Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 652
Filtrar
1.
Nat Microbiol ; 9(7): 1792-1811, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38862602

RESUMO

The Klebsiella oxytoca species complex is part of the human microbiome, especially during infancy and childhood. K. oxytoca species complex strains can produce enterotoxins, namely, tilimycin and tilivalline, while also contributing to colonization resistance (CR). The relationship between these seemingly contradictory roles is not well understood. Here, by coupling ex vivo assays with CRISPR-mutagenesis and various mouse models, we show that K. oxytoca provides CR against Salmonella Typhimurium. In vitro, the antimicrobial activity against various Salmonella strains depended on tilimycin production and was induced by various simple carbohydrates. In vivo, CR against Salmonella depended on toxin production in germ-free mice, while it was largely toxin-independent in mice with residual microbiota. This was linked to the relative levels of toxin-inducing carbohydrates in vivo. Finally, dulcitol utilization was essential for toxin-independent CR in gnotobiotic mice. Together, this demonstrates that nutrient availability is key to both toxin-dependent and substrate-driven competition between K. oxytoca and Salmonella.


Assuntos
Klebsiella oxytoca , Infecções por Salmonella , Salmonella typhimurium , Klebsiella oxytoca/genética , Klebsiella oxytoca/metabolismo , Animais , Camundongos , Infecções por Salmonella/microbiologia , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo , Salmonella typhimurium/crescimento & desenvolvimento , Salmonella typhimurium/efeitos dos fármacos , Humanos , Modelos Animais de Doenças , Enterotoxinas/metabolismo , Enterotoxinas/genética , Feminino , Camundongos Endogâmicos C57BL , Infecções por Klebsiella/microbiologia , Microbiota , Microbioma Gastrointestinal , Antibiose , Benzodiazepinonas
2.
Front Cell Infect Microbiol ; 14: 1260212, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38887491

RESUMO

Purpose: Raoultella spp. is a genus of bacteria that is known to be closely related to Klebsiella. It has been debated whether Raoultella should be reclassified as a subgroup of Klebsiella. The aim of this study is to compare clinical aspects of Raoultella and Klebsiella oxytoca, a species of Klebsiella that is known to be bacteriologically similar to Raoultella spp. Methods: Using data collected at a tertiary care hospital in the United States, we identified 43 patients with Raoultella infection and 1173 patients with Klebsiella oxytoca infection. We compared patient demographics (age and sex), hospitalization status, isolation sites and antibiotic resistance profiles between the two species. Results: There was no significant difference in patient demographics between the two bacteria species. The proportions of intensive care unit (ICU) admission were higher among patients with Raoultella infection (p=0.008). The most common site of isolation was urine for both species (39.5% of all patients with Raoultella spp. vs. 59.3% for K. oxytoca). The second most common site of isolation was blood stream for Raoultella spp. (23.3%) and respiratory tract for K. oxytoca (10.8%). Except for the high proportion of resistant isolates of Raoultella spp. for Trimethoprim/sulfamethoxazole, the antibiotic susceptibility profiles were similar between the two bacteria species. Both were susceptible to ciprofloxacin and meropenem. Conclusion: While there are no significant differences in the patient demographics and antibiotic susceptibility profiles between Raoultella spp. and K. oxytoca, Raoultella may cause more serious infection requiring ICU admissions. Also, Raoultella may cause blood stream infection more frequently than K. oxytoca.


Assuntos
Antibacterianos , Infecções por Enterobacteriaceae , Enterobacteriaceae , Infecções por Klebsiella , Klebsiella oxytoca , Testes de Sensibilidade Microbiana , Humanos , Masculino , Klebsiella oxytoca/isolamento & purificação , Klebsiella oxytoca/efeitos dos fármacos , Klebsiella oxytoca/genética , Klebsiella oxytoca/classificação , Feminino , Pessoa de Meia-Idade , Idoso , Enterobacteriaceae/isolamento & purificação , Enterobacteriaceae/efeitos dos fármacos , Enterobacteriaceae/classificação , Infecções por Klebsiella/microbiologia , Antibacterianos/farmacologia , Infecções por Enterobacteriaceae/microbiologia , Adulto , Centros de Atenção Terciária , Unidades de Terapia Intensiva/estatística & dados numéricos , Estados Unidos/epidemiologia , Idoso de 80 Anos ou mais , Farmacorresistência Bacteriana
3.
J Virol ; 98(6): e0027224, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38771043

