & derivados , Ivermectina/toxicidade , Masculino , Microbioma Gastrointestinal/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/patologia , Ratos , Colo/efeitos dos fármacos , Colo/patologia , Inseticidas/toxicidade , Ratos Sprague-Dawley
4.
Sci Rep ; 14(1): 22565, 2024 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-39343793

RESUMO

The red palm weevil (RPW), Rhynchophorus ferrugineus Olivier, is a devastating insect-pest of 29 plants including date palm. It feeds inside the tree bark thus it is difficult to manage using insecticides. Only a few insecticides have been found effective against RPW. Among these insecticide, emamectin benzoate (EMB) is widely used. This insecticide can pose threat human and environmental health as it is used in the form of tree injection. Thus, keeping in view its possible, its sublethal effect on RPW was studied using Age-stage, two sex life table. Life table parameters of the progeny of exposed larvae to LC10, LC25, and LC50 of EMB were computed. Statistically higher fecundity (161.12 per female) was observed in control treatment, while less fecundity was observed in LC50 treatment. Significantly higher values for intrinsic rate of increase (r), finite rate of increase (λ), and net reproductive rate (Ro) (0.0376, 1.0383, and 67.13 per day, respectively) were recorded for the control treatment. Contrarily, lower values for r, Ro, and λ i.e. 0.0318, 23.82, and 1.0324 per day, respectively were recorded in the LC50 treatment. Decreased population parameters suggest that EMB can be successfully used in for the management of RPW.


Assuntos
Inseticidas , Ivermectina , Tábuas de Vida , Gorgulhos , Animais , Gorgulhos/efeitos dos fármacos , Gorgulhos/crescimento & desenvolvimento , Ivermectina/análogos & derivados , Ivermectina/farmacologia , Ivermectina/toxicidade , Inseticidas/farmacologia , Inseticidas/toxicidade , Feminino , Masculino , Larva/efeitos dos fármacos , Fertilidade/efeitos dos fármacos , Reprodução/efeitos dos fármacos
5.
J Hazard Mater ; 477: 135376, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39111175

RESUMO

Avermectin is a highly effective insecticide that has been widely used in agriculture since the 1990s. In recent years, the safety of avermectin for non-target organisms has received much attention. The vasculature is important organs in the body and participate in the composition of other organs. However, studies on the vascular safety of avermectin are lacking. The vasculature of zebrafish larvae is characterized by ease of observation and it is a commonly used model for vascular studies. Therefore, zebrafish larvae were used to explore the potential risk of avermectin on the vasculature. The results showed that avermectin induced vascular damage throughout the body of zebrafish larvae, including the head, eyes, intestine, somite, tail and other vasculature. The main forms of damage are reduction in vascular diameter, vascular area and vascular abundance. Meanwhile, avermectin induced a decrease in the number of endothelial cells and apoptosis within the vasculature. In addition, vascular damage may be related to impairment of mitochondrial function and mitochondria-mediated apoptosis. Finally, exploration of the molecular mechanisms revealed abnormal alterations in the expression of genes related to the VEGF/Notch signaling pathway. Therefore, the VEGF/Notch signaling pathway may be an important mechanism for avermectin-induced vascular damage in zebrafish larvae. This study demonstrates the vascular toxicity of avermectin in zebrafish larvae and reveals the possible molecular mechanism, which would hopefully draw more attention to the safety of avermectin in non-target organisms.


Assuntos
Apoptose , Ivermectina , Larva , Mitocôndrias , Receptores Notch , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular , Peixe-Zebra , Animais , Ivermectina/análogos & derivados , Ivermectina/toxicidade , Apoptose/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Larva/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Receptores Notch/metabolismo , Inseticidas/toxicidade , Vasos Sanguíneos/efeitos dos fármacos
6.
Ecotoxicol Environ Saf ; 284: 116917, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39182280

