Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.689
Filtrar
2.
J Neuroinflammation ; 21(1): 216, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39218899

RESUMO

Parkinson's disease (PD) is characterized by neuroinflammation, progressive loss of dopaminergic neurons, and accumulation of α-synuclein (α-Syn) into insoluble aggregates called Lewy pathology. The Line 61 α-Syn mouse is an established preclinical model of PD; Thy-1 is used to promote human α-Syn expression, and features of sporadic PD develop at 9-18 months of age. To accelerate the PD phenotypes, we injected sonicated human α-Syn preformed fibrils (PFFs) into the striatum, which produced phospho-Syn (p-α-Syn) inclusions in the substantia nigra pars compacta and significantly increased MHC Class II-positive immune cells. Additionally, there was enhanced infiltration and activation of innate and adaptive immune cells in the midbrain. We then used this new model, Line 61-PFF, to investigate the effect of inhibiting the JAK/STAT signaling pathway, which is critical for regulation of innate and adaptive immune responses. After administration of the JAK1/2 inhibitor AZD1480, immunofluorescence staining showed a significant decrease in p-α-Syn inclusions and MHC Class II expression. Flow cytometry showed reduced infiltration of CD4+ T-cells, CD8+ T-cells, CD19+ B-cells, dendritic cells, macrophages, and endogenous microglia into the midbrain. Importantly, single-cell RNA-Sequencing analysis of CD45+ cells from the midbrain identified 9 microglia clusters, 5 monocyte/macrophage (MM) clusters, and 5 T-cell (T) clusters, in which potentially pathogenic MM4 and T3 clusters were associated with neuroinflammatory responses in Line 61-PFF mice. AZD1480 treatment reduced cell numbers and cluster-specific expression of the antigen-presentation genes H2-Eb1, H2-Aa, H2-Ab1, and Cd74 in the MM4 cluster and proinflammatory genes such as Tnf, Il1b, C1qa, and C1qc in the T3 cluster. Together, these results indicate that inhibiting the JAK/STAT pathway suppresses the activation and infiltration of innate and adaptive cells, reducing neuroinflammation in the Line 61-PFF mouse model.


Assuntos
Modelos Animais de Doenças , Doenças Neuroinflamatórias , Doença de Parkinson , Fatores de Transcrição STAT , Transdução de Sinais , alfa-Sinucleína , Animais , Camundongos , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/tratamento farmacológico , alfa-Sinucleína/metabolismo , alfa-Sinucleína/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Fatores de Transcrição STAT/metabolismo , Fatores de Transcrição STAT/antagonistas & inibidores , Fatores de Transcrição STAT/genética , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Doença de Parkinson/imunologia , Humanos , Camundongos Transgênicos , Camundongos Endogâmicos C57BL , Janus Quinases/metabolismo , Janus Quinases/antagonistas & inibidores , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/patologia , Transtornos Parkinsonianos/imunologia , Pirimidinas/farmacologia
3.
Sci Rep ; 14(1): 21444, 2024 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-39271790

RESUMO

Mesenchymal stromal/stem cells (MSC) play a crucial role in promoting neovascularization, which is essential for wound healing. They are commonly utilized as an autologous source of progenitor cells in various stem cell-based therapies. However, incomplete MSC differentiation towards a vascular endothelial cell phenotype questions their involvement in an alternative process to angiogenesis, namely vasculogenic mimicry (VM), and the signal transducing events that regulate their in vitro priming into capillary-like structures. Here, human MSC were primed on top of Cultrex matrix to recapitulate an in vitro phenotype of VM. Total RNA was extracted, and differential gene expression assessed through RNA-Seq analysis and RT-qPCR. Transient gene silencing was achieved using specific siRNA. AG490, Tofacitinib, and PP2 pharmacological effects on VM structures were analyzed using the Wimasis software. In vitro VM occurred within 4 h and was prevented by the JAK/STAT3 inhibitors AG490 and Tofacitinib, as well as by the Src inhibitor PP2. RNA-Seq highlighted STAT3 as a signaling hub contributing to VM when transcripts from capillary-like structures were compared to those from cell monolayers. Concomitant increases in IL6, IL1b, CSF1, CSF2, STAT3, FOXC2, RPSA, FN1, and SNAI1 transcript levels suggest the acquisition of a combined angiogenic, inflammatory and epithelial-to-mesenchymal transition phenotype in VM cultures. Increases in STAT3, FOXC2, RPSA, Fibronectin, and Snail protein expression were confirmed during VM. STAT3 and RPSA gene silencing abrogated in vitro VM. In conclusion, in vitro priming of MSC into VM structures requires Src/JAK/STAT3 signaling. This molecular evidence indicates that a clinically viable MSC-mediated pseudo-vasculature process could temporarily support grafts through VM, allowing time for the host vasculature to infiltrate and remodel the injured tissues.