RESUMO

Klebsiella spp. are causative agents of healthcare-associated infections in patients who are immunocompromised and use medical devices. The antibiotic resistance crisis has led to an increase in infections caused by these bacteria, which can develop into potentially life-threatening illnesses if not treated swiftly and effectively. Thus, new treatment options for Klebsiella are urgently required. Phage therapy can offer an alternative to ineffective antibiotic treatments for antibiotic-resistant bacteria infections. The aim of the present study was to produce a safe and effective phage cocktail treatment against Klebsiella pneumoniae and Klebsiella oxytoca, both in liquid in vitro culture and an in vivo Galleria mellonella infection model. The phage cocktail was significantly more effective at killing K. pneumoniae and K. oxytoca strains compared with monophage treatments. Preliminary phage cocktail safety was demonstrated through application in the in vivo G. mellonella model: where the phage cocktail induced no toxic side effects in G. mellonella. In addition, the phage cocktail significantly improved the survival of G. mellonella when administered as a prophylactic treatment, compared with controls. In conclusion, our phage cocktail was demonstrated to be safe and effective against Klebsiella spp. in the G. mellonella infection model. This provides a strong case for future treatment for Klebsiella infections, either as an alternative or adjunct to antibiotics.IMPORTANCEKlebsiella infections are a concern in individuals who are immunocompromised and are becoming increasingly difficult to treat with antibiotics due to their drug-resistant properties. Bacteriophage is one potential alternative therapy that could be used to tackle these infections. The present study describes the design of a non-toxic phage cocktail that improved the survival of Galleria mellonella infected with Klebsiella. This phage cocktail demonstrates potential for the safe and effective treatment of Klebsiella infections, as an adjunct or alternative to antibiotics.


Assuntos
Bacteriófagos , Infecções por Klebsiella , Klebsiella oxytoca , Klebsiella pneumoniae , Terapia por Fagos , Animais , Infecções por Klebsiella/terapia , Infecções por Klebsiella/microbiologia , Bacteriófagos/fisiologia , Terapia por Fagos/métodos , Klebsiella pneumoniae/virologia , Klebsiella oxytoca/virologia , Mariposas/microbiologia , Mariposas/virologia , Klebsiella/virologia , Modelos Animais de Doenças , Larva/microbiologia , Larva/virologia , Lepidópteros/microbiologia , Lepidópteros/virologia
4.
J Clin Microbiol ; 62(6): e0172523, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38780286

RESUMO

The environmental bacterium Klebsiella oxytoca displays an alarming increase of antibiotic-resistant strains that frequently cause outbreaks in intensive care units. Due to its prevalence in the environment and opportunistic presence in humans, molecular surveillance (including resistance marker screening) and high-resolution cluster analysis are of high relevance. Furthermore, K. oxytoca previously described in studies is rather a species complex (KoSC) than a single species comprising at least six closely related species that are not easily differentiated by standard typing methods. To reach a discriminatory power high enough to identify and resolve clusters within these species, whole genome sequencing is necessary. The resolution is achievable with core genome multilocus sequence typing (cgMLST) extending typing of a few housekeeping genes to thousands of core genome genes. CgMLST is highly standardized and provides a nomenclature enabling cross laboratory reproducibility and data exchange for routine diagnostics. Here, we established a cgMLST scheme not only capable of resolving the KoSC species but also producing reliable and consistent results for published outbreaks. Our cgMLST scheme consists of 2,536 core genome and 2,693 accessory genome targets, with a percentage of good cgMLST targets of 98.31% in 880 KoSC genomes downloaded from the National Center for Biotechnology Information (NCBI). We also validated resistance markers against known resistance gene patterns and successfully linked genetic results to phenotypically confirmed toxic strains carrying the til gene cluster. In conclusion, our novel cgMLST enables highly reproducible typing of four different clinically relevant species of the KoSC and thus facilitates molecular surveillance and cluster investigations.


Assuntos
Genoma Bacteriano , Klebsiella oxytoca , Tipagem de Sequências Multilocus , Tipagem de Sequências Multilocus/métodos , Klebsiella oxytoca/genética , Klebsiella oxytoca/classificação , Klebsiella oxytoca/isolamento & purificação , Humanos , Genoma Bacteriano/genética , Filogenia , Infecções por Klebsiella/microbiologia , Sequenciamento Completo do Genoma , Técnicas de Tipagem Bacteriana/métodos , Genes Essenciais/genética , Reprodutibilidade dos Testes
5.
ScientificWorldJournal ; 2024: 3350591, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38756480