RESUMO

The fall armyworm (FAW), Spodoptera frugiperda Smith (Lepidoptera: Noctuidae), poses a significant threat to food security, necessitating effective management strategies. While chemical control remains a primary approach, understanding the toxicity and detoxification mechanisms of different insecticides is crucial. In this study, we conducted leaf-dipping bioassays to assess the toxicity of quinalphos and beta-cypermethrin·emamectin benzoate (ß-cyp·EMB) on S. frugiperda larvae. Additionally, we assessed the response of alterations in CarE, GST, MFO, and AChE activities to sublethal concentrations of these insecticides over various treatment durations. Results indicated that ß-cyp·EMB exhibited higher toxicity than quinalphos in S. frugiperda. Interestingly, the highest activities of GST, CarE, MFO, and AChE were observed at 6 h exposure to LC10 and LC25 of ß-cyp·EMB, surpassing equivalent sublethal concentrations of quinalphos. Subsequently, GST and CarE activities exposure to ß-cyp·EMB steadily decreased, while MFO and AChE activities exposure to both insecticides was initially decreased then increased. Conversely, two sublethal concentrations of quinalphos notably enhanced GST activity across all exposure durations, with significantly higher than ß-cyp·EMB at 12-48 h. Similarly, CarE activity was also increased at various durations. Our research has exhibited significant alterations in enzyme activities exposure to both concentration and duration. Furthermore, Pearson correlation analysis showed significant correlations among these enzyme activities at different treatment durations. These findings contribute to a better understanding of detoxification mechanisms across different insecticides, providing valuable insights for the rational management of S. frugiperda populations.


Assuntos
Inativação Metabólica , Inseticidas , Ivermectina , Larva , Piretrinas , Spodoptera , Animais , Inseticidas/toxicidade , Spodoptera/efeitos dos fármacos , Ivermectina/análogos & derivados , Ivermectina/toxicidade , Larva/efeitos dos fármacos , Piretrinas/toxicidade , Acetilcolinesterase/metabolismo , Glutationa Transferase/metabolismo
7.
Vet Res Commun ; 48(5): 3139-3155, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39106005

RESUMO

Changes to ivermectin (IVM [22,23-dihydro avermectin B1a + 22,23-dihydro avermectin B1b]) toxicokinetics (TK) with and without P-glycoprotein (P-gp) inhibition by cyclosporin A (CsA) were examined in rainbow trout (Oncorhynchus mykiss). Rainbow trout were injected with 175 µg/kg 3H-IVM (8.6 µCi/mg IVM) with or without co-administration of 480 µg/kg CsA into the caudal vasculature. Fish were sacrificed at various time points (0.25, 0.5, 1, 3, 24, 48, 96, and 168 h) for organ and tissue sampling (blood, liver, kidney, gill, intestines, brain [5 regions], eye, gonad, and fat) which were analyzed for IVM-derived radioactivity. The IVM concentration decreased over time in blood, liver, kidney, and gill, while concentrations in other tissues remained constant. The highest maximum IVM concentration (Cmax) was found in kidney, followed by liver; the lowest Cmax was found in eye, followed by brain and adipose tissue. The highest % of the administered dose was found in the blood 15 min post-IVM administration, followed by the intestine at 60 min post-IVM administration. P-gp inhibition by CsA did not significantly affect calculated TK parameters (AUC [7.33 ± 0.73 - 11.5 ± 2.5 mg•h/kg], mean residence time [84.7 ± 21 - 125 ± 55 h], T1/2 [58.7 ± 15 - 86.8 ± 38 h], clearance rate [0.0152 ± 0.0033 - 0.0239 ± 0.0024 L/kg•h], or volume of distribution [1.91 ± 0.47 - 2.02 ± 0.33 L/kg]), but resulted in small but significant changes in the % administered dose found in blood and medulla. These results suggest that P-gp plays a limited role in overall IVM TK, and that its role in xenobiotic protection may be much less robust in fish than it is in mammals.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Ciclosporina , Ivermectina , Oncorhynchus mykiss , Animais , Oncorhynchus mykiss/metabolismo , Ivermectina/análogos & derivados , Ivermectina/farmacocinética , Ivermectina/toxicidade , Ivermectina/sangue , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Ciclosporina/farmacocinética , Toxicocinética , Antiparasitários/farmacocinética , Distribuição Tecidual
8.
Environ Sci Pollut Res Int ; 31(32): 45425-45440, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38965109

