Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.586
Filtrar
1.
BMC Infect Dis ; 24(1): 850, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39169288

RESUMO

Carbapenem-resistant Klebsiella pneumoniae (CRKP) infections are a major public health problem, requiring the use of last-resort antibiotics such as colistin. However, there is concern regarding the emergence of isolates resistant to this agent. The report describes two patients with urinary tract infection (UTI) and ventilator-associated pneumonia (VAP) infection caused by CRKP strains. The first case was a 23-year-old male with UTI caused by a strain of ST16 co-harboring blaCTX-M, blaTEM, blaSHV, blaNDM, blaOXA-48-like genes. The second case was a 39-year-old woman with VAP due to hypervirulent ST337-K2 co-harboring blaSHV, blaNDM, blaOXA-48-like, iucA, rmpA2 and rmpA. The patients' general condition improved after combination therapy with colistin (plus meropenem and rifampin, respectively) and both of them recovered and were discharged from the hospital. This study highlights the necessary prevention and control steps to prevent the further spread of CRKP strains should be a priority in our hospital.


Assuntos
Antibacterianos , Colistina , Infecções por Klebsiella , Klebsiella pneumoniae , Infecções Urinárias , beta-Lactamases , Humanos , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/isolamento & purificação , Klebsiella pneumoniae/enzimologia , Klebsiella pneumoniae/patogenicidade , beta-Lactamases/genética , beta-Lactamases/metabolismo , Masculino , Adulto , Infecções por Klebsiella/microbiologia , Infecções por Klebsiella/tratamento farmacológico , Feminino , Antibacterianos/uso terapêutico , Antibacterianos/farmacologia , Adulto Jovem , Infecções Urinárias/microbiologia , Infecções Urinárias/tratamento farmacológico , Colistina/uso terapêutico , Colistina/farmacologia , Pneumonia Associada à Ventilação Mecânica/microbiologia , Pneumonia Associada à Ventilação Mecânica/tratamento farmacológico , Testes de Sensibilidade Microbiana , Meropeném/uso terapêutico , Meropeném/farmacologia , Farmacorresistência Bacteriana Múltipla/genética
2.
Microb Cell Fact ; 23(1): 221, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39118086

RESUMO

ß-lactam resistance is a significant global public health issue. Outbreaks of bacteria resistant to extended-spectrum ß-lactams and carbapenems are serious health concerns that not only complicate medical care but also impact patient outcomes. The primary objective of this work was to express and purify two soluble recombinant representative serine ß­lactamases using Escherichia coli strain as an expression host and pET101/D as a cloning vector. Furthermore, a second objective was to evaluate the potential, innovative, and safe use of galloylquinic acid (GQA) from Copaifera lucens as a potential ß-lactamase inhibitor.In the present study, blaCTX-M-15 and blaKPC-2 represented genes encoding for serine ß-lactamases that were cloned from parent isolates of E. coli and K. pneumoniae, respectively, and expression as well as purification were performed. Moreover, susceptibility results demonstrated that recombinant cells became resistant to all test carbapenems (MICs; 64-128 µg/mL) and cephalosporins (MICs; 128-512 µg/mL). The MICs of the tested ß-lactam antibiotics were determined in combination with 4 µg/mL of GQA, clavulanic acid, or tazobactam against E. coli strains expressing CTX-M-15 or KPC-2-ß-lactamases. Interestingly, the combination with GQA resulted in an important reduction in the MIC values by 64-512-fold to the susceptible range with comparable results for other reference inhibitors. Additionally, the half-maximal inhibitory concentration of GQA was determined using nitrocefin as a ß-lactamase substrate. Data showed that the test agent was similar to tazobactam as an efficient inhibitors of the test enzymes, recording smaller IC50 values (CTX-M-15; 17.51 for tazobactam, 28.16 µg/mL for GQA however, KPC-2; 20.91 for tazobactam, 24.76 µg/mL for GQA) compared to clavulanic acid. Our work introduces GQA as a novel non-ß-lactam inhibitor, which interacts with the crucial residues involved in ß-lactam recognition and hydrolysis by non-covalent interactions, complementing the enzyme's active site. GQA markedly enhanced the potency of ß-lactams against carbapenemase and extended-spectrum ß-lactamase-producing strains, reducing the MICs of ß-lactams to the susceptible range. The ß-lactamase inhibitory activity of GQA makes it a promising lead molecule for the development of more potent ß-lactamase inhibitors.


Assuntos
Escherichia coli , Testes de Sensibilidade Microbiana , Inibidores de beta-Lactamases , beta-Lactamases , beta-Lactamases/metabolismo , beta-Lactamases/genética , Inibidores de beta-Lactamases/farmacologia , Escherichia coli/genética , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/enzimologia , Klebsiella pneumoniae/genética , Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/antagonistas & inibidores , Carbapenêmicos/farmacologia
3.
J Appl Microbiol ; 135(7)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38955378

RESUMO

AIMS: This study was conducted to evaluate the in vitro activity of clinically relevant aminoglycosides and to determine the prevalence of genes encoding aminoglycoside modifying enzymes (AMEs) and 16S ribosomal RNA (rRNA) methyltransferases among aminoglycoside-resistant E. coli (n = 61) and K. pneumoniae (n = 44) clinical isolates. Associated resistances to beta-lactams and their bla genes as well as the genetic relatedness of isolates were also investigated. MATERIALS AND METHODS: A total of 105 aminoglycoside-resistant E. coli (n = 61) and K. pneumoniae (n = 44) isolates recovered between March and May 2017 from 100 patients hospitalized in different wards of Charles Nicolle Hospital of Tunis, Tunisia, were studied. Minimal inhibitory concentrations of aminoglycoside compounds were determined by broth microdilution method. Aminoglycosides resistance encoding genes [aph(3´)-Ia, aph(3') IIa, aph(3´)-VIa, ant(2″)-Ia, aac(3)-IIa, aac(3)-IVa, aac(6')-Ib, rmtA, rmtB, rmtC, armA, and npmA] and bla genes were investigated by PCR and sequencing. Genetic relatedness was examined by multilocus sequence typing (MLST) for representative isolates. RESULTS: High rates of aminoglycoside resistance were found: gentamicin (85.7%), tobramycin (87.6%), kanamycin (78.0%), netilmincin (74.3%), and amikcin (18.0%). Most common AME gene was aac(3)-IIa (42%), followed by aac(6')-Ib (36.2%) and aph(3')-VIa (32.4%). The majority of isolates were resistant to beta-lactams and blaCTX-M-15 was the most common ESBL. The blaNDM-1 and blaOXA-48 were also produced by 1 and 23 isolates, respectively. Novel sequence types have been reported among our isolates and high-risk clonal lineages have been detected, such as E. coli ST43 (ST131 in Achtman MLST scheme) and K. pneumoniae (ST11/ST13). CONCLUSIONS: The high prevalence of aminoglycoside resistance rates and the diversity of corresponding genes, with diverse ß-lactamase enzymes among genetically heterogeneous clinical isolates present a matter of concern.