Assuntos
Janus Quinases , Células-Tronco Mesenquimais , Neovascularização Fisiológica , Fator de Transcrição STAT3 , Transdução de Sinais , Humanos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Fator de Transcrição STAT3/metabolismo , Janus Quinases/metabolismo , Quinases da Família src/metabolismo , Células Cultivadas , Diferenciação Celular
4.
Front Immunol ; 15: 1427563, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39221239

RESUMO

Rationale: Food allergy is a prevalent disease in the U.S., affecting nearly 30 million people. The primary management strategy for this condition is food avoidance, as limited treatment options are available. The elevation of pathologic IgE and over-reactive mast cells/basophils is a central factor in food allergy anaphylaxis. This study aims to comprehensively evaluate the potential therapeutic mechanisms of a small molecule compound called formononetin in regulating IgE and mast cell activation. Methods: In this study, we determined the inhibitory effect of formononetin on the production of human IgE from peripheral blood mononuclear cells of food-allergic patients using ELISA. We also measured formononetin's effect on preventing mast cell degranulation in RBL-2H3 and KU812 cells using beta-hexosaminidase assay. To identify potential targets of formononetin in IgE-mediated diseases, mast cell disorders, and food allergies, we utilized computational modeling to analyze mechanistic targets of formononetin from various databases, including SEA, Swiss Target Prediction, PubChem, Gene Cards, and Mala Cards. We generated a KEGG pathway, Gene Ontology, and Compound Target Pathway Disease Network using these targets. Finally, we used qRT-PCR to measure the gene expression of selected targets in KU812 and U266 cell lines. Results: Formononetin significantly decreased IgE production in IgE-producing human myeloma cells and PBMCs from food-allergic patients in a dose-dependent manner without cytotoxicity. Formononetin decreased beta-hexosaminidase release in RBL-2H3 cells and KU812 cells. Formononetin regulates 25 targets in food allergy, 51 in IgE diseases, and 19 in mast cell diseases. KEGG pathway and gene ontology analysis of targets showed that formononetin regulated disease pathways, primary immunodeficiency, Epstein-Barr Virus, and pathways in cancer. The biological processes regulated by formononetin include B cell proliferation, differentiation, immune response, and activation processes. Compound target pathway disease network identified NFKB1, NFKBIA, STAT1, STAT3, CCND1, TP53, TYK2, and CASP8 as the top targets regulated at a high degree by formononetin. TP53, STAT3, PTPRC, IL2, and CD19 were identified as the proteins mostly targeted by formononetin. qPCR validated genes of Formononetin molecular targets of IgE regulation in U266 cells and KU812 cells. In U266 cells, formononetin was found to significantly increase the gene expression of NFKBIA, TP53, and BCL-2 while decreasing the gene expression of BTK TYK, CASP8, STAT3, CCND1, STAT1, NFKB1, IL7R. In basophils KU812 cells, formononetin significantly increased the gene expression of NFKBIA, TP53, and BCL-2 while decreasing the gene expression of BTK, TYK, CASP8, STAT3, CCND1, STAT1, NFKB1, IL7R. Conclusion: These findings comprehensively present formononetin's mechanisms in regulating IgE production in plasma cells and degranulation in mast cells.


Assuntos
Hipersensibilidade Alimentar , Imunoglobulina E , Isoflavonas , Janus Quinases , Leucócitos Mononucleares , Mastócitos , Fatores de Transcrição STAT , Transdução de Sinais , Isoflavonas/farmacologia , Humanos , Imunoglobulina E/imunologia , Imunoglobulina E/metabolismo , Mastócitos/imunologia , Mastócitos/efeitos dos fármacos , Mastócitos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição STAT/metabolismo , Janus Quinases/metabolismo , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/imunologia , Hipersensibilidade Alimentar/imunologia , Hipersensibilidade Alimentar/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Masculino , Fosfatidilinositol 3-Quinases/metabolismo , Feminino , Adulto , Degranulação Celular/efeitos dos fármacos , Animais , Pessoa de Meia-Idade
6.
Signal Transduct Target Ther ; 9(1): 221, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39169031

RESUMO

The Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway serves as a paradigm for signal transduction from the extracellular environment to the nucleus. It plays a pivotal role in physiological functions, such as hematopoiesis, immune balance, tissue homeostasis, and surveillance against tumors. Dysregulation of this pathway may lead to various disease conditions such as immune deficiencies, autoimmune diseases, hematologic disorders, and cancer. Due to its critical role in maintaining human health and involvement in disease, extensive studies have been conducted on this pathway, ranging from basic research to medical applications. Advances in the structural biology of this pathway have enabled us to gain insights into how the signaling cascade operates at the molecular level, laying the groundwork for therapeutic development targeting this pathway. Various strategies have been developed to restore its normal function, with promising therapeutic potential. Enhanced comprehension of these molecular mechanisms, combined with advances in protein engineering methodologies, has allowed us to engineer cytokines with tailored properties for targeted therapeutic applications, thereby enhancing their efficiency and safety. In this review, we outline the structural basis that governs key nodes in this pathway, offering a comprehensive overview of the signal transduction process. Furthermore, we explore recent advances in cytokine engineering for therapeutic development in this pathway.