RESUMO

Ivermectin (IVM) is a widely used antiparasitic. Concerns have been raised about its environmental effects in the wetlands of Río de la Plata basin where cattle have been treated with IVM for years. This study investigated the sublethal effects of environmentally relevant IVM concentrations in sediments on the Neotropical fish Prochilodus lineatus. Juvenile P. lineatus were exposed to IVM-spiked sediments (2 and 20 µg/Kg) for 14 days, alongside a control sediment treatment without IVM. Biochemical and oxidative stress responses were assessed in brain, gills, and liver tissues, including lipid damage, glutathione levels, enzyme activities, and antioxidant competence. Muscle and brain acetylcholinesterase activity (AChE) and stable isotopes of 13C and 15N in muscle were also measured. The lowest IVM treatment resulted in an increase in brain lipid peroxidation, as measured by thiobarbituric acid reactive substances (TBARs), decreased levels of reduced glutathione (GSH) in gills and liver, increased catalase activity (CAT) in the liver, and decreased antioxidant capacity against peroxyl radicals (ACAP) in gills and liver. The highest IVM treatment significantly reduced GSH in the liver. Muscle (AChE) was decreased in both treatments. Multivariate analysis showed significant overall effects in the liver tissue, followed by gills and brain. These findings demonstrate the sublethal effects of IVM in P. lineatus, emphasizing the importance of considering sediment contamination and trophic habits in realistic exposure scenarios.


Assuntos
Antiparasitários , Ivermectina , Poluentes Químicos da Água , Animais , Ivermectina/toxicidade , Antiparasitários/toxicidade , Poluentes Químicos da Água/toxicidade , Gado , América do Sul , Estresse Oxidativo/efeitos dos fármacos , Sedimentos Geológicos/química , Brânquias/efeitos dos fármacos , Brânquias/metabolismo
9.
Environ Sci Pollut Res Int ; 31(32): 44717-44729, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38954342

RESUMO

As a widely used pesticide, abamectin could be a threat to nontarget organisms. In this study, the toxic mechanism of abamectin on osmoregulation in Procambarus clarkii was explored for the first time. The results of this study showed that with increasing abamectin concentration, the membrane structures of gill filaments were damaged, with changes in ATPase activities, transporter contents, biogenic amine contents, and gene expression levels. The results of this study indicated that at 0.2 mg/L abamectin, ion diffusion could maintain osmoregulation. At 0.4 mg/L abamectin, passive transport was inhibited due to damage to the membrane structures of gill filaments, and active transport needed to be enhanced for osmoregulation. At 0.6 mg/L abamectin, the membrane structures of gill filaments were seriously damaged, and the expression level of osmoregulation-related genes decreased, but the organisms were still mobilizing various transporters, ATPases, and biogenic amines to address abamectin stress. This study provided a theoretical basis for further study of the effects of contaminations in aquatic environment on the health of crustaceans.


Assuntos
Astacoidea , Ivermectina , Osmorregulação , Animais , Ivermectina/análogos & derivados , Ivermectina/toxicidade , Astacoidea/efeitos dos fármacos , Astacoidea/fisiologia , Poluentes Químicos da Água/toxicidade , Brânquias/efeitos dos fármacos
10.
Environ Sci Pollut Res Int ; 31(32): 44815-44827, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38955968

RESUMO

To reveal the toxicological mechanisms of pesticide mixtures on soil organisms, this study concentrated on evaluating enzymatic activity and gene expression changes in the earthworm Eisenia fetida (Savigny 1826). Despite being frequently exposed to multiple pesticides, including the common combination of abamectin (ABA) and carbendazim (CAR), environmental organisms have primarily been studied for the effects of individual pesticides. Acute toxicity results exhibited that the combination of ABA and CAR caused a synergistic impact on E. fetida. The levels of MDA, ROS, T-SOD, and caspase3 demonstrated a significant increase across most individual and combined groups, indicating the induction of oxidative stress and cell death. Additionally, the expression of three genes (hsp70, gst, and crt) exhibited a significant decrease following exposure to individual pesticides and their combinations, pointing toward cellular damage and impaired detoxification function. In contrast, a noteworthy increase in ann expression was observed after exposure to both individual pesticides and their mixtures, suggesting the stimulation of reproductive capacity in E. fetida. The present findings contributed to a more comprehensive understanding of the potential toxicity mechanisms of the ABA and CAR mixture, specifically on oxidative stress, cell death, detoxification dysfunction, and reproductive capacity in earthworms. Collectively, these data offered valuable toxicological insights into the combined effects of pesticides on soil organisms, enhancing our understanding of the underlying risks associated with the coexistence of different pesticides in natural soil environments.