Assuntos
Aminoglicosídeos , Antibacterianos , Escherichia coli , Klebsiella pneumoniae , Testes de Sensibilidade Microbiana , Aminoglicosídeos/farmacologia , Tunísia , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/isolamento & purificação , Humanos , Antibacterianos/farmacologia , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/isolamento & purificação , Klebsiella pneumoniae/enzimologia , Infecções por Escherichia coli/microbiologia , Farmacorresistência Bacteriana/genética , Metiltransferases/genética , Metiltransferases/metabolismo , Infecções por Klebsiella/microbiologia , beta-Lactamases/genética , beta-Lactamases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
4.
Protein J ; 43(4): 751-770, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38981945

RESUMO

Infections that are acquired due to a prolonged hospital stay and manifest 2 days following the admission of a patient to a health-care institution can be classified as hospital-acquired infections. Klebsiella pneumoniae (K. pneumoniae) has become a critical pathogen, posing serious concern globally due to the rising incidences of hypervirulent and carbapenem-resistant strains. Glutaredoxin is a redox protein that protects cells from oxidative stress as it associates with glutathione to reduce mixed disulfides. Protein adenylyltransferase (PrAT) is a pseudokinase with a proposed mechanism of transferring an AMP group from ATP to glutaredoxin. Inducing oxidative stress to the bacterium by inhibiting the activity of PrAT is a promising approach to combating its contribution to hospital-acquired infections. Thus, this study aims to overexpress, purify, and analyse the effects of ATP and Mg2+ binding to Klebsiella pneumoniae PrAT (KpPrAT). The pET expression system and nickel affinity chromatography were effective in expressing and purifying KpPrAT. Far-UV CD spectroscopy demonstrates that the protein is predominantly α-helical, even in the presence of Mg2+. Extrinsic fluorescence spectroscopy with ANS indicates the presence of a hydrophobic pocket in the presence of ATP and Mg2+, while mant-ATP studies allude to the potential nucleotide binding ability of KpPrAT. The presence of Mg2+ increases the thermostability of the protein. Isothermal titration calorimetry provides insight into the binding affinity and thermodynamic parameters associated with the binding of ATP to KpPrAT, with or without Mg2+. Conclusively, the presence of Mg2+ induces a conformation in KpPrAT that favours nucleotide binding.


Assuntos
Proteínas de Bactérias , Klebsiella pneumoniae , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/enzimologia , Klebsiella pneumoniae/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/biossíntese , Trifosfato de Adenosina/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/química , Nucleotidiltransferases/metabolismo , Nucleotidiltransferases/isolamento & purificação , Expressão Gênica , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Magnésio/metabolismo , Magnésio/química , Magnésio/farmacologia
5.
Acta Crystallogr F Struct Biol Commun ; 80(Pt 8): 173-182, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38990055

RESUMO

Klebsiella pneumoniae (Kp) is an infectious disease pathogen that poses a significant global health threat due to its potential to cause severe infections and its tendency to exhibit multidrug resistance. Understanding the enzymatic mechanisms of the oxygen-insensitive nitroreductases (Kp-NRs) from Kp is crucial for the development of effective nitrofuran drugs, such as nitrofurantoin, that can be activated as antibiotics. In this paper, three crystal structures of two Kp-NRs (PDB entries 7tmf/7tmg and 8dor) are presented, and an analysis of their crystal structures and their flavin mononucleotide (FMN)-binding mode is provided. The structures with PDB codes 7tmf (Kp-NR1a), 7tmg (Kp-NR1b) and 8dor (Kp-NR2) were determined at resolutions of 1.97, 1.90 and 1.35 Å, respectively. The Kp-NR1a and Kp-NR1b structures adopt an αß fold, in which four-stranded antiparallel ß-sheets are surrounded by five helices. With domain swapping, the ß-sheet was expanded with a ß-strand from the other molecule of the dimer. The difference between the structures lies in the loop spanning Leu173-Ala185: in Kp-NR1a the loop is disordered, whereas the loop adopts multiple conformations in Kp-NR1b. The FMN interactions within Kp-NR1/NR2 involve hydrogen-bond and π-stacking interactions. Kp-NR2 contains four-stranded antiparallel ß-sheets surrounded by eight helices with two short helices and one ß-sheet. Structural and sequence alignments show that Kp-NR1a/b and Kp-NR2 are homologs of the Escherichia coli oxygen-insensitive NRs YdjA and NfnB and of Enterobacter cloacae NR, respectively. By homology inference from E. coli, Kp-NR1a/b and Kp-NR2 may detoxify polynitroaromatic compounds and Kp-NR2 may activate nitrofuran drugs to cause bactericidal activity through a ping-pong bi-bi mechanism, respectively.


Assuntos
Klebsiella pneumoniae , Modelos Moleculares , Nitrorredutases , Klebsiella pneumoniae/enzimologia , Cristalografia por Raios X , Nitrorredutases/química , Nitrorredutases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Sequência de Aminoácidos , Mononucleotídeo de Flavina/metabolismo , Mononucleotídeo de Flavina/química , Sítios de Ligação , Ligação Proteica , Escherichia coli/metabolismo , Escherichia coli/genética , Escherichia coli/enzimologia , Conformação Proteica em Folha beta , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética
6.
Appl Environ Microbiol ; 90(8): e0007524, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-38995045