Assuntos
Citocinas , Janus Quinases , Fatores de Transcrição STAT , Transdução de Sinais , Humanos , Janus Quinases/genética , Janus Quinases/metabolismo , Janus Quinases/química , Fatores de Transcrição STAT/genética , Fatores de Transcrição STAT/metabolismo , Fatores de Transcrição STAT/química , Transdução de Sinais/genética , Citocinas/genética , Citocinas/metabolismo , Engenharia de Proteínas
7.
Nat Commun ; 15(1): 7165, 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39187481

RESUMO

Programmed cell death 1 (PD-1) is a premier cancer drug target for immune checkpoint blockade (ICB). Because PD-1 receptor inhibition activates tumor-specific T-cell immunity, research has predominantly focused on T-cell-PD-1 expression and its immunobiology. In contrast, cancer cell-intrinsic PD-1 functional regulation is not well understood. Here, we demonstrate induction of PD-1 in melanoma cells via type I interferon receptor (IFNAR) signaling and reversal of ICB efficacy through IFNAR pathway inhibition. Treatment of melanoma cells with IFN-α or IFN-ß triggers IFNAR-mediated Janus kinase-signal transducer and activator of transcription (JAK/STAT) signaling, increases chromatin accessibility and resultant STAT1/2 and IFN regulatory factor 9 (IRF9) binding within a PD-1 gene enhancer, and leads to PD-1 induction. IFNAR1 or JAK/STAT inhibition suppresses melanoma-PD-1 expression and disrupts ICB efficacy in preclinical models. Our results uncover type I IFN-dependent regulation of cancer cell-PD-1 and provide mechanistic insight into the potential unintended ICB-neutralizing effects of widely used IFNAR1 and JAK inhibitors.


Assuntos
Inibidores de Checkpoint Imunológico , Interferon Tipo I , Melanoma , Receptor de Morte Celular Programada 1 , Receptor de Interferon alfa e beta , Transdução de Sinais , Receptor de Morte Celular Programada 1/metabolismo , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Melanoma/tratamento farmacológico , Melanoma/imunologia , Melanoma/genética , Melanoma/metabolismo , Humanos , Receptor de Interferon alfa e beta/metabolismo , Receptor de Interferon alfa e beta/genética , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Camundongos , Interferon Tipo I/metabolismo , Fator de Transcrição STAT1/metabolismo , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/metabolismo , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/genética , Interferon beta/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Janus Quinases/metabolismo , Camundongos Endogâmicos C57BL , Interferon-alfa/farmacologia , Interferon-alfa/metabolismo , Feminino
8.
Life Sci Alliance ; 7(11)2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39122555

RESUMO

Reduction in muscle contractile force associated with many clinical conditions incurs serious morbidity and increased mortality. Here, we report the first evidence that JAK inhibition impacts contractile force in normal human muscle. Muscle biopsies were taken from patients who were randomized to receive tofacitinib (n = 16) or placebo (n = 17) for 48 h. Single-fiber contractile force and molecular studies were carried out. The contractile force of individual diaphragm myofibers pooled from the tofacitinib group (n = 248 fibers) was significantly higher than those from the placebo group (n = 238 fibers), with a 15.7% greater mean maximum specific force (P = 0.0016). Tofacitinib treatment similarly increased fiber force in the serratus anterior muscle. The increased force was associated with reduced muscle protein oxidation and FoxO-ubiquitination-proteasome signaling, and increased levels of smooth muscle MYLK. Inhibition of MYLK attenuated the tofacitinib-dependent increase in fiber force. These data demonstrate that tofacitinib increases the contractile force of skeletal muscle and offers several underlying mechanisms. Inhibition of the JAK-STAT pathway is thus a potential new therapy for the muscle dysfunction that occurs in many clinical conditions.


Assuntos
Inibidores de Janus Quinases , Contração Muscular , Músculo Esquelético , Piperidinas , Pirimidinas , Humanos , Piperidinas/farmacologia , Pirimidinas/farmacologia , Contração Muscular/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Inibidores de Janus Quinases/farmacologia , Masculino , Pirróis/farmacologia , Feminino , Adulto , Transdução de Sinais/efeitos dos fármacos , Pessoa de Meia-Idade , Janus Quinases/metabolismo , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo
9.
Int Immunopharmacol ; 140: 112904, 2024 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-39116489

RESUMO

One of the best antipsychotics for treating schizophrenia and bipolar disorders is olanzapine (OLA). However, its use is restricted owing to unfavorable adverse effects as liver damage, dyslipidemia, and weight gain. The primary objective of the present investigation was to examine the signaling mechanisms that underlie the metabolic disruption generated by OLA. Besides, the potential protective effect of sulforaphane (SFN) and ß-sitosterol (ßSS) against obesity and metabolic toxicity induced by OLA were inspected as well. A total of five groups of male Wistar rats were established, including the control, OLA, SFN+OLA, ßSS+OLA, and the combination + OLA groups. Hepatic histopathology, biochemical analyses, ultimate body weights, liver function, oxidative stress, and pro-inflammatory cytokines were evaluated. In addition to the relative expression of FOXO, the signaling pathways for PI3K/AKT, JAK/STAT3, and MAPK were assessed as well. All biochemical and hepatic histopathological abnormalities caused by OLA were alleviated by SFN and/or ßSS. A substantial decrease in systolic blood pressure (SBP), proinflammatory cytokines, serum lipid profile parameters, hepatic MDA, TBIL, AST, and ALT were reduced through SFN or/and ßSS. To sum up, the detrimental effects of OLA are mediated by alterations in the Akt/FOXO3a/ATG12, Ras/SOS2/Raf-1/MEK/ERK1/2, and Smad3,4/TGF-ß signaling pathways. The administration of SFN and/or ßSS has the potential to mitigate the metabolic deficit, biochemical imbalances, hepatic histological abnormalities, and the overall unfavorable consequences induced by OLA by modulating the abovementioned signaling pathways.