Assuntos
Benzimidazóis , Carbamatos , Ivermectina , Oligoquetos , Poluentes do Solo , Solo , Animais , Oligoquetos/efeitos dos fármacos , Ivermectina/análogos & derivados , Ivermectina/toxicidade , Carbamatos/toxicidade , Benzimidazóis/toxicidade , Solo/química , Poluentes do Solo/toxicidade , Estresse Oxidativo , Praguicidas/toxicidade
11.
Sci Total Environ ; 947: 174558, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38972409

RESUMO

The increasing application of abamectin (ABM) in agriculture has raised concerns regarding its environmental safety and potential adverse effects on aquatic environment safety. In the present study, the toxic effects of ABM exposure on the adult Chinese mitten crab, Eriocheir sinensis were investigated, with a focus on locomotion impairment, behavioral changes, oxidative stress, energy metabolism disruption, and ferroptosis. Crabs were exposed to sublethal concentrations of ABM at 2, 20 and 200 µg/L. After 21 d chronic exposure to 200 µg/L, residual ABM in hepatopancreas and muscles were detected as 12.24 ± 6.67 and 8.75 ± 5.42 µg/Kg, respectively. By using acute exposure experiments (96 h), we observed significant locomotion and behavioral alterations, alongside biochemical evidences of oxidative stress and energy metabolism impairment. The presence of ferroptosis, a form of cell death driven by iron-dependent lipid peroxidation, was notably identified in the hepatopancreas. Functional tests with N-acetylcysteine (NAC) supplementation showed restored behavioral responses and decrease of ferroptosis levels. It suggests that mitigating oxidative stress could counteract ABM-induced toxicity. Our findings highlight the critical roles of oxidative stress and ferroptosis in mediating the toxic effects of ABM on E. sinensis, underscoring the need for strategies to mitigate environmental exposure to pesticides.


Assuntos
Braquiúros , Metabolismo Energético , Ferroptose , Ivermectina , Estresse Oxidativo , Poluentes Químicos da Água , Animais , Estresse Oxidativo/efeitos dos fármacos , Ivermectina/toxicidade , Ivermectina/análogos & derivados , Braquiúros/efeitos dos fármacos , Braquiúros/fisiologia , Metabolismo Energético/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Ferroptose/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos
12.
Pestic Biochem Physiol ; 203: 106017, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39084778

RESUMO

Emamectin benzoate (EMB), commonly used as an insecticide in fishery production, inevitably leaves residual chemicals in aquatic environments. High-level EMB exposure can cause severe damage to multiple systems of marine animals, potentially through mechanisms involving severe mitochondrial damage and oxidative stress. However, it is not clear yet how EMB exposure at a certain level can cause damage to fish kidney tissue. In this study, we exposed carps to an aquatic environment containing 2.4 µg/L of EMB and cultured carp kidney cells in vitro, established a cell model exposed to EMB. Our findings revealed that EMB exposure resulted in severe kidney tissue damage in carp and compromised the viability of grass carp kidney cells (CIK cells). By RNA-seq analysis, EMB exposure led to significant differences in mitochondrial homeostasis, response to ROS, ferroptosis, and autophagy signals in carp kidney tissue. Mechanistically, EMB exposure induced mitochondrial oxidative stress by promoting the generation of mitochondrial superoxide and reducing the activity of antioxidant enzymes. Additionally, EMB exposure triggered loss of mitochondrial membrane potential, an imbalance in mitochondrial fusion/division homeostasis, and dysfunction in oxidative phosphorylation, ultimately impairing ATP synthesis. Notably, EMB exposure also accelerated excessive autophagy and ferroptosis of cells by contributing to the formation of lipid peroxides and autophagosomes, and the deposition of Fe2+. However, N-acetyl-L-cysteine (NAC) treatment alleviated the damage and death of CIK cells by inhibiting oxidative stress. Overall, our study demonstrated that EMB exposure induced mitochondrial oxidative stress, impaired mitochondrial homeostasis, and function, promoted autophagy and ferroptosis of kidney cells, and ultimately led to kidney tissue damage in carp. Our research enhanced the toxicological understanding on EMB exposure and provides a model reference for comparative medicine.