RESUMO

Glycerol dehydratase is the key and rate-limiting enzyme in the 1,3-propanediol synthesis pathway of Klebsiella pneumoniae, which determined the producing rate and yield of 1,3-propanediol. However, the expression regulation mechanism of glycerol dehydratase gene dhaB remains poorly unknown. In this study, a histone-like nucleoid-structuring (H-NS) protein was identified and characterized as the positive transcription regulator for dhaB expression in K. pneumoniae 2e, which exhibited high tolerance against crude glycerol in our previous study. Deletion of hns gene significantly decreased the transcription level of dhaB in K. pneumoniae 2e, which led to a remarkable defect on strain growth, glycerol dehydratase activity, and 3-hydroxypropanal production during glycerol fermentation. The transcription level of dhaB was significantly up-regulated in crude glycerol relative to pure glycerol, while the inactivation of H-NS resulted in more negative effect for transcription level of dhaB in the former. Though the H-NS expression level was almost comparable in both substrates, its multimer state was reduced in crude glycerol relative to pure glycerol, suggesting that the oligomerization state of H-NS might have contributed for positive regulation of dhaB expression. Furthermore, electrophoretic mobility shift and DNase I footprinting assays showed that H-NS could directly bind to the upstream promoter region of dhaB by recognizing the AT-rich region. These findings provided new insight into the transcriptional regulation mechanism of H-NS for glycerol dehydratase expression in K. pneumoniae, which might offer new target for engineering bacteria to industrially produce 1,3-propanediol.IMPORTANCEThe biological production of 1,3-propanediol from glycerol by microbial fermentation shows great promising prospect on industrial application. Glycerol dehydratase catalyzes the penultimate step in glycerol metabolism and is regarded as one of the key and rate-limiting enzymes for 1,3-propanediol production. H-NS was reported as a pleiotropic modulator with negative effects on gene expression in most studies. Here, we reported for the first time that the expression of glycerol dehydratase gene is positively regulated by the H-NS. The results provide insight into a novel molecular mechanism of H-NS for positive regulation of glycerol dehydratase gene expression in K. pneumoniae, which holds promising potential for facilitating construction of engineering highly efficient 1,3-propanediol-producing strains.


Assuntos
Proteínas de Bactérias , Regulação Bacteriana da Expressão Gênica , Glicerol , Hidroliases , Klebsiella pneumoniae , Propilenoglicóis , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/enzimologia , Klebsiella pneumoniae/metabolismo , Hidroliases/genética , Hidroliases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Glicerol/metabolismo , Propilenoglicóis/metabolismo , Regiões Promotoras Genéticas , Fermentação
7.
Microbiol Spectr ; 12(8): e0025824, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-38958437

RESUMO

To monitor the resistance rate and gain a deeper understanding of the resistance mechanisms, we conducted over a 2-year surveillance focusing on the Klebsiella pneumoniae associated with the clinical usage of ceftazidime-avibactam (CZA) in a teaching hospital. A total of 4,641 K. pneumoniae isolates were screened to identify the CZA resistance through antimicrobial susceptibility testing. Comprehensive analyses, including homology analysis, conjugation experiments, clone assays, and whole genome sequencing, were furtherly performed on the CZA-resistant strains. In total, four CZA-resistant K. pneumoniae (CZA-R-Kp) strains were separated from four patients, in which three of them received CZA treatment during the hospitalization, accounting for a 4% (3/75) resistance development rate of K. pneumoniae under CZA stress. All CZA-R-Kp isolates were found to possess variants of blaKPC-2. The identified mutations included blaKPC-33, blaKPC-86, and a novel variant designated as blaKPC-129, all of which were located in the Ω loop of the KPC enzyme. These mutations were found to impact the amino acid sequence and spatial structure of the enzyme's active center, consequently affecting KPC carbapenemase activity. This study underscores the importance of active surveillance to monitor the emergence of resistance to CZA, highlighting the need for ongoing research to develop effective strategies for combating antimicrobial resistance. Understanding the mechanisms behind resistance is crucial in maintaining the efficacy of CZA, a vital tool in the battle against multidrug-resistant infections.IMPORTANCEAs an effective drug for the treatment of carbapenem-resistant Klebsiella pneumoniae, ceftazidime-avibactam (CZA) began to develop resistance in recent years and showed an increasing trend. In order to effectively monitor the resistance rate of CZA and understand its resistance mechanism, we monitored K. pneumoniae for more than 2 years to find CZA-resistant strains. Through comprehensive analysis of the selected CZA-resistant strains, it was found that all the CZA-resistant strains had mutation, which could affect the activity of KPC carbapenemase. This study highlights the importance of proactive surveillance to monitor the emergence of CZA resistance, which highlights the need for ongoing research to develop effective strategies to combat antimicrobial resistance. Understanding the mechanisms behind resistance is critical to maintaining the effectiveness of CZA, an important tool in the fight against multidrug-resistant infections.


Assuntos
Antibacterianos , Ceftazidima , Farmacorresistência Bacteriana Múltipla , Infecções por Klebsiella , Klebsiella pneumoniae , beta-Lactamases , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Antibacterianos/farmacologia , Compostos Azabicíclicos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , beta-Lactamases/genética , beta-Lactamases/metabolismo , Ceftazidima/farmacologia , Combinação de Medicamentos , Farmacorresistência Bacteriana Múltipla/genética , Infecções por Klebsiella/microbiologia , Infecções por Klebsiella/tratamento farmacológico , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/enzimologia , Klebsiella pneumoniae/isolamento & purificação , Testes de Sensibilidade Microbiana , Mutação , Sequenciamento Completo do Genoma
8.
Antimicrob Resist Infect Control ; 13(1): 70, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961463

RESUMO

OBJECTIVES: Genomic surveillance of Klebsiella pneumoniae carbapenemase-producing Klebsiella pneumoniae (KPC-Kp) is crucial for virulence, drug-resistance monitoring, and outbreak containment. METHODS: Genomic analysis on 87 KPC-Kp strains isolated from 3 Northern Italy hospitals in 2019-2021 was performed by whole genome sequencing (WGS), to characterize resistome, virulome, and mobilome, and to assess potential associations with phenotype resistance and clinical presentation. Maximum Likelihood and Minimum Spanning Trees were used to determine strain correlations and identify potential transmission clusters. RESULTS: Overall, 15 different STs were found; the predominant ones included ST307 (35, 40.2%), ST512/1519 (15, 17.2%), ST20 (12, 13.8%), and ST101 (7, 8.1%). 33 (37.9%) KPC-Kp strains were noticed to be in five transmission clusters (median number of isolates in each cluster: 5 [3-10]), four of them characterized by intra-hospital transmission. All 87 strains harbored Tn4401a transposon, carrying blaKPC-3 (48, 55.2%), blaKPC-2 (38, 43.7%), and in one case (1.2%) blaKPC-33, the latter gene conferred resistance to ceftazidime/avibactam (CZA). Thirty strains (34.5%) harbored porin mutations; of them, 7 (8.1%) carried multiple Tn4401a copies. These strains were characterized by significantly higher CZA minimum inhibitory concentration compared with strains with no porin mutations or single Tn4401a copy, respectively, even if they did not overcome the resistance breakpoint of 8 ug/mL. Median 2 (IQR:1-2) virulence factors per strain were detected. The lowest number was observed in ST20 compared to the other STs (p<0.001). While ST307 was associated with infection events, a trend associated with colonization events could be observed for ST20. CONCLUSIONS: Integration of genomic, resistance score, and clinical data allowed us to define a relative diversification of KPC-Kp in Northern Italy between 2019 and 2021, characterized by few large transmission chains and rare inter-hospital transmission. Our results also provided initial evidence of correlation between KPC-Kp genomic signatures and higher MIC levels to some antimicrobial agents or colonization/infection status, once again underlining WGS's importance in bacterial surveillance.


