Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.279
Filtrar
2.
Front Immunol ; 15: 1384509, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38846951

RESUMO

Introduction: The Philadelphia chromosome-negative myeloproliferative neoplasms are a group of slowly progressing haematological malignancies primarily characterised by an overproduction of myeloid blood cells. Patients are treated with various drugs, including the JAK1/2 inhibitor ruxolitinib. Mathematical modelling can help propose and test hypotheses of how the treatment works. Materials and methods: We present an extension of the Cancitis model, which describes the development of myeloproliferative neoplasms and their interactions with inflammation, that explicitly models progenitor cells and can account for treatment with ruxolitinib through effects on the malignant stem cell response to cytokine signalling and the death rate of malignant progenitor cells. The model has been fitted to individual patients' data for the JAK2 V617F variant allele frequency from the COMFORT-II and RESPONSE studies for patients who had substantial reductions (20 percentage points or 90% of the baseline value) in their JAK2 V617F variant allele frequency (n = 24 in total). Results: The model fits very well to the patient data with an average root mean square error of 0.0249 (2.49%) when allowing ruxolitinib treatment to affect both malignant stem and progenitor cells. This average root mean square error is much lower than if allowing ruxolitinib treatment to affect only malignant stem or only malignant progenitor cells (average root mean square errors of 0.138 (13.8%) and 0.0874 (8.74%), respectively). Discussion: Systematic simulation studies and fitting of the model to the patient data suggest that an initial reduction of the malignant cell burden followed by a monotonic increase can be recapitulated by the model assuming that ruxolitinib affects only the death rate of malignant progenitor cells. For patients exhibiting a long-term reduction of the malignant cells, the model predicts that ruxolitinib also affects stem cell parameters, such as the malignant stem cells' response to cytokine signalling.


Assuntos
Janus Quinase 2 , Transtornos Mieloproliferativos , Nitrilas , Pirazóis , Pirimidinas , Humanos , Pirazóis/uso terapêutico , Pirazóis/farmacologia , Pirimidinas/uso terapêutico , Transtornos Mieloproliferativos/tratamento farmacológico , Transtornos Mieloproliferativos/genética , Janus Quinase 2/genética , Janus Quinase 2/antagonistas & inibidores , Células-Tronco Neoplásicas/efeitos dos fármacos , Modelos Teóricos , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia
3.
Expert Rev Clin Immunol ; 20(7): 695-702, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38879876

RESUMO

INTRODUCTION: Vitiligo is a chronic, autoimmune condition characterized by skin depigmentation caused by inflammatory-mediated melanocyte degradation. Treatment of vitiligo is challenging due to the chronic nature of the condition. Ruxolitinib cream 1.5% was recently approved by the Food and Drug Administration (FDA) as a Janus kinase 1 and 2 inhibitor for use in nonsegmental vitiligo for those 12 years and older. AREAS COVERED: The purpose of this review is to describe the role of ruxolitinib in treating nonsegmental vitiligo.We searched PubMed using search terms nonsegmental vitiligo, jak inhibitor, and ruxolitinib. Clinicaltrials.gov was used to identify clinical trial data including efficacy, pharmacodynamics, pharmacokinetics, safety, and tolerability. EXPERT OPINION: In both phase II and phase III (TRuE-V1 and TRuE-V2) trials, ruxolitinib cream 1.5% improved repigmentation with minimal adverse effects. Topical ruxolitinib is a much needed new vitiligo treatment option.  Real life efficacy may not match that seen in clinical trials if the hurdle of poor adherence to topical treatment is not surmounted.


Assuntos
Nitrilas , Pirazóis , Pirimidinas , Vitiligo , Humanos , Vitiligo/tratamento farmacológico , Pirimidinas/uso terapêutico , Pirazóis/uso terapêutico , Pigmentação da Pele/efeitos dos fármacos , Janus Quinase 1/antagonistas & inibidores , Creme para a Pele/uso terapêutico , Janus Quinase 2/antagonistas & inibidores , Inibidores de Janus Quinases/uso terapêutico
4.
Bioorg Med Chem Lett ; 109: 129838, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38838918

RESUMO

Aberrant activation of the JAK-STAT pathway is evident in various human diseases including cancers. Proteolysis targeting chimeras (PROTACs) provide an attractive strategy for developing novel JAK-targeting drugs. Herein, a series of CRBN-directed JAK-targeting PROTACs were designed and synthesized utilizing a JAK1/JAK2 dual inhibitor-momelotinib as the warhead. The most promising compound 10c exhibited both good enzymatic potency and cellular antiproliferative effects. Western blot analysis revealed that compound 10c effectively and selectively degraded JAK1 in a proteasome-dependent manner (DC50 = 214 nM). Moreover, PROTAC 10c significantly suppressed JAK1 and its key downstream signaling. Together, compound 10c may serve as a novel lead compound for antitumor drug discovery.