Assuntos
Isotiocianatos , Fígado , Olanzapina , Transdução de Sinais , Sitosteroides , Sulfóxidos , Animais , Masculino , Ratos , Antipsicóticos , Isotiocianatos/farmacologia , Isotiocianatos/uso terapêutico , Janus Quinases/metabolismo , Fígado/efeitos dos fármacos , Fígado/patologia , Fígado/metabolismo , Doenças Metabólicas/tratamento farmacológico , Doenças Metabólicas/induzido quimicamente , Estresse Oxidativo/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Sitosteroides/farmacologia , Sitosteroides/uso terapêutico , Sitosteroides/administração & dosagem , Fator de Transcrição STAT3/metabolismo
10.
Bioorg Chem ; 152: 107696, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39167870

RESUMO

The JAK-STAT signalling pathway is primarily involved in cytokine signalling and induces various factors namely, erythropoietin, thrombopoietin, interferons, interleukins, and granulocyte colony-stimulating factors. These factors tremendously influenced understanding human health and illness, specifically cancer. Inhibiting the JAK/STAT pathway offers enormous therapeutic promises against cancer. Many JAK inhibitors are now being studied due to their efficacy in various cancer treatments. Further, the Nitrogen-heterocyclic (N-heterocyclic) scaffold has always shown to be a powerful tool for designing and discovering synthetic compounds with diverse pharmacological characteristics. The review focuses on several FDA-approved JAK inhibitors and their systematic categorization. The medicinal chemistry perspective is highlighted and classified review on the basis of N-heterocyclic molecules. Several examples of designing strategies of N-heterocyclic rings including pyrrolo-azepine, purine, 1H-pyrazolo[3,4-d]pyrimidine, 1H-pyrrolo[2,3-b]pyridine, pyrazole, thieno[3,2-d] pyrimidine, and, pyrimidine-based derivatives and their structure-activity relationships (SAR) are discussed. Among the various N-heterocyclic-based JAK inhibitors pyrimidine-containing compound 1 exhibited excellent inhibition activity against JAK2WT and mutated-JAK2V617F with IC50 of 2.01 and 18.84 nM respectively. Amino pyrimidine-containing compound 6 and thiopheno[3,2-d]pyrimidine-containing compound 13 expressed admirable JAK3 inhibition activity with IC50 of 1.7 nM and 1.38 nM respectively. Our review will support the medicinal chemists in refining and directing the development of novel N-heterocyclic-based JAK inhibitors.


Assuntos
Antineoplásicos , Compostos Heterocíclicos , Inibidores de Janus Quinases , Animais , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Compostos Heterocíclicos/química , Compostos Heterocíclicos/farmacologia , Compostos Heterocíclicos/síntese química , Inibidores de Janus Quinases/farmacologia , Inibidores de Janus Quinases/química , Inibidores de Janus Quinases/síntese química , Janus Quinases/antagonistas & inibidores , Janus Quinases/metabolismo , Estrutura Molecular , Neoplasias/tratamento farmacológico , Nitrogênio/química , Relação Estrutura-Atividade , Pirimidinas/síntese química , Pirimidinas/química , Pirimidinas/farmacologia
11.
Acta Biomater ; 186: 286-299, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39098445

RESUMO

Cell volume as a characteristic of changes in response to external environmental cues has been shown to control the fate of stem cells. However, its influence on macrophage behavior and macrophage-mediated inflammatory responses have rarely been explored. Herein, through mediating the volume of macrophages by adding polyethylene glycol (PEG), we demonstrated the feasibility of fine-tuning cell volume to regulate macrophage polarization towards anti-inflammatory phenotypes, thereby enabling to reverse macrophage-mediated inflammation response. Specifically, lower the volume of primary macrophages can induce both resting macrophages (M0) and stimulated pro-inflammatory macrophages (M1) to up-regulate the expression of anti-inflammatory factors and down-regulate pro-inflammatory factors. Further mechanistic investigation revealed that macrophage polarization resulting from changing cell volume might be mediated by JAK/STAT signaling pathway evidenced by the transcription sequencing analysis. We further propose to apply this strategy for the treatment of arthritis via direct introduction of PEG into the joint cavity to modulate synovial macrophage-related inflammation. Our preliminary results verified the credibility and effectiveness of this treatment evidenced by the significant inhibition of cartilage destruction and synovitis at early stage. In general, our results suggest that cell volume can be a biophysical regulatory factor to control macrophage polarization and potentially medicate inflammatory response, thereby providing a potential facile and effective therapy for modulating macrophage mediated inflammatory responses. STATEMENT OF SIGNIFICANCE: Cell volume has recently been recognized as a significantly important biophysical signal in regulating cellular functionalities and even steering cell fate. Herein, through mediating the volume of macrophages by adding polyethylene glycol (PEG), we demonstrated the feasibility of fine-tuning cell volume to induce M1 pro-inflammatory macrophages to polarize towards anti-inflammatory M2 phenotype, and this immunomodulatory effect may be mediated by the JAK/STAT signaling pathway. We also proposed the feasible applications of this PEG-induced volume regulation approach towards the treatment of osteoarthritis (OA), wherein our preliminary results implied an effective alleviation of early synovitis. Our study on macrophage polarization mediated by cell volume may open up new pathways for immune regulation through microenvironmental biophysical clues.