Assuntos
Antibacterianos , Proteínas de Bactérias , Infecções por Klebsiella , Klebsiella pneumoniae , Humanos , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , beta-Lactamases/genética , Infecção Hospitalar/microbiologia , Infecção Hospitalar/epidemiologia , Farmacorresistência Bacteriana Múltipla/genética , Genoma Bacteriano , Genômica , Hospitais Universitários , Itália/epidemiologia , Infecções por Klebsiella/microbiologia , Infecções por Klebsiella/epidemiologia , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/isolamento & purificação , Klebsiella pneumoniae/classificação , Klebsiella pneumoniae/enzimologia , Testes de Sensibilidade Microbiana , Sequenciamento Completo do Genoma
9.
Microbiol Spectr ; 12(8): e0033124, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-38984824

RESUMO

To illustrate the genomic and drug resistance traits of the Klebsiella pneumoniae Kpn_XM9, which harbors a transposon (Tn) As1 and was barely susceptible to ceftazidime-avibactam (CZA). Whole-genome sequencing, gene deletion, antimicrobial susceptibility, and conjugation tests were carried out to illustrate the traits of Kpn_XM9. As confirmed by whole-genome sequencing, the Kpn_XM9 harbored a 5,523,536 bp chromosome and five plasmids with lengths being 128,129, 196,512, 84,812, 43,695, and 5,596 bp, respectively. Plasmid p1_Kpn_XM9 (128,219 bp) contained four resistance genes, blaCTX-M-65, blaTEM-1B, rmtB, and two copies of blaKPC-2. Genes blaKPC-2 were bracketed by ISKpn17 and ISKpn16 within a new composite Tn3-like TnAs1. The two tandem repeats, positioned opposite each other, were spaced 93,447 bp apart in p1_Kpn_XM9. Kpn_XM9 belonged to K64 and sequence type (ST) 11. The Kpn_XM9 was resistant to amikacin, aztreonam, ticarcillin/clavulanic acid, piperacillin/tazobactam, ceftazidime, cefepime, imipenem, meropenem, tobramycin, ciprofloxacin, levofloxacin, doxycycline, minocycline, tigecycline, colistin, and trimethoprim/sulfamethoxazole; it was barely susceptible to CZA with a minimum inhibitory concentration of 8/4 µg/mL, which declined to 2/4 µg/mL after a 18,555 bp nucleotide was knocked out and one copy of blaKPC-2 was sustained on p1_Kpn_XM9. Kpn_XM9 had virulence genes encoding Types 1 and 3 fimbriae, four siderophores, and capsular polysaccharide anchoring protein but no genes upregulating capsular polysaccharide synthesis. The Kpn_XM9 presented a classical phenotype with extreme drug resistance. The emergence of double copies of blaKPC-2 in a single plasmid from the predominant ST11 K. pneumoniae represents a new therapeutic challenge.IMPORTANCEWith the wide use of ceftazidime-avibactam against carbapenem-resistant organisms, its resistance is increasingly documented; among the corresponding resistance mechanisms, mutations of blaKPC-2 or blaKPC-3 into other subtypes are dominant to date. However, more copies of blaKPC-2 may also greatly increase the minimum inhibitory concentration of ceftazidime-avibactam, which could be conferred by transposon As1 and insertion sequence 26 and should be of concern.


Assuntos
Antibacterianos , Compostos Azabicíclicos , Ceftazidima , Combinação de Medicamentos , Farmacorresistência Bacteriana Múltipla , Infecções por Klebsiella , Klebsiella pneumoniae , Testes de Sensibilidade Microbiana , Plasmídeos , beta-Lactamases , Ceftazidima/farmacologia , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/enzimologia , Compostos Azabicíclicos/farmacologia , Humanos , Infecções por Klebsiella/microbiologia , Infecções por Klebsiella/tratamento farmacológico , Antibacterianos/farmacologia , beta-Lactamases/genética , beta-Lactamases/metabolismo , Farmacorresistência Bacteriana Múltipla/genética , Plasmídeos/genética , Sequenciamento Completo do Genoma , Elementos de DNA Transponíveis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Hospitais
10.
J Clin Lab Anal ; 38(10): e25081, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38884333

RESUMO

BACKGROUND: The global spread of extended-spectrum beta-lactamase (ESBL)-producing and carbapenem-resistant Enterobacterales (CRE) poses a significant concern. Acquisition of antimicrobial resistance genes leads to resistance against several antibiotics, limiting treatment options. We aimed to study ESBL-producing and CRE transmission in clinical settings. METHODS: From clinical samples, 227 ESBL-producing and CRE isolates were obtained. The isolates were cultured on bacterial media and confirmed by VITEK 2. Antibiograms were tested against several antibiotics using VITEK 2. The acquired resistance genes were identified by PCR. RESULTS: Of the 227 clinical isolates, 145 (63.8%) were Klebsiella pneumoniae and 82 (36.1%) were Escherichia coli; 76 (33.4%) isolates were detected in urine, 57 (25.1%) in pus swabs, and 53 (23.3%) in blood samples. A total of 58 (70.7%) ESBL-producing E. coli were resistant to beta-lactams, except for carbapenems, and 17.2% were amikacin-resistant; 29.2% of E. coli isolates were resistant to carbapenems. A total of 106 (73.1%) ESBL-producing K. pneumoniae were resistant to all beta-lactams, except for carbapenems, and 66.9% to ciprofloxacin; 38 (26.2%) K. pneumoniae were resistant to carbapenems. Colistin emerged as the most effective antibiotic against both bacterial types. Twelve (20.6%) E. coli isolates were positive for blaCTX-M, 11 (18.9%) for blaTEM, and 8 (33.3%) for blaNDM. Forty-six (52.3%) K. pneumoniae isolates had blaCTX-M, 27 (18.6%) blaTEM, and 26 (68.4%) blaNDM. CONCLUSION: This study found a high prevalence of drug-resistant ESBL-producing and CRE, highlighting the need for targeted antibiotic use to combat resistance.