Assuntos
Autofagia , Carpas , Ferroptose , Ivermectina , Rim , Mitocôndrias , Estresse Oxidativo , Animais , Carpas/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ivermectina/análogos & derivados , Ivermectina/toxicidade , Ferroptose/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Autofagia/efeitos dos fármacos , Rim/efeitos dos fármacos , Rim/patologia , Inseticidas/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos
13.
Pestic Biochem Physiol ; 203: 105999, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39084773

RESUMO

Abamectin has been extensively used in paddy fields to control insect pests. However, little information is available regarding its effects on non-target insects. In this study, we performed acute (3rd instar larvae) and chronic toxicity (newly hatched larvae <24 h) to determine the toxicity effects of abamectin on Chironomus kiiensis. The median lethal concentration (LC50) values of 24 h and 10 d were 0.57 mg/L and 68.12 µg/L, respectively. The chronic exposure significantly prolonged the larvae growth duration and inhibited pupation and emergence. The transcriptome and biochemical parameters were measured using 3rd instar larvae exposed to acute LC10 and LC25 for 24 h. Transcriptome data indicated that five trypsin and four chymotrypsin genes were downregulated, and RT-qPCR verified a significant expression decrease in trypsin3 and chymotrypsin1 genes. Meanwhile, abamectin could significantly inhibit the activities of the serine proteases trypsin and chymotrypsin. RNA interference showed that silencing trypsin3 and chymotrypsin1 genes led to higher mortality of C. kiiensis to abamectin. In conclusion, these findings indicated that trypsin and chymotrypsin are involved in the abamectin toxicity against C. kiiensis, which provides new insights into the mechanism of abamectin-induced ecotoxicity to chironomids.


Assuntos
Chironomidae , Quimotripsina , Ivermectina , Larva , Tripsina , Animais , Quimotripsina/metabolismo , Quimotripsina/genética , Chironomidae/efeitos dos fármacos , Chironomidae/genética , Tripsina/metabolismo , Tripsina/genética , Ivermectina/análogos & derivados , Ivermectina/toxicidade , Larva/efeitos dos fármacos , Inseticidas/toxicidade
14.
Environ Sci Pollut Res Int ; 31(37): 49905-49915, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39085690

RESUMO

Organisms are usually exposed to mixtures of emerging pollutants in aquatic environments. Due to their widespread use and environmental relevance, the individual and combined effects of the drugs azithromycin (AZT) and ivermectin (IVM) on the freshwater rotifer Lecane papuana and the euryhaline rotifer Proales similis were investigated. Rotifers showed greater sensitivity to IVM compared to AZT. The LC50 values of IVM and AZT for L. papuana and P. similis were 0.163 and 0.172 mg/L, and 13.52 and 20.00 mg/L, respectively. Population growth rates, assessed in chronic toxicity assays, responded negatively to increasing concentrations of both toxicants, either individually or in combination. Our results revealed two distinct combined toxicity responses: a strong synergistic effect in the freshwater rotifer and a marked antagonistic impact of the AZT-IVM mixtures in the euryhaline rotifer.


Assuntos
Azitromicina , Água Doce , Ivermectina , Rotíferos , Poluentes Químicos da Água , Animais , Ivermectina/toxicidade , Ivermectina/análogos & derivados , Rotíferos/efeitos dos fármacos , Azitromicina/toxicidade , Poluentes Químicos da Água/toxicidade
15.
Chemosphere ; 362: 142887, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39025308

