Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Food Microbiol ; 98: 103784, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33875212

RESUMO

Aichi virus (AiV) is an enteric virus that affects humans and is prevalent in sewage waters. Effective strategies to control its spread need to be explored. This study evaluated grape seed extract (GSE) for: a) antiviral potential towards AiV infectivity at 37 °C and room temperature (RT); b) antiviral behavior in model foods (apple juice (AJ) and 2% fat milk) and also simulated gastric environments; and c) potential application as a wash solution on stainless steel surfaces. GSE at 0.5 mg/mL decreased AiV suspensions containing ~4.75 log PFU/mL to titer levels that were not detected after 30 s at both 37 °C and RT. Infectious AiV titers were not detected after 5 min treatment with 1 mg/mL GSE at 37 °C in AJ. GSE at 2 mg/mL and 4 mg/mL in 2% fat milk decreased AiV after 24 h by 1.18 and 1.57 log PFU/mL (4.75 log PFU/mL to 2.86 and 3.25 log PFU/mL), respectively. As a surface wash, GSE at 1 mg/mL after 30 s decreased AiV to undetectable levels under clean conditions. With organic load (mimicking unclean conditions), 2 and 4 mg/mL GSE reduced AiV after 5 min by 1.13 and 1.71 log PFU/mL, respectively. Overall, GSE seems to be a promising antiviral agent against AiV at low concentrations and short contact times.


Assuntos
Antivirais/farmacologia , Extrato de Sementes de Uva/farmacologia , Kobuvirus/efeitos dos fármacos , Animais , Bovinos , Contaminação de Equipamentos/prevenção & controle , Contaminação de Equipamentos/estatística & dados numéricos , Contaminação de Alimentos/prevenção & controle , Contaminação de Alimentos/estatística & dados numéricos , Indústria de Processamento de Alimentos/instrumentação , Sucos de Frutas e Vegetais/virologia , Kobuvirus/crescimento & desenvolvimento , Leite/virologia , Modelos Biológicos , Aço Inoxidável/análise
2.
Food Environ Virol ; 12(3): 269-273, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32666473

RESUMO

Monthly sampling was conducted at a drinking water treatment plant (DWTP) in Southern Louisiana, USA from March 2017 to February 2018 to determine the prevalence and reduction efficiency of pathogenic and indicator viruses. Water samples were collected from the DWTP at three different treatment stages (raw, secondary-treated, and chlorinated drinking water) and subjected to quantification of seven pathogenic viruses and three indicator viruses [pepper mild mottle virus (PMMoV), tobacco mosaic virus (TMV), and crAssphage] based on quantitative polymerase chain reaction. Among the seven pathogenic viruses tested, only Aichi virus 1 (AiV-1) (7/12, 58%) and noroviruses of genogroup II (NoVs-GII) (2/12, 17%) were detected in the raw water samples. CrAssphage had the highest positive ratio at 78% (28/36), and its concentrations were significantly higher than those of the other indicator viruses for all three water types (P < 0.05). The reduction ratios of AiV-1 (0.7 ± 0.5 log10; n = 7) during the whole treatment process were the lowest among the tested viruses, followed by crAssphage (1.1 ± 1.9 log10; n = 9), TMV (1.3 ± 0.9 log10; n = 8), PMMoV (1.7 ± 0.8 log10; n = 12), and NoVs-GII (3.1 ± 0.1 log10; n = 2). Considering the high abundance and relatively low reduction, crAssphage was judged to be an appropriate process indicator during drinking water treatment. To the best of our knowledge, this is the first study to assess the reduction of crAssphage and TMV during drinking water treatment.


