Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.964
Filtrar
1.
BMC Vet Res ; 20(1): 311, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38997753

RESUMO

BACKGROUND: The pleiotropic effects of the melanocortin system show promise in overcoming limitations associated with large variations in opioid analgesic effectiveness observed in equine practice. Of particular interest is variation in the melanocortin-1-receptor (MC1R) gene, which dictates pigment type expression through its epistatic interaction with the agouti signalling protein (ASIP) gene. MC1R has previously been implicated in opioid efficacy in other species; however, this relationship is yet to be explored in horses. In this study, analgesic effectiveness was scored (1-3) based on noted response to dura penetration during the performance of cerebrospinal fluid centisis after sedation and tested for association with known genetic regions responsible for pigmentation variation in horses. RESULTS: The chestnut phenotype was statistically significant (P < 0.05) in lowering analgesic effectiveness when compared to the bay base coat colour. The 11bp indel in ASIP known to cause the black base coat colour was not significant (P>0.05); however, six single nucleotide polymorphisms (SNPs) within the genomic region encoding the ASIP gene and one within MC1R were identified as being nominally significant (P<0.05) in association with opioid analgesic effectiveness. This included the location of the known e MC1R variant resulting in the chestnut coat colour. CONCLUSIONS: The current study provides promising evidence for important links between pigmentation genes and opioid effectiveness in horses. The application of an easily identifiable phenotype indicating variable sensitivity presents a promising opportunity for accessible precision medicine in the use of analgesics and warrants further investigation.


Assuntos
Analgésicos Opioides , Polimorfismo de Nucleotídeo Único , Receptor Tipo 1 de Melanocortina , Animais , Cavalos , Analgésicos Opioides/farmacologia , Analgésicos Opioides/uso terapêutico , Receptor Tipo 1 de Melanocortina/genética , Pigmentação/genética , Proteína Agouti Sinalizadora/genética , Masculino , Feminino , Fenótipo , Líquido Cefalorraquidiano/metabolismo
2.
Science ; 385(6704): 80-86, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38963846

RESUMO

Classical migraine patients experience aura, which is transient neurological deficits associated with cortical spreading depression (CSD), preceding headache attacks. It is not currently understood how a pathological event in cortex can affect peripheral sensory neurons. In this study, we show that cerebrospinal fluid (CSF) flows into the trigeminal ganglion, establishing nonsynaptic signaling between brain and trigeminal cells. After CSD, ~11% of the CSF proteome is altered, with up-regulation of proteins that directly activate receptors in the trigeminal ganglion. CSF collected from animals exposed to CSD activates trigeminal neurons in naïve mice in part by CSF-borne calcitonin gene-related peptide (CGRP). We identify a communication pathway between the central and peripheral nervous system that might explain the relationship between migrainous aura and headache.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina , Depressão Alastrante da Atividade Elétrica Cortical , Transtornos de Enxaqueca , Gânglio Trigeminal , Animais , Camundongos , Peptídeo Relacionado com Gene de Calcitonina/líquido cefalorraquidiano , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Líquido Cefalorraquidiano/metabolismo , Modelos Animais de Doenças , Transtornos de Enxaqueca/líquido cefalorraquidiano , Transtornos de Enxaqueca/metabolismo , Transtornos de Enxaqueca/fisiopatologia , Proteoma/metabolismo , Transdução de Sinais , Gânglio Trigeminal/metabolismo , Gânglio Trigeminal/fisiopatologia
4.
Sensors (Basel) ; 24(11)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38894085

RESUMO

Cerebrospinal fluid (CSF) is a body fluid that can be used for the diagnosis of various diseases. However, CSF collection requires an invasive and painful procedure called a lumbar puncture (LP). This procedure is applied to any patient with a known risk of central nervous system (CNS) damage or neurodegenerative disease, regardless of their age range. Hence, this can be a very painful procedure, especially in infants and elderly patients. On the other hand, the detection of disease biomarkers in CSF makes diagnoses as accurate as possible. This review aims to explore novel electrochemical biosensing platforms that have impacted biomedical science. Biosensors have emerged as techniques to accelerate the detection of known biomarkers in body fluids such as CSF. Biosensors can be designed and modified in various ways and shapes according to their ultimate applications to detect and quantify biomarkers of interest. This process can also significantly influence the detection and diagnosis of CSF. Hence, it is important to understand the role of this technology in the rapidly progressing field of biomedical science.