RESUMO

Pieris rapae (Lepidoptera: Pieridae) poses a significant threat to Brassicaceae crops, leading to substantial losses annually. Repeated insecticide applications are widely used to protect crops and increase the resistance of P. rapae. Exploring the biochemical and molecular basis of insecticide tolerance in P. rapae is crucial for achieving effective insect suppuration and implementing resistance control strategies. In our research, emamectin benzoate (EBZ) resistance was developed in P. rapae strain through selective pressure over 15 generations. Moreover, the biochemical mechanisms underlying resistance to EBZ and its potential cross-resistance to other insecticides were studied. Additionally, the expression levels of cytochrome P450 (CYP450) and glutathione-s-transferase (GST) genes in P. rapae were quantitatively assessed upon exposure to EBZ using real-time PCR. Our data exhibited that the LC50 value of susceptible strain (Sus) and EBZ resistance strain (EBZ-R) were 0.009 and 8.09 mg/L, with a resistance ratio (RR) reaching 898.8-fold. The EBZ-R stain displayed notably low cross-resistance to lambda-cyhalothrin, spinetoram, and cypermethrin. However, it demonstrated a moderate level of cross-resistance to deltamethrin. Conversely, no cross-resistance was noted to chlorantraniliprole and indoxacarb. Notably, enzyme inhibitors of detoxification enzymes revealed that piperonyl butoxide (PBO) and diethyl maleate (DEM) enhanced the EBZ toxicity to the resistant strain, indicating the potential involvement of CYP450 and GST in avermectin resistance. A remarkable enhancement in CYP450 and GST activity was observed in the EBZ-R stain. CYP450 and GST genes are upregulated in the EBZ-R stain compared to the Sus strain, which serves as a basis for comprehending the mechanism behind P. rapae resistance to EBZ. The molecular docking analysis demonstrated that EBZ has a high binding affinity with CYP6AE120 and PrGSTS1 with docking energy values of -20.19 and -22.57 kcal/mol, respectively. Our findings offer valuable insights into crafting efficient strategies to monitor and manage resistance in P. rapae populations in Egypt.


Assuntos
Sistema Enzimático do Citocromo P-450 , Glutationa Transferase , Resistência a Inseticidas , Inseticidas , Ivermectina , Animais , Ivermectina/análogos & derivados , Ivermectina/toxicidade , Ivermectina/farmacologia , Resistência a Inseticidas/genética , Inseticidas/toxicidade , Inseticidas/farmacologia , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Glutationa Transferase/metabolismo , Glutationa Transferase/genética , Piretrinas/toxicidade , Piretrinas/farmacologia , Borboletas/efeitos dos fármacos , Borboletas/genética , Nitrilas/toxicidade , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo
16.
Sci Total Environ ; 948: 174840, 2024 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-39032750

RESUMO

The salmon aquaculture industry is an important economic activity established on both the west and east coast of Canada. To control sea lice infestations, in-feed products like emamectin benzoate (EMB) are widely used. Due to its low solubility and persistence EMB can accumulate in marine sediments and be potentially bioavailable to non-target organisms from months to years. The American lobster (Homarus americanus) is a key species in the Northwest Atlantic with high economic and ecological value. It may be exposed to therapeutants considering lobster habitats overlap with aquaculture locations requiring a better understanding of the potential impact of these therapeutants through varied pathways of exposure. In this study, we investigated the exposure of gravid female lobsters to EMB spiked sediment to mimic the likely presence of these females at aquaculture sites for a 10-day period. We completed testing by assessing EMB effects on adult molting and quality, embryo hatching rates, and larval offspring quality and larval molting. Our results show that a single, 10-day exposure of ovigerous females to EMB concentrations higher than environmentally relevant values did not affect females or their offspring.


Assuntos
Sedimentos Geológicos , Ivermectina , Larva , Poluentes Químicos da Água , Animais , Ivermectina/análogos & derivados , Ivermectina/toxicidade , Ivermectina/análise , Feminino , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Poluentes Químicos da Água/análise , Sedimentos Geológicos/química , Óvulo/efeitos dos fármacos , Aquicultura , Muda/efeitos dos fármacos , Canadá
17.
Aquat Toxicol ; 273: 107011, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38917644