Assuntos
Antibacterianos , Carbapenêmicos , Escherichia coli , Klebsiella pneumoniae , Testes de Sensibilidade Microbiana , beta-Lactamases , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/enzimologia , Klebsiella pneumoniae/isolamento & purificação , Humanos , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/enzimologia , Escherichia coli/isolamento & purificação , beta-Lactamases/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Carbapenêmicos/farmacologia , Feminino , Masculino , Pessoa de Meia-Idade , Adulto , Idoso , Enterobacteriáceas Resistentes a Carbapenêmicos/efeitos dos fármacos , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Enterobacteriáceas Resistentes a Carbapenêmicos/isolamento & purificação , Adolescente , Adulto Jovem , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/epidemiologia , Infecções por Klebsiella/microbiologia , Infecções por Klebsiella/epidemiologia , Infecções por Klebsiella/tratamento farmacológico , Criança , Pré-Escolar , Farmacorresistência Bacteriana/genética
11.
Microbiol Spectr ; 12(7): e0000824, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38860788

RESUMO

Redundant carbapenemase-producing (RCP) bacteria, which carry double or multiple carbapenemases, represent a new and concerning phenomenon. The objective of this study is to conduct a comprehensive analysis of the epidemiology and genetic mechanisms of RCP strains to support targeted surveillance and control measures. A retrospective analysis was conducted using surveillance data from 277 articles. Statistical analysis was performed to determine and evaluate species prevalence, proportions of carbapenemases, antibiotic susceptibility profiles, sample information, and patient outcomes. Complete plasmid sequencing data were utilized to investigate potential antimicrobial resistance or virulence advantages that strains may gain from acquiring redundant carbapenemases. RCP bacteria are widely distributed globally, and their prevalence is increasing over time. Several countries, including China, India, Iran, Turkey, and South Korea, have reported more than 100 RCP strains. The most commonly reported RCP species are Klebsiella pneumoniae and Acinetobacter baumannii, which exhibit varying proportions of carbapenemase combinations. Certain species-carbapenemase combinations, such as K. pneumoniae carrying New Delhi metallo-ß-lactamase (NDM) + oxacillinase (OXA) (56.76%) and K. pneumoniae carbapenemase (KPC) + Verona integron-encoded metallo-ß-lactamase (VIM) (50.00%) carbapenemases, are associated with high mortality rates. In patients with RCP strains isolated from the bloodstream and respiratory system, the mortality rates are 58.70% and 69.23%, respectively. Analysis of plasmids from RCP strains suggests that they may acquire additional antibiotic resistance phenotypes and virulence factors. Carbapenem-resistant bacteria carrying redundant carbapenemases pose a significant global health threat. This study provides valuable insights into the epidemiology and genetic mechanisms of these bacteria, supporting the development of effective control and prevention strategies to mitigate their transmission.IMPORTANCEThis study examined the global distribution patterns of 1,780 bacteria with double or multiple carbapenemases from 277 articles and assessed their clinical impact. The presence of multiple carbapenemases increases the chances of co-resistance to other classes of antibiotics and more virulence factors, further complicating the clinical management of infections.


Assuntos
Antibacterianos , Proteínas de Bactérias , beta-Lactamases , beta-Lactamases/genética , beta-Lactamases/metabolismo , Humanos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Virulência/genética , Antibacterianos/farmacologia , Estudos Retrospectivos , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana Múltipla/genética , Plasmídeos/genética , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/enzimologia , Klebsiella pneumoniae/patogenicidade , Klebsiella pneumoniae/isolamento & purificação , Carbapenêmicos/farmacologia , Relevância Clínica
12.
J Antimicrob Chemother ; 79(8): 1865-1876, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38842536

RESUMO

OBJECTIVES: To investigate the prevalence and mechanisms of ceftazidime/avibactam heteroresistance in KPC-producing Klebsiella pneumoniae (KPC-KP) isolates, as well as the role of heteroresistance in the transition of ceftazidime/avibactam susceptibility to resistance. METHODS: Clinical KPC-KP isolates were obtained from a tertiary hospital in China from 2016 to 2017 and 2019 to 2020. Antimicrobial susceptibility was determined by the broth microdilution method. Population analysis profiles were used to assess ceftazidime/avibactam heteroresistance. WGS and molecular cloning were conducted to reveal heteroresistance mechanisms and molecular characteristics. RESULTS: The findings indicated that the transition of ceftazidime/avibactam susceptibility to resistance during the treatment of KPC-KP infection is primarily attributed to the heteroresistance exhibited by KPC-KP isolates towards ceftazidime/avibactam. Among 355 ceftazidime/avibactam-susceptible KPC-KP isolates (indicating a resistance rate of 0%), 41 (11.55%) exhibited ceftazidime/avibactam heteroresistance, with the primary mechanism being the presence of KPC mutant subpopulations. These KPC variants, arising from point mutations, deletions and insertions, significantly increased ceftazidime/avibactam resistance while alongside enhanced carbapenem susceptibility. Notably, 11 new KPC variants were identified. Furthermore, four heteroresistant isolates were caused by mixed infection involving subpopulations carrying NDM-1 or NDM-5. Phylogenetic analysis indicated that the clonal spread of ST11-KL64 KPC-KP may be correlated with the prevalence of heteroresistance. CONCLUSIONS: Ceftazidime/avibactam heteroresistance, primarily driven by pre-existing KPC variants, underscores the importance of considering heteroresistance in ceftazidime/avibactam therapeutics. Awareness of these dynamics is crucial for the effective and sustainable clinical application of ceftazidime/avibactam.