Assuntos
Antineoplásicos , Proliferação de Células , Janus Quinase 1 , Proteólise , Humanos , Janus Quinase 1/antagonistas & inibidores , Janus Quinase 1/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proteólise/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Estrutura-Atividade , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Descoberta de Drogas , Estrutura Molecular , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Relação Dose-Resposta a Droga , Janus Quinase 2/antagonistas & inibidores , Janus Quinase 2/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo
5.
J Med Chem ; 67(12): 10012-10024, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38843875

RESUMO

Janus kinase 2 (JAK2) plays a critical role in orchestrating hematopoiesis, and its deregulation leads to various blood disorders, most importantly myeloproliferative neoplasms (MPNs). Ruxolitinib, fedratinib, momelotinib, and pacritinib are FDA-/EMA-approved JAK inhibitors effective in relieving symptoms in MPN patients but show variable clinical profiles due to poor JAK selectivity. The development of next-generation JAK2 inhibitors is hampered by the lack of comparative functional analysis and knowledge of the molecular basis of their selectivity. Here, we provide mechanistic profiling of the four approved and six clinical-stage JAK2 inhibitors and connect selectivity data with high-resolution structural and thermodynamic analyses. All of the JAK inhibitors potently inhibited JAK2 activity. Inhibitors differed in their JAK isoform selectivity and potency for erythropoietin signaling, but their general cytokine inhibition signatures in blood cells were comparable. Structural data indicate that high potency and moderate JAK2 selectivity can be obtained by targeting the front pocket of the adenosine 5'-triphosphate-binding site.


Assuntos
Janus Quinase 2 , Inibidores de Proteínas Quinases , Humanos , Sítios de Ligação , Janus Quinase 2/antagonistas & inibidores , Janus Quinase 2/metabolismo , Janus Quinase 2/química , Modelos Moleculares , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Pirazóis/química , Pirazóis/farmacologia , Pirazóis/síntese química , Pirimidinas/química , Pirimidinas/farmacologia , Pirimidinas/síntese química , Relação Estrutura-Atividade , Termodinâmica , Trifosfato de Adenosina/química , Trifosfato de Adenosina/farmacologia
6.
Expert Opin Pharmacother ; 25(9): 1175-1186, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38919983

RESUMO

INTRODUCTION: Myelofibrosis (MF) is a BCR-ABL-negative myeloproliferative neoplasm characterized by splenomegaly, constitutional symptoms, cytopenias, a potential for leukemic transformation, and increased mortality. Patients who are ineligible for stem cell transplant rely on pharmacologic therapies of noncurative intent, whose cornerstone consists of JAK inhibitors (JAKi). While current JAKi are efficacious in controlling symptoms and splenic volume, none meaningfully reduce clonal burden nor halt disease progression, and patients oftentimes develop JAKi intolerant, relapsed, or refractory MF. As such, there remains an urgent necessity for second-line options and novel therapies with disease-modifying properties. AREAS COVERED: In this review, we delineate the mechanistic rationale, along with the latest safety and efficacy data, of investigational JAKi-based MF treatment strategies, with a focus on JAKi monotherapies and combinations of novel agents with approved JAKi. Our literature search consisted of extensive review of PubMed and clinicaltrials.gov. EXPERT OPINION: A myriad of promising MF-directed therapies are in late-phase studies. Following their approval, treatment selection should be tailored to patient-specific treatment goals and disease characteristics, with an emphasis on combination therapies of JAKi with novel agents of differing mechanistic targets that possess anti-clonal properties, in attempt to alter disease course and concurrently limit dose-dependent JAKi toxicities.


Assuntos
Janus Quinase 2 , Inibidores de Janus Quinases , Mielofibrose Primária , Humanos , Mielofibrose Primária/tratamento farmacológico , Janus Quinase 2/antagonistas & inibidores , Inibidores de Janus Quinases/uso terapêutico , Inibidores de Janus Quinases/farmacologia , Animais , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Progressão da Doença
7.
Cancer Discov ; 14(5): 701-703, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38690601

RESUMO

SUMMARY: Dunbar, Bowman, and colleagues present here a novel genetic mouse model with inducible and reversible expression of the JAK2V617F mutation in the endogenous locus. Results from this study clearly demonstrate an absolute requirement for myeloproliferative neoplasm-initiating cells for this mutation in their survival and imply that more efficacious inhibitors could be curative for these patients even in the setting of additional cooperating mutations. See related article by Dunbar et al., p. 737 (8).