RESUMO

The challenge in polystyrene disposal has caused researchers to look for urgent innovative and ecofriendly solutions for plastic degradation. Some insects have been reported to use polystyrene as their sole carbon source, and this has been linked to the presence of microbes in their guts that aid in plastic digestion. Thus, this study focuses on the molecular detection and phylogenetic analysis of the alkane-1-monooxygenase (alkB) gene in Klebsiella oxytoca strains isolated from the gut of Tenebrio molitor. The alkB gene encodes for alkane-1-monooxygenase, an enzyme involved in the oxidation of inactivated alkanes. This gene can be used as a marker to assess bacteria's ability to biodegrade polystyrene. Three bacterial strains were isolated from the guts of T. molitor mealworms and were confirmed using polymerase chain reaction (PCR) of the 16S ribosomal RNA gene. The primers used in the amplification of the 16S ribosomal RNA region were designed using NCBI, a bioinformatics tool. To detect the presence of the alkB gene in the isolated bacterial strains, a set of primers used in the amplification of this gene was manually designed from the conserved regions of the alkB nucleotide sequences of eleven bacterial species from GenBank. TCOFFE online tool was used to align the alkB sequences of the bacteria, while Jalview and ConSurf were used to view the alignment. The amplified alkB gene was then sequenced using the Sanger sequencing technique, blasted on NCBI to look for similar sequences, and a phylogenetic tree was constructed. Based on the 16S ribosomal RNA gene sequences, the isolated bacterial strains were confirmed to be Klebsiella oxytoca NBRC 102593, Klebsiella oxytoca JCM 1665, and Klebsiella oxytoca ATCC 13182. The alkB gene sequence identical to fourteen alkB gene sequences derived from Actinobacteria whole genome was detected in Klebsiella oxytoca for the first time to the best of our knowledge. The novel nucleotide sequence was published in the NCBI database under accession number OP959069. This gene sequence was found to be for the enzyme alkane-1-monooxygenase and may be one of the enzymes responsible for polystyrene degradation by the putative Klebsiella oxytoca ATCC 13182 in T. molitor.


Assuntos
Proteínas de Bactérias , Klebsiella oxytoca , Filogenia , Animais , Proteínas de Bactérias/genética , Klebsiella oxytoca/classificação , Klebsiella oxytoca/genética , RNA Ribossômico 16S/genética , Tenebrio/microbiologia , Tenebrio/genética
6.
Microb Pathog ; 190: 106642, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38599551

RESUMO

The intestinal and respiratory tracts of healthy individuals serve as habitats for a diverse array of microorganisms, among which Klebsiella oxytoca holds significance as a causative agent in numerous community- and hospital-acquired infections, often manifesting in polymicrobial contexts. In specific circumstances, K. oxytoca, alongside other constituents of the gut microbiota, undergoes translocation to distinct physiological niches. In these new environments, it engages in close interactions with other microbial community members. As this interaction may progress to co-infection where the virulence of involved pathogens may be promoted and enhance disease severity, we investigated how K. oxytoca affects the adhesion of commonly co-isolated bacteria and vice versa during co-incubation of different biotic and abiotic surfaces. Co-incubation was beneficial for the adhesion of at least one of the two co-cultured strains. K. oxytoca enhanced the adhesion of other enterobacteria strains to polystyrene and adhered more efficiently to bladder or lung epithelial cell lines in the presence of most enterobacteria strains and S. aureus. This effect was accompanied by bacterial coaggregation mediated by carbohydrate-protein interactions occurring between bacteria. These interactions occur only in sessile, but not planktonic populations, and depend on the features of the surface. The data are of particular importance for the risk assessment of the urinary and respiratory tract infections caused by K. oxytoca, including those device-associated. In this paper, we present the first report on K. oxytoca ability to acquire increased adhesive capacities on epithelial cells through interactions with common causal agents of urinary and respiratory tract infections.


Assuntos
Aderência Bacteriana , Células Epiteliais , Infecções por Klebsiella , Klebsiella oxytoca , Pulmão , Bexiga Urinária , Klebsiella oxytoca/fisiologia , Humanos , Células Epiteliais/microbiologia , Pulmão/microbiologia , Infecções por Klebsiella/microbiologia , Bexiga Urinária/microbiologia , Staphylococcus aureus/fisiologia , Staphylococcus aureus/patogenicidade , Técnicas de Cocultura , Coinfecção/microbiologia , Linhagem Celular , Interações Microbianas , Infecções Oportunistas/microbiologia , Infecções Respiratórias/microbiologia , Virulência
7.
Commun Biol ; 7(1): 443, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605181

RESUMO

Glutamate is an essential biological compound produced for various therapeutic and nutritional applications. The current glutamate production process requires a large amount of ammonium, which is generated through the energy-consuming and CO2-emitting Haber-Bosch process; therefore, the development of bio-economical glutamate production processes is required. We herein developed a strategy for glutamate production from aerial nitrogen using the nitrogen-fixing bacterium Klebsiella oxytoca. We showed that a simultaneous supply of glucose and citrate as carbon sources enhanced the nitrogenase activity of K. oxytoca. In the presence of glucose and citrate, K. oxytoca strain that was genetically engineered to increase the supply of 2-oxoglutarate, a precursor of glutamate synthesis, produced glutamate extracellularly more than 1 g L-1 from aerial nitrogen. This strategy offers a sustainable and eco-friendly manufacturing process to produce various nitrogen-containing compounds using aerial nitrogen.