Assuntos
Água Potável/virologia , Enterovirus/crescimento & desenvolvimento , Kobuvirus/crescimento & desenvolvimento , Vírus do Mosaico do Tabaco/crescimento & desenvolvimento , Tobamovirus/crescimento & desenvolvimento , Enterovirus/genética , Enterovirus/isolamento & purificação , Kobuvirus/genética , Kobuvirus/isolamento & purificação , Vírus do Mosaico do Tabaco/genética , Vírus do Mosaico do Tabaco/isolamento & purificação , Tobamovirus/genética , Tobamovirus/isolamento & purificação , Poluição da Água/análise , Purificação da Água
3.
Food Environ Virol ; 11(3): 238-246, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30915682

RESUMO

Human noroviruses (hNoV) are the primary cause of foodborne disease in the USA. Most studies on inactivation kinetics of hNoV and its surrogates are performed in monoculture, while the microbial ecosystem effect on virus inactivation remains limited. This study investigated the persistence of hNoV surrogates, murine norovirus (MNV) and Tulane virus (TuV), along with Aichi virus (AiV) under thermal and chemical inactivation in association with Gram-negative (Enterobacter cloacae) bacteria. Thermal inactivation of viruses in co-culture with E. cloacae revealed no protective effects of bacteria. At 56 °C, AiV with and without bacteria was completely inactivated by 10 min with decimal reduction values (D-values) of 41 and 43 s, respectively. Similar results were also observed for TuV. Conversely, MNV with bacteria was completely inactivated by 10 min while MNV alone remained stable up to 30 min at 56 °C. Both MNV and TuV were slightly more stable than AiV at 63 °C with TuV detection up to 2 min without bacteria. For chemical inactivation on stainless steel surfaces, viruses alone and in association with bacteria were treated with 1000 ppm sodium hypochlorite. Virus association with bacteria had no significant effect (p > 0.05) on virus resistance to bleach inactivation compared to virus alone. Specifically, exposure to 1000 ppm bleach for 5 min resulted in an average of 3.86, 2.14, and 0.94 log10 PFU/ml reductions for TuV, MNV, and AiV without bacteria, respectively. Reductions in TuV, MNV, and AiV were 3.50, 1.88, and 0.61 log10 PFU/ml when associated with E. cloacae, respectively.


Assuntos
Enterobacter cloacae/efeitos dos fármacos , Kobuvirus/efeitos dos fármacos , Norovirus/efeitos dos fármacos , Hipoclorito de Sódio/farmacologia , Técnicas de Cocultura , Enterobacter cloacae/química , Enterobacter cloacae/crescimento & desenvolvimento , Temperatura Alta , Kobuvirus/química , Kobuvirus/crescimento & desenvolvimento , Norovirus/química , Norovirus/crescimento & desenvolvimento , Inativação de Vírus/efeitos dos fármacos
4.
Food Environ Virol ; 10(3): 297-304, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29679283

RESUMO

This study was designed to determine the quantitative polymerase chain reaction (qPCR) signal persistence of viruses in three effluent-dominated streams. Samples were collected from the effluent outfall of three wastewater treatment plants in the Western United States and downstream at different locations. All samples were tested for the presence of pepper mild mottle virus (PMMoV), adenoviruses, norovirus GI and GII, Aichi virus, and enteroviruses using qPCR. PMMoV was detected most frequently in 54/57 (94.7%) samples, followed by adenoviruses which was detected in 21/57 (36.8%) samples. PMMoV was detected at all locations downstream and up to 32 km from the discharge point. This study demonstrated that the detection signal of PMMoV was able to persist in wastewater discharges to a greater degree than human enteric viruses in effluent-dominated rivers.


Assuntos
Adenoviridae/crescimento & desenvolvimento , Enterovirus/crescimento & desenvolvimento , Kobuvirus/crescimento & desenvolvimento , Norovirus/crescimento & desenvolvimento , Rios/virologia , Esgotos/virologia , Tobamovirus/crescimento & desenvolvimento , Adenoviridae/genética , Enterovirus/genética , Monitoramento Ambiental , Humanos , Kobuvirus/genética , Norovirus/genética , Reação em Cadeia da Polimerase/métodos , Tobamovirus/genética , Estados Unidos , Águas Residuárias/virologia , Microbiologia da Água
5.
Food Environ Virol ; 10(1): 107-120, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29098656