Assuntos
Janus Quinase 2 , Transtornos Mieloproliferativos , Janus Quinase 2/genética , Janus Quinase 2/antagonistas & inibidores , Animais , Camundongos , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/tratamento farmacológico , Humanos , Mutação , Modelos Animais de Doenças , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia
8.
Int J Rheum Dis ; 27(5): e15164, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38706209

RESUMO

BACKGROUND: JAK inhibitors are well known for the treatment of rheumatoid arthritis (RA), but whether they can be used to treat pulmonary fibrosis, a common extra-articular disease of RA, remains to be clarified. METHODS: A jak2 inhibitor, CEP33779 (CEP), was administered to a rat model of RA-associated interstitial lung disease to observe the degree of improvement in both joint swelling and pulmonary fibrosis. HFL1 cells were stimulated with TGF-ß1 to observe the expression of p-JAK2. Then, different concentrations of related gene inhibitors (JAK2, TGFß-R1/2, and p-STAT3) or silencers (STAT3, JAK2) were administered to HFL1 cells, and the expression levels of related proteins were detected to explore the underlying mechanisms of action. RESULTS: CEP not only reduced the degree of joint swelling and inflammation in rats but also improved lung function, inhibited the pro-inflammatory factors IL-1ß and IL-6, reduced lung inflammation and collagen deposition, and alleviated lung fibrosis. CEP decreased the expression levels of TGFß-R2, p-SMAD, p-STAT3, and ECM proteins in rat lung tissues. TGF-ß1 induced HFL1 cells to highly express p-JAK2, with the most pronounced expression at 48 h. The levels of p-STAT3, p-SMAD3, and ECM-related proteins were significantly reduced after inhibition of either JAK2 or STAT3. CONCLUSION: JAK2 inhibitors may be an important and novel immunotherapeutic drug that can improve RA symptoms while also delaying or blocking the development of associated pulmonary fibrotic disease. The mechanism may be related to the downregulation of p-STAT3 protein via inhibition of the JAK2/STAT signaling pathway, which affects the phosphorylation of SMAD3.


Assuntos
Isoquinolinas , Inibidores de Janus Quinases , Pulmão , Fibrose Pulmonar , Piridinas , Pirróis , Transdução de Sinais , Proteína Smad3 , Animais , Humanos , Masculino , Ratos , Anti-Inflamatórios/farmacologia , Artrite Experimental/tratamento farmacológico , Artrite Experimental/metabolismo , Artrite Experimental/enzimologia , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/metabolismo , Linhagem Celular , Modelos Animais de Doenças , Regulação para Baixo , Janus Quinase 2/metabolismo , Janus Quinase 2/antagonistas & inibidores , Inibidores de Janus Quinases/farmacologia , Inibidores de Janus Quinases/uso terapêutico , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Pulmão/enzimologia , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Proteína Smad3/metabolismo , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/antagonistas & inibidores
9.
Biochem Pharmacol ; 225: 116268, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38723720

RESUMO

Although Janus kinase 2 (JAK2) plays a critical role in the progression of triple-negative breast cancer (TNBC), its inhibitors are incapable of eradicating these tumor cells, implicating drug resistance mechanisms exist. Our evidences show that TNBC cells express high level of Serine/Threonine Kinase 16 (STK16) when JAK2 signaling is blocked. Pharmacological inhibition or silencing of STK16 significantly enhances the sensitivity of TNBC cells to JAK2 inhibition, while over-expression of STK16 alleviates the anti-tumor effect of JAK2-inhibitor. Mechanistically, elevated STK16 expression rescues the phosphorylation status and transcriptional activity of STAT3, as STK16 is able to directly catalyze the phosphorylation of STAT3 at ser-727 residue. Our data indicate that upon JAK2 inhibition, TNBC cells express STK16 to maintain STAT3 transcriptional activity, dual-inhibition of JAK2/STK16 offers a potential way to treat TNBC patients.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Janus Quinase 2 , Proteínas Serina-Treonina Quinases , Fator de Transcrição STAT3 , Neoplasias de Mama Triplo Negativas , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Janus Quinase 2/metabolismo , Janus Quinase 2/antagonistas & inibidores , Humanos , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Fosforilação , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/fisiologia , Linhagem Celular Tumoral , Feminino , Animais , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Camundongos Nus , Camundongos , Fenótipo , Inibidores de Proteínas Quinases/farmacologia
10.
Eur J Med Chem ; 273: 116500, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38776807

RESUMO

The deficiency in available targeted agents and frequency of chemoresistance are primary challenges in clinical management of triple-negative breast cancer (TNBC). The aberrant expression of USP21 and JAK2 represents a characterized mechanism of TNBC progression and resistance to paclitaxel (PTX). Despite its clear that high expression of USP21-mediated de-ubiquitination leads to increased levels of JAK2 protein, we lack regulator molecules to dissect the mechanisms that the interaction between USP21 and JAK2 contributes to the phenotype and resistance of TNBC. Here, we report a USP21/JAK2/STAT3 axis-targeting regulator 13c featuring a N-anthraniloyl tryptamine scaffold that showed excellent anti-TNBC potency and promising safety profile. Importantly, the therapeutic potential of using 13c in combination with PTX in PTX-resistant TNBC was demonstrated. This study showcases N-anthraniloyl tryptamine derivatives as a novel anti-TNBC chemotype with a pharmacological mode of action targeting the USP21/JAK2/STAT3 axis and provides a potential therapeutic target for the treatment of TNBC.