Assuntos
Ácido Glutâmico , Klebsiella oxytoca , Klebsiella oxytoca/genética , Nitrogênio , Ácido Cítrico , Engenharia Metabólica , Glucose
8.
Vet Microbiol ; 292: 110056, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38537400

RESUMO

Klebsiella spp. are important pathogens of humans and companion animals such as cats and dogs, capable of causing severe life-threatening diseases. The aim of this study was to characterize the molecular and phenotypic properties of Klebsiella pneumoniae and Klebsiella oxytoca isolated from ill companion animals by whole genome sequencing, followed by in vitro assessment of biofilm formation and in vivo pathogenicity using the Galleria mellonella model. Two LPS O-types were identified for all the K. pneumoniae isolates tested (O3B and O1/O2v2) and only one for K. oxytoca isolates (OL104), and the most common STs found were ST11 and ST266. Furthermore, a high diversity of K-locus types was found for K. pneumoniae (KL102; KL105; KL31, and KL13). Within K. pneumoniae, one specific O/K/ST-types combination (i.e., KL105-ST11-O1/O2v2) showed results that were of concern, as it exhibited a high inflammatory response at 12 h post-infection in G. mellonella with 80% of the larvae dead at 72 h post-infection. This virulence potential, on the other hand, did not appear to be directly related to the biofilm-forming capacity. Also, virulence and resistance scores obtained for this set of strains did surpass score 1. The present study demonstrated that Klebsiella spp. isolated from companion animals belonging to STs that can cause human infections and present virulence on an invertebrate model. Thus, this study underscores the role of dogs and cats as reservoirs of resistant Klebsiella spp. that could potentially be transmitted to humans.


Assuntos
Doenças do Gato , Doenças do Cão , Infecções por Klebsiella , Gatos , Cães , Humanos , Animais , Virulência , Klebsiella pneumoniae , Klebsiella oxytoca/genética , Portugal/epidemiologia , Doenças do Gato/epidemiologia , Infecções por Klebsiella/epidemiologia , Infecções por Klebsiella/veterinária , Doenças do Cão/epidemiologia , Antibacterianos , beta-Lactamases
9.
Bioresour Technol ; 395: 130403, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38295958

RESUMO

L-Valine, a branched-chain amino acid with diversified applications, is biosynthesized with α-acetolactate as the key precursor. In this study, the metabolic flux in Klebsiella oxytoca PDL-K5, a Risk Group 1 organism producing 2,3-butanediol as the major fermentation product, was rearranged to L-valine production by introducing exogenous L-valine biosynthesis pathway and blocking endogenous 2,3-butanediol generation at the metabolic branch point α-acetolactate. After further enhancing L-valine efflux, strengthening pyruvate polymerization and selecting of key enzymes for L-valine synthesis, a plasmid-free K. oxytoca strain VKO-9 was obtained. Fed-batch fermentation with K. oxytoca VKO-9 in a 7.5 L fermenter generated 122 g/L L-valine with a yield of 0.587 g/g in 56 h. In addition, repeated fed-batch fermentation was conducted to prevent precipitation of L-valine due to oversaturation. The average concentration, yield, and productivity of produced L-valine in three cycles of repeated fed-batch fermentation were 81.3 g/L, 0.599 g/g, and 3.39 g/L/h, respectively.


Assuntos
Klebsiella oxytoca , Lactatos , Valina , Klebsiella oxytoca/genética , Klebsiella oxytoca/metabolismo , Reatores Biológicos , Fermentação , Butileno Glicóis/metabolismo , Engenharia Metabólica
10.
J Microbiol Immunol Infect ; 57(1): 138-147, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37953085

RESUMO

BACKGROUND: The Klebsiella oxytoca complex is an opportunistic pathogen that has been recently identified as an actual complex. However, the characteristics of each species remain largely unknown. We aimed to study the clinical prevalence, antimicrobial profiles, genetic differences, and interaction with the host of each species of this complex. METHODS: One hundred and three clinical isolates of the K. oxytoca complex were collected from 33 hospitals belonging to 19 areas in China from 2020 to 2021. Species were identified using whole genome sequencing based on average nucleotide identity. Clinical infection characteristics of the species were analyzed. Comparative genomics and pan-genome analyses were performed on these isolates and an augmented dataset, including 622 assemblies from the National Center for Biotechnology Information. In vitro assays evaluating the adhesion ability of human respiratory epithelial cells and survivability against macrophages were performed on randomly selected isolates. RESULTS: Klebsiella michiganensis (46.6%, 48/103) and K. oxytoca (35.92%, 37/103) were the major species of the complex causing human infections. K. michiganensis had a higher genomic diversity and larger pan-genome size than did K. oxytoca. K. michiganensis isolates with blaoxy-5 had a higher resistance rate to various antibiotics, antimicrobial gene carriage rate, adhesion ability to human respiratory epithelial cells, and survival rate against macrophages than isolates of other species. CONCLUSION: Our study revealed the genetic diversity of K. michiganensis and firstly identified the highly antimicrobial-resistant profile of K. michiganensis carrying blaoxy-5.