RESUMO

Avermectin, a widely used deworming drug, poses a significant threat to fisheries. Silybin is recognized for its antioxidant and anti-inflammatory properties. The kidney, being crucial for fish survival, plays a vital role in maintaining ion balance, nitrogen metabolism, and hormone regulation. While residual avermectin in water could pose a risk to carp (Cyprinus carpio), it remains unclear whether silybin can alleviate the renal tissue toxicity induced by avermectin in this species. In current study, we developed a model of long-term exposure of carp to avermectin to investigate the potential protective effect of silybin against avermectin-induced nephrotoxicity. The results indicated that avermectin induced renal inflammation, oxidative stress, ferroptosis, and autophagy in carp. Silybin suppressed the mRNA transcript levels of pro-inflammatory factors, increased catalase (CAT) activity, reduced glutathione (GSH) activity, diminished reactive oxygen species (ROS) accumulation in renal tissues, and promoted the activation of the Nrf2-Keap1 signaling pathway. Furthermore, the transcript levels of ferroptosis-associated proteins, including gpx4 and slc7a11, were significantly reduced, while those of cox2, ftl, and ncoa4 were elevated. The transcript levels of autophagy-related genes, including p62 and atg5, were also regulated. Network pharmacological analysis revealed that silybin inhibited ROS accumulation and mitigated avermectin-induced renal inflammation, oxidative stress, ferroptosis, and autophagy in carp through the involvement of PPAR-γ. Silybin exerted its anti-inflammatory effect through the NF-κB pathway and antioxidant effect through the Nrf2-Keap1 pathway, induced renal cell iron efflux through the SLC7A11/GSH/GPX4, and suppressed autophagy initiation via the PI3K/AKT pathway. This study provides evidence of the protective effect of silybin against avermectin-induced nephrotoxicity in carp, highlighting its potential as a therapeutic agent to alleviate the adverse effects of avermectin exposure in fish.


Assuntos
Autofagia , Carpas , Ferroptose , Ivermectina , Rim , Estresse Oxidativo , PPAR gama , Silibina , Animais , Autofagia/efeitos dos fármacos , Ivermectina/análogos & derivados , Ivermectina/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Ferroptose/efeitos dos fármacos , Silibina/farmacologia , PPAR gama/metabolismo , PPAR gama/genética , Rim/efeitos dos fármacos , Rim/patologia , Poluentes Químicos da Água/toxicidade , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Doenças dos Peixes/induzido quimicamente , Espécies Reativas de Oxigênio/metabolismo
18.
Environ Sci Pollut Res Int ; 31(31): 43987-43995, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38914898

RESUMO

One of the most pressing global environmental issues is the widespread abundance and distribution of microplastics (MPs). MPs can act as vectors for other contaminants in the environment making these small plastic particles hazardous for ecosystems. The presence of MPs in aquatic environments may pose threats to aquatic organisms that ingest them. This study examined effects of abamectin (ABM) and polyethylene terephthalate (PET) MP fragments on histopathological and enzymatic biomarkers in zebrafish (Danio rerio). Zebrafish were exposed for 96 h to pristine PET-MPs at concentrations of 5 mg/L and 10 mg/L, ABM alone at 0.006 mg/L, and the same concentration of ABM in the presence of PET-MPs in aquaria. Histopathological analysis revealed tissue content changes in liver and kidney in the presence of ABM individually and in combination with MPs. Results of enzymatic analysis showed that MPs increased the bioavailability and toxicity of pesticides due to inhibition of catalase (CAT) and acid phosphatase (ACP) enzymes. However, MPs did not affect the toxicity of ABM for glutathione s-transferase (GST) enzyme. Despite the inhibition of acetylcholinesterase (AChE) in MPs or ABM treatments, and some neurotoxicity, no change in activity of this enzyme and neurotoxicity was observed in the combined MPs and ABM treatments, although toxicity effects of MPs and ABM on zebrafish require more detailed studies.


Assuntos
Ivermectina , Polietilenotereftalatos , Peixe-Zebra , Animais , Ivermectina/análogos & derivados , Ivermectina/toxicidade , Microplásticos/toxicidade , Poluentes Químicos da Água/toxicidade , Glutationa Transferase/metabolismo , Acetilcolinesterase/metabolismo
19.
Chemosphere ; 361: 142423, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38830461