Assuntos
Antineoplásicos , Janus Quinase 2 , Fator de Transcrição STAT3 , Neoplasias de Mama Triplo Negativas , Ubiquitina Tiolesterase , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/metabolismo , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/antagonistas & inibidores , Janus Quinase 2/metabolismo , Janus Quinase 2/antagonistas & inibidores , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Ubiquitina Tiolesterase/antagonistas & inibidores , Ubiquitina Tiolesterase/metabolismo , Relação Estrutura-Atividade , Proliferação de Células/efeitos dos fármacos , Animais , Descoberta de Drogas , Estrutura Molecular , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/síntese química , Feminino , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Linhagem Celular Tumoral , Camundongos , Paclitaxel/farmacologia , Paclitaxel/química
11.
Anticancer Drugs ; 35(7): 615-622, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38742728

RESUMO

Chemotherapy remains the main approach conserving vision during the treatment of retinoblastoma, the most prevalent eye cancer in children. Unfortunately, the development of chemoresistance stands as the primary reason for treatment failure. Within this study, we showed that prolonged exposure to vincristine led to heightened expression of JAK1 and JAK2 in retinoblastoma cells, while the other members of the JAK family exhibited no such changes. Employing a genetic intervention, we demonstrated the efficacy of depleting either JAK1 or JAK2 in countering vincristine-resistant retinoblastoma cells. In addition, the dual depletion of both JAK1 and JAK2 produced a more potent inhibitory outcome compared to the depletion of either gene alone. We further demonstrated that ruxolitinib, a small molecular inhibitor of JAK1/2, effectively reduced viability and colony formation in vincristine-resistant retinoblastoma cells. It also acts synergistically with vincristine in retinoblastoma cells regardless of inherent cellular and genetic heterogeneity. The effectiveness of ruxolitinib as standalone treatment against chemoresistant retinoblastoma, as well as its combination with vincristine, was validated in multiple retinoblastoma mouse models. Importantly, mice exhibited favorable tolerance to ruxolitinib administration. We confirmed that the underlying mechanism of ruxolitinib's action in chemoresistant retinoblastoma cells is the inhibition of Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling. Our study reveals that the underlying mechanism driving ruxolitinib's impact on chemoresistant retinoblastoma cells is the inhibition of JAK/STAT signaling. This study reveals the contribution of JAK1/2 to the development of chemoresistance in retinoblastoma and underscores the effectiveness of targeting JAK1/2 as a strategy to sensitize retinoblastoma to chemotherapy.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Janus Quinase 1 , Nitrilas , Pirazóis , Pirimidinas , Retinoblastoma , Vincristina , Retinoblastoma/tratamento farmacológico , Retinoblastoma/patologia , Nitrilas/farmacologia , Pirimidinas/farmacologia , Animais , Vincristina/farmacologia , Pirazóis/farmacologia , Humanos , Camundongos , Janus Quinase 1/antagonistas & inibidores , Janus Quinase 1/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Janus Quinase 2/antagonistas & inibidores , Janus Quinase 2/metabolismo , Inibidores de Janus Quinases/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Linhagem Celular Tumoral , Neoplasias da Retina/tratamento farmacológico , Neoplasias da Retina/patologia , Sinergismo Farmacológico , Proliferação de Células/efeitos dos fármacos , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia
12.
Drug Metab Dispos ; 52(7): 690-702, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38719744

RESUMO

Brepocitinib is an oral once-daily Janus kinase 1 and Tyrosine kinase 2 selective inhibitor currently in development for the treatment of several autoimmune disorders. Mass balance and metabolic profiles were determined using accelerator mass spectrometry in six healthy male participants following a single oral 60 mg dose of 14C-brepocitinib (∼300 nCi). The average mass balance recovery was 96.7% ± 6.3%, with the majority of dose (88.0% ± 8.0%) recovered in urine and 8.7% ± 2.1% of the dose recovered in feces. Absorption of brepocitinib was rapid, with maximal plasma concentrations of total radioactivity and brepocitinib achieved within 0.5 hours after dosing. Circulating radioactivity consisted primarily of brepocitinib (47.8%) and metabolite M1 (37.1%) derived from hydroxylation at the C5' position of the pyrazole ring. Fractional contributions to metabolism via cytochrome P450 enzymes were determined to be 0.77 for CYP3A4/5 and 0.14 for CYP1A2 based on phenotyping studies in human liver microsomes. However, additional clinical studies are required to understand the potential contribution of CYP1A1. Approximately 83% of the dose was eliminated as N-methylpyrazolyl oxidative metabolites, with 52.1% of the dose excreted as M1 alone. Notably, M1 was not observed as a circulating metabolite in earlier metabolic profiling of human plasma from a multiple ascending dose study with unlabeled brepocitinib. Mechanistic studies revealed that M1 was highly unstable in human plasma and phosphate buffer, undergoing chemical oxidation leading to loss of the 5-hydroxy-1-methylpyrazole moiety and formation of aminopyrimidine cleavage product M2. Time-dependent inhibition and trapping studies with M1 yielded insights into the mechanism of this unusual and unexpected instability. SIGNIFICANCE STATEMENT: This study provides a detailed understanding of the disposition and metabolism of brepocitinib, a JAK1/TYK2 inhibitor for atopic dermatitis, in humans as well as characterization of clearance pathways and pharmacokinetics of brepocitinib and its metabolites.