Assuntos
Inflamação , Janus Quinases , Macrófagos , Fatores de Transcrição STAT , Transdução de Sinais , Macrófagos/metabolismo , Macrófagos/patologia , Transdução de Sinais/efeitos dos fármacos , Animais , Janus Quinases/metabolismo , Fatores de Transcrição STAT/metabolismo , Inflamação/patologia , Camundongos , Polietilenoglicóis/farmacologia , Camundongos Endogâmicos C57BL , Masculino
12.
Int Immunopharmacol ; 141: 112775, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39146776

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is a common cancer that is fatal and has a dismal prognosis. Obovatol (Ob), a novel lignan derived from the leaf and stem bark of Magnolia obovata Thunb, has exhibited anti-tumor effect on diverse tumors. However, its effect and mechanisms on HCC remain to be further explored. METHODS: Huh7 and Hep3B cells, as well as BALB/c nude mice were used to determine the function and mechanisms of Ob on growth, invasion and immune escape by cell counting kit-8, transwell, enzyme-linked immunosorbent assay (ELISA) and western blot experiments. RESULTS: Ob reduced the cell viability of Huh7 and Hep3B cells, with a IC50 value of 57.41 µM and 62.86 µM, respectively. Ob declined the invasion ability, the protein expression of N-cadherin and the concentrations of IL-10 and TGF-ß, whereas increased the E-cadherin expression and the contents of IFN-γ and IL-2 in Hep3B and Huh7 cells. Mechanically, Ob decreased the protein level of p-JAK/JAK, p-STAT3/STAT3 and PD-L1, which was partly restored with the treatment of RO8191, an activator of JAK/STAT3 axis. The effect of Ob on the cell viability, the invasion ability, the protein level of N-cadherin and E-cadherin, and the concentrations of IL-10, TGF-ß, IFN-γ and IL-2 in both Hep3B and Huh7 cells was reversed with the management of RO8191. In vivo, Ob reduced tumor volume and weight, the level of N-cadherin, PD-L1, p-JAK/JAK, and p-STAT3/STAT3, with an elevated expression of E-cadherin and IFN-γ. CONCLUSION: Ob downregulated the JAK/STST3/PD-L1 pathway to attenuate the growth, invasion and immune escape of HCC.


Assuntos
Antígeno B7-H1 , Carcinoma Hepatocelular , Proliferação de Células , Janus Quinases , Neoplasias Hepáticas , Camundongos Endogâmicos BALB C , Camundongos Nus , Transdução de Sinais , Humanos , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Antígeno B7-H1/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/patologia , Linhagem Celular Tumoral , Janus Quinases/metabolismo , Proliferação de Células/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Camundongos , Invasividade Neoplásica , Evasão Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Éteres Fenílicos/farmacologia , Éteres Fenílicos/uso terapêutico , Movimento Celular/efeitos dos fármacos , Compostos de Bifenilo
13.
mBio ; 15(9): e0146924, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39158293

RESUMO

RNA interference (RNAi) drives powerful antiviral immunity in plants and animals so that many viruses must express viral suppressor of RNAi (VSR) to establish virulent infection. However, little is known about the immune responses conferring resistance against viruses that have evolved the counter-defensive strategy to suppress antiviral RNAi. In this study, we discover that Drosophila cells infected with Drosophila C virus (DCV), a natural viral pathogen of Drosophila known to harbor a potent VSR, exhibit heightened expression of circular RNA circZfh1. circZfh1 confers virus resistance in the presence of viral suppression of antiviral RNAi. Furthermore, we validate that circZfh1 encodes a 274-amino acid protein, CRAV, essential for its antiviral activity. Notably, CRAV differs from its parental Zfh1 gene in a different reading frame, with the C-terminal 69 amino acids unique to CRAV. Our analysis also reveals the presence of CRAV in species within the melanogaster subgroup, with the C-terminal unique fragment undergoing accelerated evolution. Expression of CRAV upregulates the expression of the cytokine Upd3, which binds to its receptor, stimulating the JAK-STAT pathway and enhancing the immune response to DCV infection. Notably, CRISPR/Cas9 knockout of circZfh1 significantly enhances DCV replication in vitro and in vivo, with circZfh1-knockout adult flies displaying heightened disease susceptibility to DCV. In summary, our findings unveil a Drosophila protein-coding circular RNA that activates an innate immune signaling pathway crucial for virus resistance following the suppression of antiviral RNAi by viruses, thereby elucidating a novel counter-defensive strategy.IMPORTANCEEukaryotic hosts possess a complex, multilayered immune system that guards against pathogen invasion. In fruit flies, RNA interference (RNAi) drives robust antiviral immunity, prompting many viruses to express viral suppressors of RNAi (VSRs) to establish virulent infections. However, little is known about immune responses that confer resistance against viruses with potent VSRs. In this study, we discovered that Drosophila cells infected with Drosophila C virus (DCV), a natural viral pathogen possessing a potent VSR, upregulated the expression of circular RNA circZfh1. circZfh1 exhibits DCV-specific antiviral activity, encoding a 274-amino acid protein, CRAV, crucial for its antiviral effects. As a different reading frame from its parental Zfh1 gene, the C-terminal 69 amino acids are unique to CRAV, undergoing faster evolution. CRAV activates the JAK-STAT pathway, enhancing the immune response to DCV infection. Therefore, our work uncovers a new strategy for suppressing viral counter-defense through protein-coding circular RNA in fruit flies.