Assuntos
Antibacterianos , Compostos Azabicíclicos , Ceftazidima , Farmacorresistência Bacteriana Múltipla , Klebsiella pneumoniae , beta-Lactamases , Humanos , Antibacterianos/farmacologia , Compostos Azabicíclicos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , beta-Lactamases/genética , beta-Lactamases/metabolismo , Ceftazidima/farmacologia , China/epidemiologia , Combinação de Medicamentos , Farmacorresistência Bacteriana Múltipla/genética , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/enzimologia , Testes de Sensibilidade Microbiana , Prevalência , Sequenciamento Completo do Genoma
13.
Sci Rep ; 14(1): 14418, 2024 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-38909136

RESUMO

This study aimed to investigate the epidemiological characteristics and trends over time of carbapenemase-producing (e.g., KPC, NDM, VIM, IMP, and OXA-48) Gram-negative bacteria (CPGNB). Non-duplicated multi-drug resistant Gram-negative bacteria (MDRGNB) were collected from the First Affiliated Hospital of Zhengzhou University from April 2019 to February 2023. Species identification of each isolate was performed using the Vitek2 system and confirmed by matrix-assisted laser desorption ionization-time of flight mass spectrometry according to the manufacturer's instructions. PCR detected carbapenem resistance genes in the strains, strains carrying carbapenem resistance genes were categorized as CPGNB strains after validation by carbapenem inactivation assay. A total of 5705 non-repetitive MDRGNB isolates belonging to 78 different species were collected during the study period, of which 1918 CPGNB were validated, with the respiratory tract being the primary source of specimens. Epidemiologic statistics showed a significant predominance of ICU-sourced strains compared to other departments. Klebsiella pneumoniae, Escherichia coli, Acinetobacter baumannii, and Pseudomonas aeruginosa were the significant CPGNB in Henan, and KPC and NDM were the predominant carbapenemases. Carbapenem-resistant infections in Henan Province showed an overall increasing trend, and the carriage of carbapenemase genes by CPGNB has become increasingly prevalent and complicated. The growing prevalence of CPGNB in the post-pandemic era poses a significant challenge to public safety.


Assuntos
Proteínas de Bactérias , Bactérias Gram-Negativas , Infecções por Bactérias Gram-Negativas , beta-Lactamases , beta-Lactamases/genética , beta-Lactamases/metabolismo , China/epidemiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Humanos , Bactérias Gram-Negativas/genética , Bactérias Gram-Negativas/enzimologia , Bactérias Gram-Negativas/efeitos dos fármacos , Infecções por Bactérias Gram-Negativas/microbiologia , Infecções por Bactérias Gram-Negativas/epidemiologia , Masculino , Feminino , Testes de Sensibilidade Microbiana , Adulto , Pessoa de Meia-Idade , Carbapenêmicos/farmacologia , Antibacterianos/farmacologia , Idoso , Farmacorresistência Bacteriana Múltipla/genética , Criança , Adolescente , Pré-Escolar , Adulto Jovem , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/enzimologia , Klebsiella pneumoniae/isolamento & purificação , Acinetobacter baumannii/genética , Acinetobacter baumannii/enzimologia , Acinetobacter baumannii/efeitos dos fármacos , Lactente
14.
An Acad Bras Cienc ; 96(3): e20221129, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38922267

RESUMO

I. paraguariensis St. Hil. is a south American species of agronomic interest with studies supporting its medicinal properties. As the investigation of active ingredients with antimicrobial effect from medicinal plants is a suitable approach to the current antibacterial resistance problem, the aim of the present study was to determine the antibacterial activity of yerba mate ethanolic extracts against carbapenemase-producing gram-negative bacteria (reference strains and clinical isolates). Extracts showed antibacterial activity against Klebsiella pneumoniae ATCC® BAA-2342™ (KPC producing), Providencia rettgeri (NDM producing), Pseudomonas aeruginosa (MBL producing) and P. aeruginosa (VIM producing) at the concentrations tested. The Minimal-Inhibitory-Concentration and Minimal-Bactericidal-Concentration values ranged between 1 and 32 mg.ml-1 for the reference strains, and between 0.125 and 1 mg.ml-1 for the clinical isolates. The MBC/MIC index characterized the extracts as bactericidal. The combinations of commercial antibiotics and extracts showed a synergistic action on the reference strains studied. The lethal concentration 50 obtained using the Artemia salina toxicity assay were higher than 1 mg.ml-1 for all the extracts, indicating a low toxicity. The in vitro activity and low toxicity suggest that ethanolic I. paraguariensis leaf extracts constitute an outstanding source for new antibacterial compounds, and further studies should be carried out to understand their mechanism of action.


Assuntos
Antibacterianos , Proteínas de Bactérias , Bactérias Gram-Negativas , Ilex paraguariensis , Testes de Sensibilidade Microbiana , Extratos Vegetais , Folhas de Planta , beta-Lactamases , Extratos Vegetais/farmacologia , Ilex paraguariensis/química , beta-Lactamases/metabolismo , beta-Lactamases/biossíntese , Folhas de Planta/química , Antibacterianos/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Animais , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/enzimologia
15.
Int J Food Microbiol ; 420: 110765, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-38838541

RESUMO

Resistance to carbapenems emerged in clinical settings and has rapidly spread to other sectors, such as food and the environment, representing a One Health problem. In this regard, vegetables contaminated by critical priority pathogens have raised global concerns. Here, we have performed a whole-genome sequence-based analysis of extensively drug-resistant Klebsiella pneumoniae, Escherichia coli, and Pseudomonas aeruginosa strains isolated from cabbage, spinach, and lettuce, respectively. Genomic analysis revealed the emergence of international and high-risk clones belonging to ST340, ST155, and ST233, harboring a broad resistome to clinically important antimicrobials. In this context, K. pneumoniae, E. coli, and P. aeruginosa strains carried blaKPC-2, blaNDM-1, and blaVIM-2, respectively. The blaKPC-2 gene with a non-Tn4401 element (NTEKPC-Ic) was located on an IncX3-IncU plasmid, while the blaVIM-2 gene was associated with a Tn402-like class 1 integron, In559, on the chromosome. Curiously, the blaNDM-1 gene coexisted with the blaPER-2 gene on an IncC plasmid and the regions harboring both genes contained sequences of Tn3-like element ISKox2-like family transposase. Comparative genomic analysis showed interspecies and clonal transmission of carbapenemase-encoding genes at the human-animal-environmental interface. These findings raise a food safety alert about hospital-associated carbapenemase producers, supporting that fresh vegetables can act as a vehicle for the spread of high-risk clones.