Assuntos
Antibacterianos , Klebsiella oxytoca , Humanos , Antibacterianos/farmacologia , Genômica , Klebsiella oxytoca/genética , Sequenciamento Completo do Genoma , Infecções por Klebsiella/microbiologia
11.
Bioresour Technol ; 393: 130045, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38006983

RESUMO

Klebsiella oxytoca KC004 (ΔadhEΔpta-ackAΔldhAΔbudABΔpflB) was engineered to enhance succinate production. The strain exhibited poor growth without succinate production due to its deficiencies in ATP production and NADH reoxidation. To overcome obstacles, evolutionary adaptation with over 6,000 generations of growth-based selection was conducted. Under anaerobic conditions, enhanced productions of ATP for growth and succinate for NADH reoxidation by the evolved KC004-TF160 strain were coupled to an increased transcript of PEP carboxykinase (pck) while those of genes in the oxidative branch of TCA cycle (gltA, acnAB, and icd), and pyruvate and acetate metabolisms (pykA, acs, poxB and tdcD) were alleviated. The expression of pyruvate dehydrogenase repressor (pdhR) decreased whereas threonine decarboxylase (tdcE) increased. KC004-TF160 produced succinate at 84 g/L (0.84 g/g, 79 % theoretical maximum). KC004-TF160 produced succinate at 0.87 g/g non-pretreated sugarcane molasses without addition of nutrients and buffers. KC004-TF160 may be a microbial platform for commercial production of bio-succinate.


Assuntos
Engenharia Metabólica , Ácido Succínico , Ácido Succínico/metabolismo , Escherichia coli/metabolismo , Klebsiella oxytoca/genética , Klebsiella oxytoca/metabolismo , NAD/metabolismo , Ácido Pirúvico/metabolismo , Trifosfato de Adenosina/metabolismo
12.
Eur J Clin Microbiol Infect Dis ; 42(12): 1449-1457, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37857919

RESUMO

PURPOSE: To elucidate the role of the Klebsiella oxytoca species complex (KoSC) in epidemiology of VIM-type MBL-producing Enterobacterales in Poland. METHODS: The study comprised all 106 VIM-positive KoSC isolates collected by the Polish National Reference Centre for Susceptibility Testing during 2009-2019 from 60 institutions in 35 towns. All isolates were sequenced by Illumina MiSeq, followed by MinION sequencing of selected organisms. Genomes were subjected to bioinformatic analysis, addressing taxonomy, clonality, phylogeny and structural characterisation of key resistance determinants within their chromosomal and plasmidic loci. RESULTS: Among five species identified, K. oxytoca was predominant (n = 92), followed by Klebsiella michiganensis (n = 11). MLST distinguished 18 STs, with the most prevalent Klebsiella oxytoca ST145 (n = 83). The clone segregated a lineage with the In237-like integron [blaVIM-1-aacA4 genes; n = 78], recorded in 28 cities almost all over the country. The integron was located in a ~ 49-50 kb chromosomal mosaic region with multiple other resistance genes, linked to a ~ 51 kb phage-like element. The organism might have originated from Greece, and its evolution in Poland included several events of chromosomal ~ 54-258 kb deletions, comprising the natural ß-lactamase blaOXY gene. A group of other isolates of various species and clones (n = 12) carried the integron In916 on self-transmissible IncA-type plasmids, effectively spreading in Italy, France and Poland. CONCLUSION: KoSC has been one of the major VIM producers in Poland, owing largely to clonal expansion of the specific K. oxytoca-In237-like lineage. Its apparently enhanced epidemic potential may create a danger on international scale.