Assuntos
Biomarcadores , Técnicas Biossensoriais , Líquido Cefalorraquidiano , Diagnóstico Precoce , Humanos , Técnicas Biossensoriais/métodos , Biomarcadores/líquido cefalorraquidiano , Líquido Cefalorraquidiano/química , Líquido Cefalorraquidiano/metabolismo , Doenças Raras/diagnóstico , Doenças Neurodegenerativas/diagnóstico , Doenças Neurodegenerativas/líquido cefalorraquidiano , Técnicas Eletroquímicas/métodos
5.
Cell Rep ; 43(6): 114331, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38843394

RESUMO

The choroid plexus (ChP) produces cerebrospinal fluid (CSF). It also contributes to brain development and serves as the CSF-blood barrier. Prior studies have identified transporters on the epithelial cells that transport water and ions from the blood vasculature to the ventricles and tight junctions involved in the CSF-blood barrier. Yet, how the ChP epithelial cells control brain physiology remains unresolved. We use zebrafish to provide insights into the physiological roles of the ChP. Upon histological and transcriptomic analyses, we identify that the zebrafish ChP is conserved with mammals and expresses transporters involved in CSF secretion. Next, we show that the ChP epithelial cells secrete proteins into CSF. By ablating the ChP epithelial cells, we identify a reduction of the ventricular sizes without alterations of the CSF-blood barrier. Altogether, our findings reveal that the zebrafish ChP is conserved and contributes to the size and homeostasis of the brain ventricles.


Assuntos
Ventrículos Cerebrais , Plexo Corióideo , Homeostase , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Plexo Corióideo/metabolismo , Ventrículos Cerebrais/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Líquido Cefalorraquidiano/metabolismo , Células Epiteliais/metabolismo , Evolução Biológica , Barreira Hematoencefálica/metabolismo
6.
Sci Rep ; 14(1): 14118, 2024 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898156

RESUMO

This study examined the association between hearing loss in sporadic vestibular schwannoma patients and the proteome of perilymph (PL), cerebrospinal fluid (CSF), and vestibular schwannoma. Intraoperative sampling of PL and of CSF, and biopsy of vestibular schwannoma tissue, was performed in 32, 32, and 20 patients with vestibular schwannoma, respectively. Perilymph and CSF in three patients with meningioma and normal hearing were also sampled. The proteomes were identified by liquid chromatography coupled to high-resolution tandem mass spectrometry. Preoperative hearing function of the patients was evaluated with pure tone audiometry, with mean values at frequencies of 500, 1000, 2000, and 4000 Hz (PTA4) in the tumor-affected ear used to delineate three hearing groups. Analysis of the PL samples revealed significant upregulation of complement factor H-related protein 2 (CFHR2) in patients with severe to profound hearing loss after false discovery rate correction. Pathway analysis of biofunctions revealed higher activation scores in the severe/profound hearing loss group of leukocyte migration, viral infection, and migration of cells in PL. Upregulation of CFHR2 and activation of these pathways indicate chronic inflammation in the cochlea of vestibular schwannoma patients with severe to profound hearing loss compared with patients with normal hearing or mild hearing loss.


Assuntos
Perda Auditiva , Neuroma Acústico , Perilinfa , Proteoma , Humanos , Neuroma Acústico/líquido cefalorraquidiano , Neuroma Acústico/metabolismo , Neuroma Acústico/patologia , Feminino , Masculino , Pessoa de Meia-Idade , Perilinfa/metabolismo , Perda Auditiva/líquido cefalorraquidiano , Adulto , Idoso , Líquido Cefalorraquidiano/metabolismo , Audiometria de Tons Puros
7.
AIDS ; 38(9): 1292-1303, 2024 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-38704619