Assuntos
Verduras , beta-Lactamases , beta-Lactamases/genética , beta-Lactamases/metabolismo , Verduras/microbiologia , Inocuidade dos Alimentos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Antibacterianos/farmacologia , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/enzimologia , Pseudomonas aeruginosa/isolamento & purificação , Pseudomonas aeruginosa/efeitos dos fármacos , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/isolamento & purificação , Klebsiella pneumoniae/enzimologia , Klebsiella pneumoniae/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Escherichia coli/efeitos dos fármacos , Escherichia coli/enzimologia , Microbiologia de Alimentos , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana Múltipla/genética , Plasmídeos/genética , Sequenciamento Completo do Genoma , Humanos
16.
BMC Vet Res ; 20(1): 174, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702700

RESUMO

Antimicrobial resistance is considered one of the most critical threat for both human and animal health. Recently, reports of infection or colonization by carbapenemase-producing Enterobacterales in companion animals had been described. This study report the first molecular characterization of NDM-producing Enterobacterales causing infections in companion animals from Argentina. Nineteen out of 3662 Enterobacterales isolates analyzed between October 2021 and July 2022 were resistant to carbapenemes by VITEK2C and disk diffusion method, and suspected to be carbapenemase-producers. Ten isolates were recovered from canine and nine from feline animals. Isolates were identified as K. pneumoniae (n = 9), E. coli (n = 6) and E. cloacae complex (n = 4), and all of them presented positive synergy among EDTA and carbapenems disks, mCIM/eCIM indicative of metallo-carbapenemase production and were also positive by PCR for blaNDM gene. NDM variants were determined by Sanger sequencing method. All 19 isolates were resistant to ß-lactams and aminoglycosides but remained susceptible to colistin (100%), tigecycline (95%), fosfomycin (84%), nitrofurantoin (63%), minocycline (58%), chloramphenicol (42%), doxycycline (21%), enrofloxacin (5%), ciprofloxacin (5%) and trimethoprim/sulfamethoxazole (5%). Almost all isolates (17/19) co-harbored blaCTX-M plus blaCMY, one harbored blaCTX-M alone and the remaining blaCMY. E. coli and E. cloacae complex isolates harbored blaCTX-M-1/15 or blaCTX-M-2 groups, while all K. pneumoniae harbored only blaCTX-M-1/15 genes. All E. coli and E. cloacae complex isolates harbored blaNDM-1, while in K. pneumoniae blaNDM-1 (n = 6), blaNDM-5 (n = 2), and blaNDM-1 plus blaNDM-5 (n = 1) were confirmed. MLST analysis revealed the following sequence types by species, K. pneumoniae: ST15 (n = 5), ST273 (n = 2), ST11, and ST29; E. coli: ST162 (n = 3), ST457, ST224, and ST1196; E. cloacae complex: ST171, ST286, ST544 and ST61. To the best of our knowledge, this is the first description of NDM-producing E. cloacae complex isolates recovered from cats. Even though different species and clones were observed, it is remarkable the finding of some major clones among K. pneumoniae and E. coli, as well as the circulation of NDM as the main carbapenemase. Surveillance in companion pets is needed to detect the spread of carbapenem-resistant Enterobacterales and to alert about the dissemination of these pathogens among pets and humans.


Assuntos
Antibacterianos , Doenças do Gato , Doenças do Cão , Infecções por Enterobacteriaceae , beta-Lactamases , Animais , Gatos , Cães , Doenças do Gato/microbiologia , Doenças do Gato/epidemiologia , beta-Lactamases/genética , Argentina/epidemiologia , Infecções por Enterobacteriaceae/veterinária , Infecções por Enterobacteriaceae/microbiologia , Infecções por Enterobacteriaceae/epidemiologia , Antibacterianos/farmacologia , Doenças do Cão/microbiologia , Doenças do Cão/epidemiologia , Testes de Sensibilidade Microbiana , Animais de Estimação , Enterobacteriaceae/efeitos dos fármacos , Enterobacteriaceae/isolamento & purificação , Enterobacteriaceae/genética , Enterobacteriaceae/enzimologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/isolamento & purificação , Klebsiella pneumoniae/enzimologia
17.
BMC Microbiol ; 24(1): 168, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760674

RESUMO

BACKGROUND: We aimed to compare the performance of carbapenemase classification in carbapenem-resistant Klebsiella pneumoniae (CRKP) obtained using the BD Phoenix CPO Detect panel (CPO panel) and Cepheid Xpert Carba-R assays. We analyzed 55 CRKP strains from clinical specimens collected between November 2020 and November 2022. The CPO panel was used to detect both antibiotic susceptibility and phenotypic carbapenemase classes, while Xpert Carba-R was employed to identify KPC, NDM, VIM, OXA-48, and IMP genes. Due to the limited availability of molecular kits, we arbitrarily selected 55 isolates, identified as carbapenemase-producing according to the CPO panel and with meropenem minimum inhibitory concentration values > 8 mg/L. RESULTS: According to the Xpert Carba-R assay, 16 of the 55 isolates (29.1%) were categorised as Ambler Class A (11 of which matched CPO panel Class A identification); three isolates (5.5%) were identified as Class B and 27 isolates (49.1%) as Class D (in both cases consistent with CPO panel B and D classifications). A further eight isolates (14.5%) exhibited multiple carbapenemase enzymes and were designated as dual-carbapenemase producers, while one isolate (1.8%) was identified as a non-carbapenemase-producer. The CPO panel demonstrated positive and negative percent agreements of 100% and 85.7% for Ambler Class A, 100% and 100% for Class B, and 96.4% and 100% for Class D carbapenemase detection, respectively. CONCLUSION: While the CPO panel's phenotypic performance was satisfactory in detecting Class B and D carbapenemases, additional confirmatory testing may be necessary for Class A carbapenemases as part of routine laboratory procedures.


Assuntos
Proteínas de Bactérias , Infecções por Klebsiella , Klebsiella pneumoniae , Testes de Sensibilidade Microbiana , beta-Lactamases , beta-Lactamases/genética , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/enzimologia , Klebsiella pneumoniae/isolamento & purificação , Klebsiella pneumoniae/efeitos dos fármacos , Proteínas de Bactérias/genética , Humanos , Infecções por Klebsiella/microbiologia , Infecções por Klebsiella/diagnóstico , Antibacterianos/farmacologia , Enterobacteriáceas Resistentes a Carbapenêmicos/isolamento & purificação , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Enterobacteriáceas Resistentes a Carbapenêmicos/enzimologia , Enterobacteriáceas Resistentes a Carbapenêmicos/efeitos dos fármacos
18.
Microbiol Spectr ; 12(6): e0410523, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38700337

RESUMO

Resistance to ceftazidime-avibactam (CZA) due to Klebsiella pneumoniae carbapenemase (KPC) variants is increasing worldwide. We characterized two CZA-resistant clinical Klebsiella pneumoniae strains by antimicrobial susceptibility test, conjugation assays, and WGS. Isolates belonged to ST258 and ST45, and produced a KPC-31 and a novel variant KPC-197, respectively. The novel KPC variant presents a deletion of two amino acids on the Ω-loop (del_168-169_EL) and an insertion of two amino acids in position 274 (Ins_274_DS). Continued surveillance of KPC variants conferring CZA resistance in Colombia is warranted. IMPORTANCE: Latin America and the Caribbean is an endemic region for carbapenemases. Increasingly high rates of Klebsiella pneumoniae carbapenemase (KPC) have established ceftazidime-avibactam (CZA) as an essential antimicrobial for the treatment of infections due to MDR Gram-negative pathogens. Although other countries in the region have reported the emergence of CZA-resistant KPC variants, this is the first description of such enzymes in Colombia. This finding warrants active surveillance, as dissemination of these variants could have devastating public health consequences.