Assuntos
Inibidores de Proteínas Quinases , Humanos , Masculino , Adulto , Inibidores de Proteínas Quinases/farmacocinética , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/metabolismo , Adulto Jovem , Pirazóis/farmacocinética , Pirazóis/metabolismo , Pirazóis/sangue , Pirazóis/administração & dosagem , Janus Quinase 1/antagonistas & inibidores , Janus Quinase 1/metabolismo , Administração Oral , Citocromo P-450 CYP3A/metabolismo , Voluntários Saudáveis , Microssomos Hepáticos/metabolismo , Janus Quinase 2/antagonistas & inibidores , Janus Quinase 2/metabolismo , Fezes/química , Hidroxilação , Citocromo P-450 CYP1A2/metabolismo , Pessoa de Meia-Idade
13.
Molecules ; 29(8)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38675621

RESUMO

Allogeneic hematopoietic cell transplantation (allo-HCT) is a highly effective, well-established treatment for patients with various hematologic malignancies and non-malignant diseases. The therapeutic benefits of allo-HCT are mediated by alloreactive T cells in donor grafts. However, there is a significant risk of graft-versus-host disease (GvHD), in which the donor T cells recognize recipient cells as foreign and attack healthy organs in addition to malignancies. We previously demonstrated that targeting JAK1/JAK2, mediators of interferon-gamma receptor (IFNGR) and IL-6 receptor signaling, in donor T cells using baricitinib and ruxolitinib results in a significant reduction in GvHD after allo-HCT. Furthermore, we showed that balanced inhibition of JAK1/JAK2 while sparing JAK3 is important for the optimal prevention of GvHD. Thus, we have generated novel JAK1/JAK2 inhibitors, termed WU derivatives, by modifying baricitinib. Our results show that WU derivatives have the potential to mitigate GvHD by upregulating regulatory T cells and immune reconstitution while reducing the frequencies of antigen-presenting cells (APCs) and CD80 expression on these APCs in our preclinical mouse model of allo-HCT. In addition, WU derivatives effectively downregulated CXCR3 and T-bet in primary murine T cells. In summary, we have generated novel JAK inhibitors that could serve as alternatives to baricitinib or ruxolitinib.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Pirazóis , Transplante Homólogo , Animais , Camundongos , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/efeitos dos fármacos , Células Apresentadoras de Antígenos/metabolismo , Azetidinas/farmacologia , Modelos Animais de Doenças , Doença Enxerto-Hospedeiro/prevenção & controle , Doença Enxerto-Hospedeiro/tratamento farmacológico , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Janus Quinase 1/antagonistas & inibidores , Janus Quinase 1/metabolismo , Janus Quinase 2/metabolismo , Janus Quinase 2/antagonistas & inibidores , Inibidores de Janus Quinases/farmacologia , Camundongos Endogâmicos C57BL , Purinas/farmacologia , Pirazóis/farmacologia , Sulfonamidas/farmacologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/efeitos dos fármacos
14.
Br J Haematol ; 204(5): 1605-1616, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38586911

RESUMO

Essential thrombocythaemia (ET) is a myeloproliferative neoplasm characterized by an increased risk of vascular complications and a tendency to progress to myelofibrosis and acute leukaemia. ET patients have traditionally been stratified into two thrombosis risk categories based on age older than 60 years and a history of thrombosis. More recently, the revised IPSET-thrombosis scoring system, which accounts for the increased risk linked to the JAK2 mutation, has been incorporated into most expert recommendations. However, there is increasing evidence that the term ET encompasses different genomic entities, each with a distinct clinical course and prognosis. Moreover, the effectiveness and toxicity of cytoreductive and anti-platelet treatments differ depending on the molecular genotype. While anti-platelets and conventional cytoreductive agents, mainly hydroxycarbamide (hydroxyurea), anagrelide and pegylated interferon, remain the cornerstone of treatment, recent research has shed light on the effectiveness of novel therapies that may help improve outcomes. This comprehensive review focuses on the evolving landscape of treatment strategies in ET, with an emphasis on the role of molecular profiling in guiding therapeutic decisions. Besides evidence-based management according to revised IPSET-thrombosis stratification, we also provide specific observations for those patients with CALR-, MPL-mutated and triple-negative ET, as well as cases with high-risk mutations.