RESUMO

BACKGROUND: HIV-associated neurocognitive disorders (HAND) still affects persons with HIV (PWH) and their pathogenesis is not completely understood. We aimed to explore the association between plasma and cerebrospinal fluid (CSF) markers of blood-brain barrier (BBB) impairment and HAND in untreated PWH. DESIGN: Cross-sectional study. METHODS: We enrolled untreated PWH, who underwent blood examinations and lumbar puncture to measure inflammation (IL-15, TNF-α), BBB damage (zonulin and tight junction proteins, tight junction proteins: occludin, claudin-5) and endothelial adhesion molecules (VCAM-1, ICAM-1). A comprehensive neurocognitive battery was used to diagnose HAND (Frascati criteria). RESULTS: Twenty-one patients (21/78, 26.9%) patients presented HAND (100% ANI). HAND patients displayed more frequently non-CNS AIDS-defining conditions, lower nadir CD4 + T cells and increased CD4 + T-cell exhaustion (lower CD4 + CD127 + and CD4 + CD45RA + T-cell percentages), in comparison to individuals without cognitive impairment. Furthermore, HAND was characterized by higher plasma inflammation (IL-15) but lower CSF levels of biomarkers of BBB impairment (zonulin and occludin). The association between BBB damage with HAND was confirmed by fitting a multivariable logistic regression. CSF/plasma endothelial adhesion molecules were not associated with HAND but with a poor performance in different cognitive domains. CONCLUSION: By showing heightened inflammation and BBB impairment, our study suggests loss of BBB integrity as a possible factor contributing to the development of HAND in untreated PWH.


Assuntos
Barreira Hematoencefálica , Infecções por HIV , Proteínas de Junções Íntimas , Humanos , Masculino , Feminino , Estudos Transversais , Pessoa de Meia-Idade , Adulto , Proteínas de Junções Íntimas/metabolismo , Infecções por HIV/complicações , Biomarcadores/líquido cefalorraquidiano , Biomarcadores/sangue , Líquido Cefalorraquidiano/química , Líquido Cefalorraquidiano/metabolismo , Disfunção Cognitiva/etiologia
8.
Anesthesiology ; 141(2): 338-352, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38787687

RESUMO

BACKGROUND: Impaired glymphatic clearance of cerebral metabolic products and fluids contribute to traumatic and ischemic brain edema and neurodegeneration in preclinical models. Glymphatic perivascular cerebrospinal fluid flow varies between anesthetics possibly due to changes in vasomotor tone and thereby in the dynamics of the periarterial cerebrospinal fluid (CSF)-containing space. To better understand the influence of anesthetics and carbon dioxide levels on CSF dynamics, this study examined the effect of periarterial size modulation on CSF distribution by changing blood carbon dioxide levels and anesthetic regimens with opposing vasomotor influences: vasoconstrictive ketamine-dexmedetomidine (K/DEX) and vasodilatory isoflurane. METHODS: End-tidal carbon dioxide (ETco2) was modulated with either supplemental inhaled carbon dioxide to reach hypercapnia (Etco2, 80 mmHg) or hyperventilation (Etco2, 20 mmHg) in tracheostomized and anesthetized female rats. Distribution of intracisternally infused radiolabeled CSF tracer 111In-diethylamine pentaacetate was assessed for 86 min in (1) normoventilated (Etco2, 40 mmHg) K/DEX; (2) normoventilated isoflurane; (3) hypercapnic K/DEX; and (4) hyperventilated isoflurane groups using dynamic whole-body single-photon emission tomography. CSF volume changes were assessed with magnetic resonance imaging. RESULTS: Under normoventilation, cortical CSF tracer perfusion, perivascular space size around middle cerebral arteries, and intracranial CSF volume were higher under K/DEX compared with isoflurane (cortical maximum percentage of injected dose ratio, 2.33 [95% CI, 1.35 to 4.04]; perivascular size ratio 2.20 [95% CI, 1.09 to 4.45]; and intracranial CSF volume ratio, 1.90 [95% CI, 1.33 to 2.71]). Under isoflurane, tracer was directed to systemic circulation. Under K/DEX, the intracranial tracer distribution and CSF volume were uninfluenced by hypercapnia compared with normoventilation. Intracranial CSF tracer distribution was unaffected by hyperventilation under isoflurane despite a 28% increase in CSF volume around middle cerebral arteries. CONCLUSIONS: K/DEX and isoflurane overrode carbon dioxide as a regulator of CSF flow. K/DEX could be used to preserve CSF space and dynamics in hypercapnia, whereas hyperventilation was insufficient to increase cerebral CSF perfusion under isoflurane.