Assuntos
Enterobacteriáceas Resistentes a Carbapenêmicos , Klebsiella oxytoca , Humanos , Polônia/epidemiologia , Klebsiella oxytoca/genética , Tipagem de Sequências Multilocus , beta-Lactamases/genética , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Plasmídeos/genética , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Klebsiella pneumoniae/genética
13.
Sci Rep ; 13(1): 14373, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37658232

RESUMO

The high prevalence of infections arising from Klebsiella species is related to their ability to acquire and disseminate exogenous genes associated with mobile genetic elements such as integrons. We assessed the prevalence, diversity, and associated gene cassettes (GCs) of integrons in Klebsiella species. The isolates recovered from wastewater and hospital effluents, rivers, and animal droppings were identified using the conventional Polymerase Chain Reaction (PCR) with primers targeting the gryA, pehX, and 16S-23S genes. The antimicrobial resistance profile and the Extended-Spectrum and Metallo ß-lactamases production were carried out using standard microbiological techniques. PCR, DNA sequencing analyses, and Restriction Fragment Length Polymorphism were used to characterize the integrons and their associated GCs. Furthermore, the genotypic relationships between the different isolated K. pneumoniae were determined using Enterobacterial Repetitive Intergenic Consensus (ERIC)-PCR. About 98% (51/52) of the confirmed isolates harboured an integrase gene, with 80% intI1, while the remaining 20% concurrently harboured intI1 and intI2, with no intI3 observed. About 78% (40/51) of the bacterial strains were positive for a promoter, the P2R2, investigated, while 80% (41/51) harboured at least one of the qacEΔ1 and sul1. Three different GCs arrangements identified were aac(6')-Ib, aadA1-dfrA1, and dfrA1-sat2. At a similarity index of 60%, the ERIC-PCR fingerprints generated were categorized into nine clusters. Our study is the first to reveal the features of integrons in Klebsiella spp. recovered from environmental sources in the Eastern Cape Province, South Africa. We conclude that the organisms' sources are repositories of integrons harbouring various gene cassettes, which can be readily mobilized to other microorganisms in similar or varied niches.


Assuntos
Integrons , Klebsiella pneumoniae , Animais , Prevalência , Klebsiella oxytoca , Klebsiella
14.
Mol Genet Genomics ; 298(6): 1407-1417, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37684555

RESUMO

CRISPR (clustered regularly interspaced short palindromic repeats)/Cas (CRISPR-associated protein) system is a crucial adaptive immune system for bacteria to resist foreign DNA infection. In this study, we investigated the prevalence and diversity of CRISPR/Cas systems in 175 Klebsiella oxytoca (K. oxytoca) strains. Specifically, 58.86% (103/175) of these strains possessed at least one confirmed CRISPR locus. Two CRISPR/Cas system types, I-F and IV-A3, were identified in 69 strains. Type I-F system was the most prevalent in this species, which correlated well with MLST. Differently, type IV-A3 system was randomly distributed. Moreover, the type IV-A3 system was separated into two subgroups, with subgroup-specific cas genes and repeat sequences. In addition, spacer origin analysis revealed that approximately one-fifth of type I-F spacers and one-third of type IV-A3 spacers had a significant match to MGEs. The phage tail tape measure protein and conjunctive transfer system protein were important targets of type I-F and IV-A3 systems in K. oxytoca, respectively. PAM sequences were inferred to be 5'-NCC-3' for type I-F, 5'-AAG-3' for subgroup IV-A3-a, and 5'-AAN-3' for subgroup IV-A3-b. Collectively, our findings will shed light on the prevalence, diversity, and functional effects of the CRISPR/Cas system in K. oxytoca.


Assuntos
Sistemas CRISPR-Cas , Klebsiella oxytoca , Klebsiella oxytoca/genética , Sistemas CRISPR-Cas/genética , Tipagem de Sequências Multilocus
15.
Sci Rep ; 13(1): 10957, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37414963

RESUMO

Increasing reports on K. pneumoniae strains with antimicrobial resistance and virulence traits from food and farm animals are raising concerns about the potential role of Klebsiella spp. as a foodborne pathogen. This study aimed to report and characterize Klebsiella spp. isolates from two artisanal ready-to-eat food (soft cheese and salami) producing facilities, and to track similar genotypes in different ecological niches. Over 1170 samples were collected during the whole production chain of different food batches. The overall Klebsiella prevalence was 6%. Strains were classified into the three Klebsiella species complexes: K. pneumoniae (KpSC, n = 17), K. oxytoca (KoSC, n = 38) and K. planticola (KplaSC, n = 18). Despite high genetic diversity we found in terms of known and new sequence types (STs), core genome phylogeny revealed clonal strains persisting in the same processing setting for over 14 months, isolated from the environment, raw materials and end-products. Strains showed a natural antimicrobial resistance phenotype-genotype. K. pneumoniae strains showed the highest virulence potential, with sequence types ST4242 and ST107 strains carrying yersiniabactin ybt16 and aerobactin iuc3. The latter was detected in all K. pneumoniae from salami and was located on a large conjugative plasmid highly similar (97% identity) to iuc3+ plasmids from human and pig strains circulating in nearby regions of Italy. While identical genotypes may persist along the whole food production process, different genotypes from distinct sources in the same facility shared an iuc3-plasmid. Surveillance in the food chain will be crucial to obtain a more comprehensive picture of the circulation of Klebsiella strains with pathogenic potential.