Assuntos
Dicistroviridae , Proteínas de Drosophila , Drosophila melanogaster , Janus Quinases , RNA Circular , Fatores de Transcrição STAT , Animais , RNA Circular/genética , RNA Circular/imunologia , Janus Quinases/metabolismo , Janus Quinases/genética , Janus Quinases/imunologia , Drosophila melanogaster/imunologia , Drosophila melanogaster/genética , Drosophila melanogaster/virologia , Dicistroviridae/genética , Dicistroviridae/imunologia , Fatores de Transcrição STAT/genética , Fatores de Transcrição STAT/metabolismo , Fatores de Transcrição STAT/imunologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/imunologia , Imunidade Inata/genética , Transdução de Sinais , Interferência de RNA , Drosophila/genética , Drosophila/imunologia , Drosophila/virologia , Interações Hospedeiro-Patógeno/imunologia , Interações Hospedeiro-Patógeno/genética
14.
Cytokine Growth Factor Rev ; 79: 1-15, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39179485

RESUMO

Inflammatory bowel disease (IBD) encompasses a group of non-specific chronic intestinal inflammatory conditions of unclear etiology. The current treatment and long-term management primarily involve biologics. Nevertheless, some patients experience treatment failure or intolerance to biologics [1], making these patients a primary focus of IBD research. The Janus kinase (JAK)-Signal Transducers and Activator of Transcription (STAT) signal transduction pathway is crucial to the regulation of immune and inflammatory responses [2], and plays an important role in the pathogenesis of IBD. JAK inhibitors alleviate IBD by suppressing the transmission of JAK-STAT signaling pathway. As the first small-molecule oral inhibitor for IBD, JAK inhibitors greatly improved the treatment of IBD and have demonstrated significant efficacy, with tofacitinib and upadacitinib being approved for the treatment of ulcerative colitis (UC) [3]. JAK inhibitors can effectively alleviate intestinal inflammation in IBD patients who have failed to receive biologics, which may bring new treatment opportunities for refractory IBD patients. This review aims to elucidate the crucial roles of JAK-STAT signal transduction pathway in IBD pathogenesis, examine its role in various cell types within IBD, and explore the research progress of JAK inhibitors as therapeutic agents, paving the road for new IBD treatment strategies.


Assuntos
Doenças Inflamatórias Intestinais , Inibidores de Janus Quinases , Janus Quinases , Fatores de Transcrição STAT , Transdução de Sinais , Humanos , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição STAT/metabolismo , Fatores de Transcrição STAT/antagonistas & inibidores , Janus Quinases/antagonistas & inibidores , Janus Quinases/metabolismo , Doenças Inflamatórias Intestinais/tratamento farmacológico , Inibidores de Janus Quinases/uso terapêutico , Inibidores de Janus Quinases/farmacologia , Animais , Piperidinas/uso terapêutico , Piperidinas/farmacologia , Pirimidinas/uso terapêutico , Pirimidinas/farmacologia , Colite Ulcerativa/tratamento farmacológico , Compostos Heterocíclicos com 3 Anéis
15.
Adv Exp Med Biol ; 1448: 583-600, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39117841

RESUMO

Cytokine storm syndromes (CSSs) comprise a group of severe and often fatal hyperinflammatory conditions driven by the overproduction of pro-inflammatory cytokines by activated cells of the immune system. Many of the CSS-associated cytokines mediate their downstream effects by signaling through the Janus kinases (JAKs) and signal transducers and activators of transcription (STATs). In addition, several of these cytokines are produced downstream of JAK/STAT pathway activation. Therefore, targeting JAK/STAT signaling using small molecule JAK inhibitors has become an increasingly appealing therapeutic option to dampen hyperinflammation in patients with CSSs. Application of JAK inhibitors in preclinical CSS models has shown improvements in multiple sequelae of hyperinflammation, and there is growing clinical evidence supporting the efficacy of JAK inhibition in patients with these conditions. Although generally well tolerated, JAK inhibitor use is not without potential for toxicity, especially in settings like CSSs where end-organ dysfunction is common. More prospective clinical trials incorporating JAK inhibitors, alone or in combination with other immunomodulatory therapies, are necessary to determine the optimal dosing, schedule, efficacy, and tolerability of these agents for patients experiencing CSSs.


Assuntos
Síndrome da Liberação de Citocina , Inibidores de Janus Quinases , Janus Quinases , Humanos , Inibidores de Janus Quinases/uso terapêutico , Inibidores de Janus Quinases/efeitos adversos , Síndrome da Liberação de Citocina/tratamento farmacológico , Síndrome da Liberação de Citocina/imunologia , Janus Quinases/antagonistas & inibidores , Janus Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Citocinas/metabolismo , Animais , Fatores de Transcrição STAT/metabolismo , Fatores de Transcrição STAT/antagonistas & inibidores
16.
Int J Mol Sci ; 25(15)2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39125897

RESUMO

Rheumatoid arthritis (RA) is a highly prevalent autoimmune disorder. The pathogenesis of the disease is complex and involves various cellular populations, including fibroblast-like synoviocytes, macrophages, and T cells, among others. Identification of signalling pathways and molecules that actively contribute to the development of the disease is crucial to understanding the mechanisms involved in the chronic inflammatory environment present in affected joints. Recent studies have demonstrated that the Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway regulates the behaviour of immune cells and contributes to the progression of RA. Several JAK inhibitors, such as tofacitinib, baricitinib, upadacitinib, and filgocitinib, have been developed, and their efficacy and safety in patients with RA have been comprehensively investigated in a number of clinical trials. Consequently, JAK inhibitors have been approved and registered as a treatment for patients with RA. In this review, we discuss the involvement of JAK/STAT signalling in the pathogenesis of RA and summarise the potential beneficial effects of JAK inhibitors in cells implicated in the pathogenesis of the disease. Moreover, we present the most important phase 3 clinical trials that evaluated the use of these agents in patients.