Assuntos
Trombocitemia Essencial , Humanos , Trombocitemia Essencial/tratamento farmacológico , Trombocitemia Essencial/genética , Janus Quinase 2/genética , Janus Quinase 2/antagonistas & inibidores , Inibidores da Agregação Plaquetária/uso terapêutico , Inibidores da Agregação Plaquetária/efeitos adversos , Mutação , Receptores de Trombopoetina/agonistas , Receptores de Trombopoetina/genética , Calreticulina
15.
Chem Biodivers ; 21(6): e202301509, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38594219

RESUMO

Neurodegenerative diseases are characterized by the progressive loss of selectively vulnerable populations of neurons, and many factors are involved in its causes. Neurotoxicity and oxidative stress, are the main related factors. The octapeptide Ile-Ile-Ala-Val-Glu-Ala-Gly-Cys (IEC) was identified from the microalgae Isochrysis zhanjiangensis and exhibited potential anti-oxidative stress activity. In this study, the stability of α-synaptic protein binding to IEC was modeled using molecular dynamics, and the results indicated binding stabilization within 60 ns. Oxidative stress in neurons is the major cause of α-synaptic protein congestion. Therefore, we next evaluated the protective effects of IEC against oxidative stress and neurotoxicity in 6-ohdainduced Parkinson's disease (PD) model SH-SY5Y cells in vitro. In oxidative stress, IEC appeared to increase the expression of the antioxidant enzymes HO-1 and GPX through the antioxidant pathway of Nrf2, and molecular docking of IEC with Nrf2 and GPX could generate hydrogen bonds. Regarding apoptosis, IEC protected cells by increasing the Bcl-2/Bax ratio, inhibiting the caspase cascade, acting on p53, and modulating the Jak2/Stat3 pathway. The results indicated that IEC exerted neuroprotective effects through the inhibition of α-synaptic protein aggregation and antioxidant activity. Therefore, microalgal peptides have promising applications in the prevention and treatment of neurodegenerative diseases.


Assuntos
Janus Quinase 2 , Microalgas , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Oxidopamina , Fator de Transcrição STAT3 , Estresse Oxidativo/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Humanos , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/antagonistas & inibidores , Janus Quinase 2/metabolismo , Janus Quinase 2/antagonistas & inibidores , Microalgas/química , Microalgas/metabolismo , Oxidopamina/farmacologia , Oxidopamina/antagonistas & inibidores , Heme Oxigenase-1/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/isolamento & purificação , Oligopeptídeos/farmacologia , Oligopeptídeos/química , Transdução de Sinais/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Apoptose/efeitos dos fármacos
16.
Am J Hematol ; 99(6): 1040-1055, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38440831

RESUMO

Myeloproliferative neoplasms (MPNs), including polycythemia vera, essential thrombocytosis, and primary myelofibrosis, are clonal hematopoietic neoplasms driven by mutationally activated signaling by the JAK2 tyrosine kinase. Although JAK2 inhibitors can improve MPN patients' quality of life, they do not induce complete remission as disease-driving cells persistently survive therapy. ERK activation has been highlighted as contributing to JAK2 inhibitor persistent cell survival. As ERK is a component of signaling by activated RAS proteins and by JAK2 activation, we sought to inhibit RAS activation to enhance responses to JAK2 inhibition in preclinical MPN models. We found the SHP2 inhibitor RMC-4550 significantly enhanced growth inhibition of MPN cell lines in combination with the JAK2 inhibitor ruxolitinib, effectively preventing ruxolitinib persistent growth, and the growth and viability of established ruxolitinib persistent cells remained sensitive to SHP2 inhibition. Both SHP2 and JAK2 inhibition diminished cellular RAS-GTP levels, and their concomitant inhibition enhanced ERK inactivation and increased apoptosis. Inhibition of SHP2 inhibited the neoplastic growth of MPN patient hematopoietic progenitor cells and exhibited synergy with ruxolitinib. RMC-4550 antagonized MPN phenotypes and increased survival of an MPN mouse model driven by MPL-W515L. The combination of RMC-4550 and ruxolitinib, which was safe and tolerated in healthy mice, further inhibited disease compared to ruxolitinib monotherapy, including extending survival. Given SHP2 inhibitors are undergoing clinical evaluation in patients with solid tumors, our preclinical findings suggest that SHP2 is a candidate therapeutic target with potential for rapid translation to clinical assessment to improve current targeted therapies for MPN patients.