RESUMO

Irrigation water is a doorway for the pathogen contamination of fresh produce. We quantified pathogenic viruses [human adenoviruses, noroviruses of genogroups I and II, group A rotaviruses, Aichi virus 1 (AiV-1), enteroviruses (EnVs), and salivirus (SaliV)] and examined potential index viruses [JC and BK polyomaviruses (JCPyVs and BKPyVs), pepper mild mottle virus (PMMoV), and tobacco mosaic virus (TMV)] in irrigation water sources in the Kathmandu Valley, Nepal. River, sewage, wastewater treatment plant (WWTP) effluent, pond, canal, and groundwater samples were collected in September 2014, and in April and August 2015. Viruses were concentrated using an electronegative membrane-vortex method and quantified using TaqMan (MGB)-based quantitative PCR (qPCR) assays with murine norovirus as a molecular process control to determine extraction-reverse transcription-qPCR efficiency. Tested pathogenic viruses were prevalent with maximum concentrations of 5.5-8.8 log10 copies/L, and there was a greater abundance of EnVs, SaliV, and AiV-1. Virus concentrations in river water were equivalent to those in sewage. Canal, pond, and groundwater samples were found to be less contaminated than river, sewage, and WWTP effluent. Seasonal dependency was clearly evident for most of the viruses, with peak concentrations in the dry season. JCPyVs and BKPyVs had a poor detection ratio and correspondence with pathogenic viruses. Instead, the frequently proposed PMMoV and the newly proposed TMV were strongly predictive of the pathogen contamination level, particularly in the dry season. We recommend utilizing canal, pond, and groundwater for irrigation to minimize deleterious health effects and propose PMMoV and TMV as indexes to elucidate pathogenic virus levels in environmental samples.


Assuntos
Irrigação Agrícola , Vírus de DNA/crescimento & desenvolvimento , Monitoramento Ambiental/métodos , Vírus de Plantas/crescimento & desenvolvimento , Vírus de RNA/crescimento & desenvolvimento , Viroses/virologia , Poluição da Água/análise , Adenoviridae/genética , Adenoviridae/crescimento & desenvolvimento , Produtos Agrícolas/virologia , Vírus de DNA/genética , Enterovirus/genética , Enterovirus/crescimento & desenvolvimento , Humanos , Kobuvirus/genética , Kobuvirus/crescimento & desenvolvimento , Nepal , Norovirus/genética , Norovirus/crescimento & desenvolvimento , Vírus de Plantas/genética , Reação em Cadeia da Polimerase , Vírus de RNA/genética , Rios/virologia , Vírus do Mosaico do Tabaco/genética , Vírus do Mosaico do Tabaco/crescimento & desenvolvimento , Tobamovirus/genética , Tobamovirus/crescimento & desenvolvimento , Águas Residuárias/virologia , Água/normas
6.
Biopolymers ; 108(2)2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27161201

RESUMO

Viruses are the major cause of disease and mortality worldwide. Nowadays there are treatments based on antivirals or prophylaxis with vaccines. However, the rising number of reports of viral resistance to current antivirals and the emergence of new types of virus has concerned the scientific community. In this scenario, the search for alternative treatments has led scientists to the discovery of antimicrobial peptides (AMPs) derived from many different sources. Since some of them have shown antiviral activities, here we challenged 10 synthetic peptides from different animal and plant sources against, herpes simplex virus 1 (HSV-1), and Aichi virus. Among them, the highlight was Pa-MAP from the polar fish Pleuronectes americanus, which caused around 90% of inhibition of the HSV with a selectivity index of 5 and a virucidal mechanism of action. Moreover, LL-37 from human neutrophils showed 96% of inhibition against the Aichi virus, showing a selectivity index of 3.4. The other evaluated peptides did not show significant antiviral activity. In conclusion, the present study demonstrated that Pa-MAP seems to be a reliable candidate for a possible alternative drug to treat HSV-1 infections. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 108: 1-6, 2017.


Assuntos
Anti-Infecciosos/farmacologia , Herpesvirus Humano 1/efeitos dos fármacos , Kobuvirus/efeitos dos fármacos , Peptídeos/farmacologia , Sequência de Aminoácidos , Animais , Anti-Infecciosos/química , Antivirais/química , Antivirais/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Relação Dose-Resposta a Droga , Herpesvirus Humano 1/crescimento & desenvolvimento , Humanos , Kobuvirus/crescimento & desenvolvimento , Peptídeos/química , Células Vero
7.
Food Environ Virol ; 8(2): 112-9, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26892338