RESUMO

This study investigates the effects of glyphosate-based herbicide (GLY) and pure emamectin benzoate (EB) insecticide on the brackish copepod Pseudodiaptomus annandalei. The 96h median lethal concentration (96 h LC50) was higher in the GLY exposure (male: 3420.96 ± 394.67 µg/L; female: 3093.46 ± 240.67 µg/L) than in the EB (male: 79.10 ± 7.30 µg/L; female: 6.38 ± 0.72 µg/L). Based on the result of 96h LC50, we further examined the effects of GLY and EB exposures at sub-lethal concentrations on the naupliar production of P. annandalei. Subsequently, a multigenerational experiment was conducted to assess the long-term impact of GLY and EB at concentrations 375 µg/L, and 0.025 µg/L respectively determined by sub-lethal exposure testing. During four consecutive generations, population growth, clutch size, prosome length and width, and sex ratio were measured. The copepods exposed to GLY and EB showed lower population growth but higher clutch size than the control group in most generations. Gene expression analysis indicated that GLY and EB exposures resulted in the downregulation of reproduction-related (vitellogenin) and growth-related (myosin heavy chain) genes, whereas a stress-related gene (heat shock protein 70) was upregulated after multigenerational exposure. The results of the toxicity test after post-multigenerational exposure indicated that the long-term GLY-exposed P. annandalei displayed greater vulnerability towards GLY toxicity compared to newly-exposed individuals. Whereas, the tolerance of EB was significantly higher in the long-term exposed copepod than in newly-exposed individuals. This suggests that P. annandalei might have greater adaptability towards EB toxicity than towards GLY toxicity. This study reports for the first time the impacts of common pesticides on the copepod P. annandalei, which have implications for environmental risk assessment and contributes to a better understanding of copepod physiological responses towards pesticide contaminations.


Assuntos
Copépodes , Glicina , Glifosato , Herbicidas , Inseticidas , Ivermectina , Reprodução , Poluentes Químicos da Água , Animais , Copépodes/efeitos dos fármacos , Copépodes/genética , Glicina/análogos & derivados , Glicina/toxicidade , Ivermectina/análogos & derivados , Ivermectina/toxicidade , Herbicidas/toxicidade , Reprodução/efeitos dos fármacos , Inseticidas/toxicidade , Feminino , Poluentes Químicos da Água/toxicidade , Masculino , Expressão Gênica/efeitos dos fármacos
20.
Toxicon ; 246: 107789, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-38843999

RESUMO

In recent years, contamination of aquatic systems with Avermectin (AVM) has emerged as a significant concern. This contamination poses substantial challenges to freshwater aquaculture. Plant-derived Quercetin (QUE), known for its anti-inflammatory, antioxidant, and ferroptosis-inhibiting properties, is commonly employed as a supplement in animal feed. However, its protective role against chronic renal injury in freshwater carp induced by AVM remains unclear. This study assesses the influence of dietary supplementation with QUE on the consequences of chronic AVM exposure on carp renal function. The carp were subjected to a 30-day exposure to AVM and were provided with a diet containing 400 mg/kg of QUE. Pathological observations indicated that QUE alleviated renal tissue structural damage caused by AVM. RT-QPCR study revealed that QUE effectively reduced the increased expression levels of pro-inflammatory factors mRNA produced by AVM exposure, by concurrently raising the mRNA expression level of the anti-inflammatory factor. Quantitative analysis using DHE tests and biochemical analysis demonstrated that QUE effectively reduced the buildup of ROS in the renal tissues of carp, activity of antioxidant enzymes CAT, SOD, and GSH-px, which were inhibited by AVM, and increased the content of GSH, which was induced by prolonged exposure to AVM. QUE also reduced the levels of MDA, a marker of oxidative damage. Furthermore, assays for ferroptosis markers indicated that QUE increased the mRNA expression levels of gpx4 and slc7a11, which were reduced due to AVM induction, and it caused a reduction in the mRNA expression levels of ftl, ncoa4, and cox2, along with a drop in the Fe2+ concentration. In summary, QUE mitigates chronic AVM exposure-induced renal inflammation in carp by inhibiting the transcription of pro-inflammatory cytokines. By blocking ROS accumulation, renal redox homeostasis is restored, thereby inhibiting renal inflammation and ferroptosis. This provides a theoretical basis for the development of freshwater carp feed formula.


Assuntos
Carpas , Ferroptose , Ivermectina , Quercetina , Animais , Quercetina/análogos & derivados , Quercetina/farmacologia , Ferroptose/efeitos dos fármacos , Ivermectina/análogos & derivados , Ivermectina/toxicidade , Rim/efeitos dos fármacos , Rim/patologia , Suplementos Nutricionais , Antioxidantes/farmacologia , Ração Animal/análise , Praguicidas/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...