Assuntos
Janus Quinase 2 , Transtornos Mieloproliferativos , Nitrilas , Proteína Tirosina Fosfatase não Receptora Tipo 11 , Pirazóis , Pirimidinas , Janus Quinase 2/antagonistas & inibidores , Proteína Tirosina Fosfatase não Receptora Tipo 11/antagonistas & inibidores , Animais , Transtornos Mieloproliferativos/tratamento farmacológico , Humanos , Camundongos , Nitrilas/uso terapêutico , Pirazóis/uso terapêutico , Pirazóis/farmacologia , Pirimidinas/uso terapêutico , Pirimidinas/farmacologia , Linhagem Celular Tumoral , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia
17.
Blood ; 143(23): 2386-2400, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38446698

RESUMO

ABSTRACT: Hemophagocytic lymphohistiocytosis (HLH) comprises a severe hyperinflammatory phenotype driven by the overproduction of cytokines, many of which signal via the JAK/STAT pathway. Indeed, the JAK1/2 inhibitor ruxolitinib has demonstrated efficacy in preclinical studies and early-phase clinical trials in HLH. Nevertheless, concerns remain for ruxolitinib-induced cytopenias, which are postulated to result from the blockade of JAK2-dependent hematopoietic growth factors. To explore the therapeutic effects of selective JAK inhibition in mouse models of HLH, we carried out studies incorporating the JAK1 inhibitor itacitinib, JAK2 inhibitor fedratinib, and JAK1/2 inhibitor ruxolitinib. All 3 drugs were well-tolerated and at the doses tested, they suppressed interferon-gamma (IFN-γ)-induced STAT1 phosphorylation in vitro and in vivo. Itacitinib, but not fedratinib, significantly improved survival and clinical scores in CpG-induced secondary HLH. Conversely, in primary HLH, in which perforin-deficient (Prf1-/-) mice are infected with lymphocytic choriomeningitis virus (LCMV), itacitinib, and fedratinib performed suboptimally. Ruxolitinib demonstrated excellent clinical efficacy in both HLH models. RNA-sequencing of splenocytes from LCMV-infected Prf1-/- mice revealed that itacitinib targeted inflammatory and metabolic pathway genes in CD8 T cells, whereas fedratinib targeted genes regulating cell proliferation and metabolism. In monocytes, neither drug conferred major transcriptional impacts. Consistent with its superior clinical effects, ruxolitinib exerted the greatest transcriptional changes in CD8 T cells and monocytes, targeting more genes across several biologic pathways, most notably JAK-dependent proinflammatory signaling. We conclude that JAK1 inhibition is sufficient to curtail CpG-induced disease, but combined inhibition of JAK1 and JAK2 is needed to best control LCMV-induced immunopathology.


Assuntos
Modelos Animais de Doenças , Linfo-Histiocitose Hemofagocítica , Nitrilas , Pirazóis , Pirimidinas , Animais , Pirimidinas/farmacologia , Linfo-Histiocitose Hemofagocítica/tratamento farmacológico , Linfo-Histiocitose Hemofagocítica/induzido quimicamente , Linfo-Histiocitose Hemofagocítica/patologia , Pirazóis/farmacologia , Pirazóis/uso terapêutico , Camundongos , Janus Quinase 1/antagonistas & inibidores , Janus Quinase 1/metabolismo , Janus Quinase 1/genética , Pirróis/farmacologia , Pirróis/uso terapêutico , Janus Quinase 2/antagonistas & inibidores , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Camundongos Endogâmicos C57BL , Sulfonamidas/farmacologia , Sulfonamidas/uso terapêutico , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT1/genética , Inibidores de Janus Quinases/farmacologia , Inibidores de Janus Quinases/uso terapêutico , Piperidinas/farmacologia , Humanos , Benzenossulfonamidas , Hidrocarbonetos Aromáticos com Pontes , Pirrolidinas
18.
Leuk Lymphoma ; 65(7): 965-977, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38501751

RESUMO

A key hallmark of myelofibrosis is anemia, which ranges from mild to severe based on hemoglobin levels. To more clearly define outcomes with the Janus kinase (JAK) 1/JAK2/activin A receptor type 1 inhibitor momelotinib by anemia severity, we performed a descriptive post hoc exploratory analysis of the double-blind, randomized, phase 3 SIMPLIFY-1 study (NCT01969838; N = 432, JAK inhibitor naive, momelotinib vs. ruxolitinib); subgroups were defined by baseline hemoglobin: <10 (moderate/severe), ≥10 to <12 (mild), or ≥12 g/dL (nonanemic). Spleen and symptom results were generally consistent with those previously reported for the intent-to-treat population. In anemic subgroups, momelotinib was associated with higher rates of transfusion independence and reduced/stable transfusion intensity vs. ruxolitinib. No new or unexpected safety signals were identified. Overall, momelotinib provides spleen, symptom, and anemia benefits to JAK inhibitor-naive patients with myelofibrosis regardless of baseline hemoglobin level, and greater anemia-related benefits vs. ruxolitinib in patients with hemoglobin <12 g/dL.