Assuntos
Antibacterianos , Compostos Azabicíclicos , Proteínas de Bactérias , Ceftazidima , Combinação de Medicamentos , Farmacorresistência Bacteriana Múltipla , Infecções por Klebsiella , Klebsiella pneumoniae , Testes de Sensibilidade Microbiana , beta-Lactamases , Compostos Azabicíclicos/farmacologia , Ceftazidima/farmacologia , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/enzimologia , Colômbia , beta-Lactamases/genética , beta-Lactamases/metabolismo , Humanos , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana Múltipla/genética , Infecções por Klebsiella/microbiologia , Infecções por Klebsiella/tratamento farmacológico
19.
Vet Res Commun ; 48(4): 2783-2788, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38727990

RESUMO

Urinary tract infections (UTIs) are pervasive in human and veterinary medicine, notably affecting companion animals. These infections frequently lead to the prescription of antibiotics, contributing to the rise of antimicrobial-resistant bacteria. This escalating concern is underscored by the emergence of a previously undocumented case: a high-risk clone, broad-spectrum cephalosporin-resistant K. pneumoniae ST147 strain, denoted USP-275675, isolated from a cat with UTI. Characterized by a multidrug-resistant (MDR) profile, whole genome sequencing exposed several antimicrobial-resistance genes, notably blaCTX-M-15, blaTEM-1B, blaSHV-11, and blaOXA-1. ST147, recognized as a high-risk clone, has historically disseminated globally and is frequently associated with carbapenemases and extended-spectrum ß-lactamases. Notably, the core-genome phylogeny of K. pneumoniae ST147 strains isolated from urine samples revealed a unique aspect of the USP-276575 strain. Unlike its counterparts, it did not cluster with other isolates. However, a broader examination incorporating strains from both human and animal sources unveiled a connection between USP-276575 and a Portuguese strain from chicken meat. Both were part of a larger cluster of ST147 strains spanning various geographic locations and sample types, sharing commonalities such as IncFIB or IncR plasmids. This elucidates the MDR signature inherent in widespread K. pneumoniae ST147 strains carrying these plasmids, highlighting their pivotal role in disseminating antimicrobial resistance (AMR). Finally, discovering the high-risk clone K. pneumoniae ST147 in a domestic feline with a UTI in Brazil highlights the urgent need for thorough AMR surveillance through a One Health approach.


Assuntos
Doenças do Gato , Farmacorresistência Bacteriana Múltipla , Infecções por Klebsiella , Klebsiella pneumoniae , Infecções Urinárias , Animais , Gatos , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/isolamento & purificação , Klebsiella pneumoniae/enzimologia , Infecções Urinárias/veterinária , Infecções Urinárias/microbiologia , Doenças do Gato/microbiologia , Farmacorresistência Bacteriana Múltipla/genética , Infecções por Klebsiella/veterinária , Infecções por Klebsiella/microbiologia , beta-Lactamases/genética , beta-Lactamases/metabolismo , Antibacterianos/farmacologia , Filogenia , Genoma Bacteriano , Sequenciamento Completo do Genoma/veterinária
20.
Eur J Clin Microbiol Infect Dis ; 43(8): 1579-1587, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38811482

RESUMO

PURPOSE: Amongst all etiologic hospital-acquired infection factors, K. pneumoniae strains producing New Delhi metallo-ß-lactamase (KP-NDM) belong to pathogens with the most effective antibiotic resistance mechanisms. Clinical guidelines recommend using ceftazidime/avibactam with aztreonam (CZA + AT) as the preferred option for NDM-producing Enterobacterales. However, the number of observations on such treatment regimen is limited. This retrospective study reports the clinical and microbiological outcomes of 23 patients with KP-NDM hospital-acquired infection treated with CZA + AT at a single center in Poland. METHODS: The isolates were derived from the urine, lungs, blood, peritoneal cavity, wounds, and peritonsillar abscess. In microbiological analysis, mass spectrometry for pathogen identification, polymerase chain reaction, or an immunochromatographic assay for detection of carbapenemase, as well as VITEK-2 system, broth microdilution, and microdilution in agar method for antimicrobial susceptibility tests were used, depending of the pathogens' nature. CZA was administered intravenously (IV) at 2.5 g every eight hours in patients with normal kidney function, and aztreonam was administered at 2 g every eight hours IV. Such dosage was modified when renal function was reduced. RESULTS: KP-NDM was eradicated in all cases. Four patients (17.4%) died: three of them had a neoplastic disease, and one - a COVID-19 infection. CONCLUSION: The combination of CZA + AT is a safe and effective therapy for infections caused by KP-NDM, both at the clinical and microbiological levels. The synergistic action of all compounds resulted in a good agreement between the clinical efficacy of CZA + AT and the results of in vitro susceptibility testing.


Assuntos
Antibacterianos , Compostos Azabicíclicos , Aztreonam , Ceftazidima , Combinação de Medicamentos , Infecções por Klebsiella , Klebsiella pneumoniae , beta-Lactamases , Humanos , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/enzimologia , Aztreonam/farmacologia , Aztreonam/uso terapêutico , beta-Lactamases/metabolismo , Masculino , Compostos Azabicíclicos/uso terapêutico , Compostos Azabicíclicos/farmacologia , Feminino , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/microbiologia , Pessoa de Meia-Idade , Estudos Retrospectivos , Idoso , Ceftazidima/uso terapêutico , Ceftazidima/farmacologia , Antibacterianos/uso terapêutico , Antibacterianos/farmacologia , Polônia , Testes de Sensibilidade Microbiana , Adulto , Idoso de 80 Anos ou mais , Resultado do Tratamento , Infecção Hospitalar/tratamento farmacológico , Infecção Hospitalar/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...