Assuntos
Infecções por Klebsiella , Klebsiella , Humanos , Animais , Suínos , Klebsiella/genética , Infecções por Klebsiella/epidemiologia , Klebsiella pneumoniae , Plasmídeos , Genômica , Klebsiella oxytoca , Antibacterianos/farmacologia , beta-Lactamases/genética , Testes de Sensibilidade Microbiana
16.
Clin Infect Dis ; 77(12): 1700-1703, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37477511

RESUMO

Klebsiella oxytoca is a gram-negative bacterium found in fecal microbiota and known to cause several infections in humans, including antibiotic-associated hemorrhagic colitis. We present here a case of colitis caused by K. oxytoca toxin-producing strains that evolved in chronic diarrhea successfully treated by fecal microbiota transplant.


Assuntos
Colite , Enterocolite Pseudomembranosa , Infecções por Klebsiella , Humanos , Klebsiella oxytoca , Antibacterianos/uso terapêutico , Transplante de Microbiota Fecal/efeitos adversos , Infecções por Klebsiella/microbiologia , Enterocolite Pseudomembranosa/etiologia , Diarreia/tratamento farmacológico , Colite/complicações , Colite/tratamento farmacológico
17.
Ann Clin Microbiol Antimicrob ; 22(1): 50, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37381046

RESUMO

BACKGROUND: Description and comparison of bacterial characteristics of ventilator-associated pneumonia (VAP) between critically ill intensive care unit (ICU) patients with COVID-19-positive, COVID + ; and non-COVID-19, COVID-. METHODS: Retrospective, observational, multicenter study that focused on French patients during the first wave of the pandemic (March-April 2020). RESULTS: 935 patients with identification of at least one bacteriologically proven VAP were included (including 802 COVID +). Among Gram-positive bacteria, S. aureus accounted for more than two-thirds of the bacteria involved, followed by Streptococcaceae and enterococci without difference between clinical groups regarding antibiotic resistance. Among Gram-negative bacteria, Klebsiella spp. was the most frequently observed bacterial genus in both groups, with K. oxytoca overrepresented in the COVID- group (14.3% vs. 5.3%; p < 0.05). Cotrimoxazole-resistant bacteria were over-observed in the COVID + group (18.5% vs. 6.1%; p <0.05), and after stratification for K. pneumoniae (39.6% vs. 0%; p <0.05). In contrast, overrepresentation of aminoglycoside-resistant strains was observed in the COVID- group (20% vs. 13.9%; p < 0.01). Pseudomonas sp. was more frequently isolated from COVID + VAPs (23.9% vs. 16.7%; p <0.01) but in COVID- showed more carbapenem resistance (11.1% vs. 0.8%; p <0.05) and greater resistance to at least two aminoglycosides (11.8% vs. 1.4%; p < 0.05) and to quinolones (53.6% vs. 7.0%; p <0.05). These patients were more frequently infected with multidrug-resistant bacteria than COVID + (40.1% vs. 13.8%; p < 0.01). CONCLUSIONS: The present study demonstrated that the bacterial epidemiology and antibiotic resistance of VAP in COVID + is different from that of COVID- patients. These features call for further study to tailor antibiotic therapies in VAP patients.


Assuntos
COVID-19 , Pneumonia Associada à Ventilação Mecânica , Superinfecção , Humanos , Pneumonia Associada à Ventilação Mecânica/epidemiologia , Estudos Retrospectivos , Staphylococcus aureus , COVID-19/epidemiologia , Bactérias , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Aminoglicosídeos , Klebsiella oxytoca , Klebsiella pneumoniae
18.
Mol Biol Rep ; 50(7): 5969-5976, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37269387

RESUMO

BACKGROUND AND AIM: Binary copper-cobalt oxide nanoparticles (CuO\CoO NPs) are modern kinds of antimicrobials, which may get a lot of interest in clinical application. This study aimed to detect the effect of the binary CuO\CoO NPs on the expression of papC and fimH genes in multidrug-resistant (MDR) isolates of Klebsiella oxytoca to reduce medication time and improve outcomes. METHODS: Ten isolates of K. oxytoca were collected and identified by different conventional tests besides PCR. Antibiotic sensitivity and biofilm-forming ability were carried out. The harboring of papC and fimH genes was also detected. The effect of binary CuO\CoO nanoparticles on the expression of papC and fimH genes was investigated. RESULTS: Bacterial resistance against cefotaxime and gentamicin was the highest (100%), while the lowest percentage of resistance was to amikacin (30%). Nine of the ten bacterial isolates had the ability to form a biofilm with different capacities. MIC for binary CuO\CoO NPs was 2.5 µg/mL. Gene expression of papC and fimH was 8.5- and 9-fold lower using the NPs. CONCLUSION: Binary CuO\CoO NPs have a potential therapeutic effect against infections triggered by MDR K. oxytoca strains due to the NPs-related downregulation ability on the virulence genes of K. oxytoca.