Assuntos
Artrite Reumatoide , Inibidores de Janus Quinases , Janus Quinases , Humanos , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/imunologia , Artrite Reumatoide/metabolismo , Inibidores de Janus Quinases/uso terapêutico , Inibidores de Janus Quinases/farmacologia , Janus Quinases/metabolismo , Janus Quinases/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição STAT/metabolismo , Animais , Antirreumáticos/uso terapêutico , Antirreumáticos/farmacologia
17.
J Biochem Mol Toxicol ; 38(8): e23801, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39132772

RESUMO

Lung cancer (LC) is a major inducer of cancer-related death. We aim to reveal the effect of Calsequestrin2 (CASQ2) on macrophage polarization and Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway in LC. Hub genes were determined from protein-protein interaction networks based on GSE21933 and GSE1987 data sets using bioinformatic analysis. Expression of hub genes was verified by real-time quantitative polymerase chain reaction (RT-qPCR). Cell Counting Kit-8, 5-ethynyl-2'-deoxyuridine, wound-healing, colony formation, and transwell assays were performed to assess the impact of CASQ2 on LC cells. A xenograft mouse model was evaluated using hematoxylin-eosin, immunohistochemistry, and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling staining to investigate the effect of CASQ2 on LC. The role of CASQ2 in regulating macrophage polarization and JAK/STAT pathway was evaluated by western blot andRT-qPCR. We screened out 155 common differentially expressed genes in GSE21933 and GSE1987 data sets. Myomesin-2, tyrosine kinase, sex determining region Y-box 2, platelet and endothelial cell adhesion molecule 1, matrix metallopeptidase 9, claudin-5, caveolin-1, CASQ2, recombinant ATPase, Ca++ transporting, cardiac muscle, slow twitch 2 (ATP2A2), and ankyrin repeat domain 1 were identified as the hub genes with high prediction value. CASQ2 was selected as a pivotal regulator of LC. In vitro experiments and xenograft models revealed that CASQ2 overexpression suppressed proliferation, colony formation, migration, invasion of LC cells, and tumor growth in vivo. Additionally, overexpression of CASQ2 promoted the expression of M1 macrophage markers (cluster of differentiation 80 [CD80], interleukin [IL]-12, inducible nitric oxide synthase [iNOS]), while decreasing the expression of M2 macrophage markers (CD163, IL-10, Arg1) in tumor-associated macrophages and xenograft tissues. Finally, we found that overexpression of CASQ2 inhibited JAK/STAT pathway. CASQ2 is a novel biomarker, which can alleviate LC via inhibiting M2 tumor-associated macrophage polarization and JAK/STAT pathway.


Assuntos
Janus Quinases , Neoplasias Pulmonares , Fatores de Transcrição STAT , Macrófagos Associados a Tumor , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Humanos , Animais , Camundongos , Janus Quinases/metabolismo , Janus Quinases/genética , Fatores de Transcrição STAT/metabolismo , Fatores de Transcrição STAT/genética , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/patologia , Transdução de Sinais , Camundongos Nus , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/genética , Linhagem Celular Tumoral
18.
Arch Dermatol Res ; 316(8): 566, 2024 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-39180702

RESUMO

Rosacea is a chronic inflammatory skin disease characterized by facial erythema and telangiectasia. Despite ongoing research, the pathogenesis of rosacea remains incompletely understood, and current therapies are not entirely satisfactory. The JAK/STAT signaling pathway plays an essential role in immunoregulation, inflammation, and neurovascular regulation. Inhibition of the JAK/STAT pathway appears to hold promise as a potential therapy for rosacea. This study aimed to investigate the effects of the JAK inhibitor tofacitinib on rosacea and to preliminarily explore its therapeutic mechanism. To this end, a rosacea-like mouse model was induced using LL37 and treated with a 2% tofacitinib emulsion. The results demonstrated that topical application of tofacitinib significantly ameliorated rosacea-like phenotype, reduced the infiltration of CD4+ T cells and mast cells, and suppressed dermal angiogenesis. RT-qPCR analysis revealed a reduction in mRNA expression levels of STAT1, STAT4, and STAT5a in skin lesions following topical tofacitinib treatment. Additionally, three patients diagnosed with erythematotelangiectatic rosacea (ETR) were included in the study and treated with oral tofacitinib, leading to a significant improvement in erythema and flushing symptoms. These findings collectively suggest that tofacitinib alleviates LL37-induced rosacea-like skin inflammation in mice and rosacea skin lesions by inhibiting the JAK/STAT signaling pathway.