RESUMO

Aqueous Hibiscus sabdariffa extracts possess antimicrobial properties with limited information available on their antiviral effects. Aichi virus (AiV) is an emerging foodborne pathogen that causes gastroenteritis. Vaccines are currently unavailable to prevent their disease transmission. The objective of this study was to determine the antiviral effects of aqueous H. sabdariffa extracts against AiV. AiV at ~5 log PFU/ml was incubated with undiluted (200 mg/ml), 1:1 (100 mg/ml) or 1:5 (40 mg/ml) diluted aqueous hibiscus extract (pH 3.6), phosphate-buffered saline (pH 7.2 as control), or malic acid (pH 3.0, acid control) at 37 °C over 24 h. Treatments were stopped by serially diluting in cell-culture media containing fetal bovine serum and titers were determined using plaque assays on confluent Vero cells. Each treatment was replicated thrice and assayed in duplicate. AiV did not show any significant reduction with 1:1 (100 mg/ml) or 1:5 (40 mg/ml) diluted aqueous hibiscus extracts or malic acid after 0.5, 1, or 2 h at 37 °C. However, AiV titers were reduced to non-detectable levels after 24 h with all the three tested concentrations, while malic acid showed only 0.93 log PFU/ml reduction after 24 h. AiV was reduced by 0.5 and 0.9 log PFU/ml with undiluted extracts (200 mg/ml) after 2 and 6 h, respectively. AiV treated with 1:1 (100 mg/ml) and 1:5 (40 mg/ml) diluted extracts showed a minimal ~0.3 log PFU/ml reduction after 6 h. These extracts show promise to reduce AiV titers mainly through alteration of virus structure, though higher concentrations may have improved effects.


Assuntos
Antivirais/farmacologia , Hibiscus/química , Kobuvirus/efeitos dos fármacos , Extratos Vegetais/farmacologia , Animais , Antivirais/isolamento & purificação , Chlorocebus aethiops , Flores/química , Kobuvirus/crescimento & desenvolvimento , Kobuvirus/fisiologia , Extratos Vegetais/isolamento & purificação , Células Vero
8.
J Food Prot ; 73(8): 1543-7, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20819370

RESUMO

Murine norovirus 1 (MNV-1), Aichi virus (AiV), and human adenovirus 41 (Ad41) were seeded in dairy manure and composted for 60 days, and both the stability of virus genomes and infectious viruses were evaluated. For compost started in late fall, pile temperature reached approximately 54.5 degrees C on day 1 and remained between 55 and 60 degrees C for 3 days. For viral genomes, AiV had an approximate 1.4-log loss of viral genome after 1 day and more than a 3.1-log loss after 2 days; while for MNV-1, there was a roughly 0.6-log reduction on day 1 and a more than 4-log reduction after 5 days. For compost started in late spring, the center temperature reached about 70 degrees C on day 1 and remained warmer than 65 degrees C for 3 days. The MNV-1 viral genome level was below the detection limit (ca. 3.4 log reverse transcriptase and quantitative PCR unit per g) after 1 day. Compared with RNA viruses, the Ad41 DNA genome was more stable in compost started in late spring; there was no reduction in DNA after 1 day, and ca. a 2.1-log loss at 5 and 7 days. For viral infectivity, the AiV infectious concentration was below the detection limit (about 2.8 log tissue culture infectious dose assay per g) after day 1 for both trials 1 and 2, and for Ad41, there was a greater than 4-log reduction of infectivity after 1 day for trial 2. Overall, temperature is a critical factor, which affects the survival of viruses in compost, and the fate of the viral genome in the generated heat is virus dependent as well. For U.S. Environmental Protection Agency Class A compost, current compost regulations require maintaining temperatures between 55 and 70 degrees C for at least for 3 days for a static aerated-pile system. This study indicated that these temperature conditions could effectively inactivate MNV-1, AiV, and Ad41.