Assuntos
Klebsiella oxytoca , Nanopartículas , Klebsiella oxytoca/genética , Antibacterianos/farmacologia , Biofilmes , Testes de Sensibilidade Microbiana
19.
Microbiol Res ; 273: 127410, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37178499

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are diverse pollutants of significant environmental concerns, requiring effective biodegradation. This study used different bioinformatics tools to conduct whole-genome sequencing of two novel bacterial strains, Klebsiella michiganensis EF4 and K. oxytoca ETN19, to improve our understanding of their many genomic functions and degradation pathways of phenanthrene and pyrene. After 28 days of cultivation, strain EF4 degraded approximately 80% and 60% of phenanthrene and pyrene, respectively. However, their combinations (EF4 +ETN19) showed tremendous phenanthrene degradation efficiency, supposed to be at the first-level kinetic model with a t1/2 value of approximately 6 days. In addition, the two bacterial genomes contained carbohydrate-active enzymes and secondary metabolites biosynthetic gene clusters associated with PAHs degradation. The two genomes contained the bZIP superfamily of transcription factors, primarily the cAMP-response element-binding protein (CREB), which could regulate the expression of several PAHs degradation genes and enzymes. Interestingly, the two genomes were found to uniquely degrade phenanthrene through a putative pathway that catabolizes 2-carboxybenzalpyruvate into the TCA cycle. An operon containing multicomponent proteins, including a novel gene (JYK05_14550) that could initiate the beginning step of phenanthrene and pyrene degradation, was found in the EF4 genome. However, the degradation pathway of ETN19 showed that the yhfP gene encoding putative quinone oxidoreductase was associated with phenanthrene and pyrene catabolic processes. Furthermore, the significant expression of catechol 1,2-dioxygenase and quinone oxidoreductase genes in EF4 +ETN19 and ETN19 following the quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis confirmed the ability of the bacteria combination to degrade pyrene and phenanthrene effectively. These findings present new insight into the possible co-metabolism of the two bacterial species in the rapid biodegradation of phenanthrene and pyrene in soil environments.


Assuntos
Fenantrenos , Hidrocarbonetos Policíclicos Aromáticos , Klebsiella oxytoca/genética , Klebsiella oxytoca/metabolismo , Fenantrenos/análise , Fenantrenos/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Pirenos/metabolismo , Bactérias/metabolismo , Biodegradação Ambiental , Oxirredutases/metabolismo , Análise de Sequência , Quinonas/metabolismo
20.
Res Vet Sci ; 159: 183-188, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37148737

RESUMO

Klebsiella spp. is an important pathogen in humans and animals and due to the indiscriminate use of antibiotics, its prevalence and antibiotic resistance has increased in companion animals. The main goal of this study was to investigate the prevalence and antibiotic resistance of Klebsiella spp. isolated from clinically ill cats and dogs admitted in veterinary clinics in the North of Portugal. A total of 255 clinical specimens were collected and, after isolation, the identification of Klebsiella strains was performed using the BBL Crystal™ identification system and confirmed by PCR-based sequencing with specific primers. Antibiotic resistance profile was determined through the disc diffusion method. Beta-lactam resistance genes were screened through a multiplex PCR assay. Fifty Klebsiella strains were isolated and, 39 were identified as Klebsiella pneumoniae and 11 as Klebsiella oxytoca. Thirty-one were recovered from dogs and 19 from cats. The Klebsiella isolates were recovered mainly from skin wounds, respiratory tract, and from urine. Fifty percent of K. oxytoca and K. pneumoniae isolates revealed to be Multidrug Resistant (MDR) strains, with most of them positive for the presence of blaTEM-like and blaSHV genes. This data shows that MDR Klebsiella are highly disseminated in companion animals and that extended-spectrum beta-lactamases can be easily found among these isolates. This highlights the potential role of dogs and cats as a reservoir of resistant Klebsiella spp. that have the potential to be transmitted to humans.


Assuntos
Doenças do Gato , Doenças do Cão , Infecções por Klebsiella , Humanos , Gatos , Animais , Cães , Klebsiella pneumoniae/genética , Klebsiella oxytoca/genética , Animais de Estimação , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/epidemiologia , Infecções por Klebsiella/veterinária , Prevalência , Portugal/epidemiologia , Doenças do Gato/tratamento farmacológico , Doenças do Gato/epidemiologia , beta-Lactamases/genética , Doenças do Cão/tratamento farmacológico , Doenças do Cão/epidemiologia , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Testes de Sensibilidade Microbiana/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...