Assuntos
Piperidinas , Pirimidinas , Rosácea , Transdução de Sinais , Adulto , Animais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Administração Oral , Administração Tópica , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Modelos Animais de Doenças , Inibidores de Janus Quinases/farmacologia , Inibidores de Janus Quinases/uso terapêutico , Inibidores de Janus Quinases/administração & dosagem , Janus Quinases/metabolismo , Janus Quinases/antagonistas & inibidores , Mastócitos/efeitos dos fármacos , Mastócitos/imunologia , Mastócitos/metabolismo , Piperidinas/farmacologia , Piperidinas/uso terapêutico , Piperidinas/administração & dosagem , Pirimidinas/farmacologia , Pirimidinas/administração & dosagem , Pirimidinas/uso terapêutico , Pirróis/farmacologia , Pirróis/administração & dosagem , Rosácea/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Pele/patologia , Pele/efeitos dos fármacos , Pele/metabolismo , Fatores de Transcrição STAT/metabolismo , Fatores de Transcrição STAT/antagonistas & inibidores , Fator de Transcrição STAT1/metabolismo
19.
Phytomedicine ; 133: 155917, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39153275

RESUMO

BACKGROUND: The pathogenesis of psoriasis involves the interaction between keratinocytes and immune cells, leading to immune imbalance. While most current clinical treatment regimens offer rapid symptom relief, they often come with significant side effects. Tetrastigma hemsleyanum polysaccharides (THP), which are naturally nontoxic, possess remarkable immunomodulatory and anti-inflammatory properties. METHODS: In this study, we utilized an imiquimod (IMQ)-induced psoriasis mouse model and a LPS/IL-6-stimulated HaCaT model. The potential and mechanism of action of THP in psoriasis treatment were assessed through methods including Psoriasis Area Severity Index (PASI) scoring, histopathology, flow cytometry, immunoblotting, and reverse transcription-polymerase chain reaction (RT-PCR). RESULTS: Percutaneous administration of THP significantly alleviated symptoms and manifestations in IMQ-induced psoriatic mice, including improvements in psoriatic skin appearance (erythema, folds, scales), histopathological changes, decreased PASI scores, and spleen index. Additionally, THP suppressed abnormal proliferation of Th17 cells and excessive proliferation and inflammation of keratinocytes. Furthermore, THP exhibited the ability to regulate the JAK/STAT3 signaling pathway. CONCLUSION: Findings from in vivo and in vitro studies suggest that THP can inhibit abnormal cell proliferation and excessive inflammation in lesional skin, balance Th17 immune cells, and disrupt the interaction between keratinocytes and Th17 cells. This mechanism of action may involve the modulation of the JAK/STAT3 signaling pathway, offering potential implications for psoriasis treatment.


Assuntos
Modelos Animais de Doenças , Imiquimode , Polissacarídeos , Psoríase , Fator de Transcrição STAT3 , Transdução de Sinais , Vitaceae , Animais , Psoríase/tratamento farmacológico , Psoríase/induzido quimicamente , Fator de Transcrição STAT3/metabolismo , Polissacarídeos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Camundongos , Humanos , Vitaceae/química , Janus Quinases/metabolismo , Camundongos Endogâmicos BALB C , Proliferação de Células/efeitos dos fármacos , Células Th17/efeitos dos fármacos , Células HaCaT , Queratinócitos/efeitos dos fármacos , Masculino , Pele/efeitos dos fármacos , Pele/patologia , Anti-Inflamatórios/farmacologia
20.
Sci Rep ; 14(1): 18481, 2024 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-39122787

RESUMO

Anastomotic stricture is a typical complication of esophageal atresia surgery. Remote ischemic conditioning (RIC) has demonstrated multiorgan benefits, however, its efficacy in the esophagus remains unclear. This study aimed to investigate whether applying RIC after esophageal resection and anastomosis in rats could attenuate esophageal stricture and improve inflammation. Sixty-five male Sprague-Dawley rats were categorized into the following groups: controls with no surgery, resection and anastomosis only, resection and anastomosis with RIC once, and resection and anastomosis with RIC twice. RIC included three cycles of hind-limb ischemia followed by reperfusion. Inflammatory markers associated with the interleukin 6/Janus kinase/ signal transducer and activator of transcription 3 (IL-6/JAK/STAT3) and tumor necrosis factor-alpha/nuclear factor-κB (TNF-α/NF-kB) signaling pathways were evaluated with RNA and protein works. The RIC groups showed significantly lower stricture rates, lower inflammatory markers levels than the resection and anastomosis-only group. The RIC groups had significantly lower IL-6 and TNFa levels than the resection and anastomosis-only group, confirming the inhibitory role of remote ischemic conditioning in the IL-6/JAK/STAT3 and TNF-α/NF-kB signaling pathways. RIC after esophageal resection and anastomosis can reduce the inflammatory response, improving strictures at the esophageal anastomosis site, to be a novel noninvasive intervention for reducing esophageal anastomotic strictures.


Assuntos
Anastomose Cirúrgica , Modelos Animais de Doenças , Estenose Esofágica , Precondicionamento Isquêmico , Ratos Sprague-Dawley , Fator de Transcrição STAT3 , Animais , Masculino , Ratos , Precondicionamento Isquêmico/métodos , Estenose Esofágica/etiologia , Estenose Esofágica/prevenção & controle , Fator de Transcrição STAT3/metabolismo , NF-kappa B/metabolismo , Interleucina-6/metabolismo , Interleucina-6/sangue , Transdução de Sinais , Esôfago/cirurgia , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/sangue , Janus Quinases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...