Assuntos
Hemoglobinas , Nitrilas , Mielofibrose Primária , Pirazóis , Pirimidinas , Humanos , Pirimidinas/uso terapêutico , Pirazóis/uso terapêutico , Mielofibrose Primária/tratamento farmacológico , Mielofibrose Primária/diagnóstico , Masculino , Feminino , Pessoa de Meia-Idade , Hemoglobinas/análise , Hemoglobinas/metabolismo , Idoso , Resultado do Tratamento , Benzamidas/uso terapêutico , Método Duplo-Cego , Anemia/etiologia , Anemia/diagnóstico , Adulto , Inibidores de Proteínas Quinases/uso terapêutico , Idoso de 80 Anos ou mais , Janus Quinase 1/antagonistas & inibidores , Janus Quinase 2/genética , Janus Quinase 2/antagonistas & inibidores
19.
Blood Adv ; 8(9): 2312-2325, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38295283

RESUMO

ABSTRACT: Hyperproliferation of myeloid and erythroid cells in myeloproliferative neoplasms (MPN) driven by the JAK2-V617F mutation is associated with altered metabolism. Given the central role of glutamine in anabolic and catabolic pathways, we examined the effects of pharmacologically inhibiting glutaminolysis, that is, the conversion of glutamine (Gln) to glutamate (Glu), using CB-839, a small molecular inhibitor of the enzyme glutaminase (GLS). We show that CB-839 strongly reduced the mitochondrial respiration rate of bone marrow cells from JAK2-V617F mutant (VF) mice, demonstrating a marked dependence of these cells on Gln-derived ATP production. Consistently, in vivo treatment with CB-839 normalized blood glucose levels, reduced splenomegaly and decreased erythrocytosis in VF mice. These effects were more pronounced when CB-839 was combined with the JAK1/2 inhibitor ruxolitinib or the glycolysis inhibitor 3PO, indicating possible synergies when cotargeting different metabolic and oncogenic pathways. Furthermore, we show that the inhibition of glutaminolysis with CB-839 preferentially lowered the proportion of JAK2-mutant hematopoietic stem cells (HSCs). The total number of HSCs was decreased by CB-839, primarily by reducing HSCs in the G1 phase of the cell cycle. CB-839 in combination with ruxolitinib also strongly reduced myelofibrosis at later stages of MPN. In line with the effects shown in mice, proliferation of CD34+ hematopoietic stem and progenitor cells from polycythemia vera patients was inhibited by CB-839 at nanomolar concentrations. These data suggest that inhibiting GLS alone or in combination with inhibitors of glycolysis or JAK2 inhibitors represents an attractive new therapeutic approach to MPN.


Assuntos
Benzenoacetamidas , Glutaminase , Hematopoese , Janus Quinase 2 , Transtornos Mieloproliferativos , Animais , Camundongos , Transtornos Mieloproliferativos/tratamento farmacológico , Transtornos Mieloproliferativos/metabolismo , Janus Quinase 2/metabolismo , Janus Quinase 2/antagonistas & inibidores , Hematopoese/efeitos dos fármacos , Humanos , Glutaminase/antagonistas & inibidores , Glutaminase/metabolismo , Benzenoacetamidas/farmacologia , Benzenoacetamidas/uso terapêutico , Mutação , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico
20.
Bioorg Chem ; 143: 107095, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38211548

RESUMO

Cancer is indeed considered a hazardous and potentially life-threatening disorder. The JAK/STAT pathway is an important intracellular signaling cascade essential for many physiological functions, such as immune response, cell proliferation, and differentiation. Dysregulation of this pathway aids in the progression and development of cancer. The downstream JAK2/STAT3 signaling cascades are legitimate targets against which newer anticancer drugs can be developed to prevent and treat cancer. Understanding the mechanisms behind JAK2/STAT3 participation in cancer has paved the way for developing innovative targeted medicines with the potential to improve cancer treatment outcomes. This article provides information on the current scenario and recent advancements in the design and development of anticancer drugs targeting JAK2/STAT3, including structural analysis and SAR investigations of synthesized molecules. Numerous preclinical and clinical trials are ongoing on these inhibitors, which are highlighted to gain more insight into the broader development prospects of inhibitors of JAK2/STAT3.


Assuntos
Antineoplásicos , Inibidores de Janus Quinases , Neoplasias , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Janus Quinase 2/antagonistas & inibidores , Inibidores de Janus Quinases/química , Inibidores de Janus Quinases/farmacologia , Janus Quinases/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Transdução de Sinais , Fatores de Transcrição STAT/antagonistas & inibidores , Fator de Transcrição STAT3/antagonistas & inibidores , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...