Assuntos
Adenovírus Humanos/crescimento & desenvolvimento , DNA Viral/análise , Kobuvirus/crescimento & desenvolvimento , Esterco/virologia , Norovirus/crescimento & desenvolvimento , Animais , Bovinos , Qualidade de Produtos para o Consumidor , Genoma Viral , Humanos , Estações do Ano , Temperatura , Fatores de Tempo
9.
Foodborne Pathog Dis ; 5(6): 819-25, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18991544

RESUMO

A large percentage of foodborne outbreaks are caused by viruses, and outbreaks associated with fresh produce have increased over the past decade within the United States. Virus recovery from food is of the utmost importance in determining the cause of viral outbreaks. While there are many experimental studies investigating viruses on fruits and vegetables, there is a lack of standard techniques concerning the initial inoculation and recovery of viruses. This study investigates the efficiency of methodology in the recovery of three viruses, hepatitis A virus (HAV), Aichi virus, and feline calicivirus, on three different produce surfaces (lettuce, green onions, and strawberries). To do so, three common times of virus inoculation were examined (0.5, 4, and 12 h) along with two routes of inoculation (immersion and spot inoculation), and then two recovery methods were compared (physical removal and chemical extraction/blending) utilizing three different recovery eluents (2% media, beef extract, and phosphate-buffered saline). Results suggested that incubation time did not significantly affect the survival of the viruses on green onions and strawberries, while a significant decrease (p 0.05); however, the percent recovery was greater by extraction/blending methodology.


Assuntos
Calicivirus Felino/isolamento & purificação , Contaminação de Alimentos/análise , Frutas/virologia , Vírus da Hepatite A/isolamento & purificação , Kobuvirus/isolamento & purificação , Verduras/virologia , Calicivirus Felino/crescimento & desenvolvimento , Contagem de Colônia Microbiana , Qualidade de Produtos para o Consumidor , Surtos de Doenças/prevenção & controle , Contaminação de Alimentos/prevenção & controle , Manipulação de Alimentos/métodos , Microbiologia de Alimentos , Fragaria/virologia , Vírus da Hepatite A/crescimento & desenvolvimento , Humanos , Kobuvirus/crescimento & desenvolvimento , Lactuca/virologia , Cebolas/virologia , Fatores de Tempo , Estados Unidos/epidemiologia
10.
J Food Prot ; 71(5): 908-13, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18522022

RESUMO

A majority of illnesses caused by foodborne viruses are associated with fresh produce. Fruits and vegetables may be considered high-risk foods, as they are often consumed raw without a specific inactivation step. Therefore, there is a need to evaluate nonthermal treatments for the inactivation of foodborne pathogens. This study investigates the UV inactivation of three viruses: feline calicivirus (a surrogate for norovirus), and two picornaviruses, hepatitis A virus and Aichi virus. Three produce types were selected for their different surface topographies and association with outbreaks. Green onions, lettuce, and strawberries were individually spot inoculated with 10(7) to 10(9) 50% tissue culture infective doses (TCID50) of each virus per ml and exposed to UV light at various doses (< or = 240 mW s/cm2), and viruses were eluted using an optimized recovery strategy. Virus infection was quantified by TCID50 in mammalian cell culture and compared with untreated recovered virus. UV light applied to contaminated lettuce resulted in inactivation of 4.5 to 4.6 log TCID50/ml; for contaminated green onions, inactivation ranged from 2.5 to 5.6 log TCID50/ml; and for contaminated strawberries, inactivation ranged from 1.9 to 2.6 log TCID50/ml for the three viruses tested. UV light inactivation on the surface of lettuce is more effective than inactivation on the other two produce items. Consistently, the lowest results were observed in the inactivation of viruses on strawberries. No significant differences (P > 0.05) for virus inactivation were observed among the three doses applied (40, 120, and 240 mW s/cm2) on the produce, with the exception of hepatitis A virus and Aichi virus inactivation on green onions, where inactivation continued at 120 mW s/cm2 (P < 0.05).


Assuntos
Calicivirus Felino/efeitos da radiação , Produtos Agrícolas/virologia , Manipulação de Alimentos/métodos , Vírus da Hepatite A/efeitos da radiação , Kobuvirus/efeitos da radiação , Raios Ultravioleta , Calicivirus Felino/crescimento & desenvolvimento , Contagem de Colônia Microbiana , Qualidade de Produtos para o Consumidor , Relação Dose-Resposta à Radiação , Contaminação de Alimentos/análise , Contaminação de Alimentos/prevenção & controle , Fragaria/virologia , Vírus da Hepatite A/crescimento & desenvolvimento , Humanos , Kobuvirus/crescimento & desenvolvimento , Lactuca/virologia , Cebolas/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...