Assuntos
Dióxido de Carbono , Líquido Cefalorraquidiano , Sistema Glinfático , Ratos Sprague-Dawley , Respiração Artificial , Animais , Ratos , Sistema Glinfático/efeitos dos fármacos , Sistema Glinfático/diagnóstico por imagem , Feminino , Líquido Cefalorraquidiano/efeitos dos fármacos , Líquido Cefalorraquidiano/metabolismo , Anestesia/métodos , Isoflurano/farmacologia
10.
Brain Stimul ; 17(3): 620-632, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38688399

RESUMO

BACKGROUND: Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique that has gained prominence recently. Clinical studies have explored tDCS as an adjunct to neurologic disease rehabilitation, with evidence suggesting its potential in modulating brain clearance mechanisms. The glymphatic system, a proposed brain waste clearance system, posits that cerebrospinal fluid-interstitial fluid (CSF-ISF) exchange aids in efficient metabolic waste removal. While some studies have linked tDCS to astrocytic inositol trisphosphate (IP3)/Ca2+ signaling, the impact of tDCS on CSF-ISF exchange dynamics remains unclear. HYPOTHESIS: tDCS influences the dynamics of CSF-ISF exchange through astrocytic IP3/Ca2+ signaling. METHODS: In this study, we administered tDCS (0.1 mA for 10 min) to C57BL/6N mice anesthetized with ketamine-xylazine (KX). The anode was positioned on the cranial bone above the cortex, and the cathode was inserted into the neck. Following tDCS, we directly assessed brain fluid dynamics by injecting biotinylated dextran amine (BDA) as a CSF tracer into the cisterna magna (CM). The brain was then extracted after either 30 or 60 min and fixed. After 24 h, the sectioned brain slices were stained with Alexa 594-conjugated streptavidin (SA) to visualize BDA using immunohistochemistry. We conducted Electroencephalography (EEG) recordings and aquaporin 4 (AQP4)/CD31 immunostaining to investigate the underlying mechanisms of tDCS. Additionally, we monitored the efflux of Evans blue, injected into the cisterna magna, using cervical lymph node imaging. Some experiments were subsequently repeated with inositol trisphosphate receptor type 2 (IP3R2) knockout (KO) mice. RESULTS: Post-tDCS, we observed an increased CSF tracer influx, indicating a modulation of CSF-ISF exchange by tDCS. Additionally, tDCS appeared to enhance the brain's metabolic waste efflux. EEG recordings showed an increase in delta wave post-tDCS. But no significant change in AQP4 expression was detected 30 min post-tDCS. Besides, we found no alteration in CSF-ISF exchange and delta wave activity in IP3R2 KO mice after tDCS. CONCLUSION: Our findings suggest that tDCS augments the glymphatic system's influx and efflux. Through astrocytic IP3/Ca2+ signaling, tDCS was found to modify the delta wave, which correlates positively with brain clearance. This study underscores the potential of tDCS in modulating brain metabolic waste clearance.


Assuntos
Encéfalo , Líquido Extracelular , Camundongos Endogâmicos C57BL , Estimulação Transcraniana por Corrente Contínua , Animais , Estimulação Transcraniana por Corrente Contínua/métodos , Camundongos , Encéfalo/fisiologia , Encéfalo/metabolismo , Líquido Extracelular/fisiologia , Líquido Extracelular/metabolismo , Masculino , Sistema Glinfático/fisiologia , Líquido Cefalorraquidiano/fisiologia , Líquido Cefalorraquidiano/metabolismo , Astrócitos/fisiologia , Astrócitos/metabolismo
11.
J R Soc Interface ; 21(213): 20230659, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38565158

RESUMO

The flow of cerebrospinal fluid (CSF) along perivascular spaces (PVSs) is an important part of the brain's system for clearing metabolic waste. Astrocyte endfeet bound the PVSs of penetrating arteries, separating them from brain extracellular space. Gaps between astrocyte endfeet might provide a low-resistance pathway for fluid transport across the wall. Recent studies suggest that the astrocyte endfeet function as valves that rectify the CSF flow, producing the net flow observed in pial PVSs by changing the size of the gaps in response to pressure changes. In this study, we quantify this rectification based on three features of the PVSs: the quasi-circular geometry, the deformable endfoot wall, and the pressure oscillation inside. We provide an analytical model, based on the thin-shell hoop-stress approximation, and predict a pumping efficiency of about 0.4, which would contribute significantly to the observed flow. When we add the flow resistance of the extracellular space (ECS) to the model, we find an increased net flow during sleep, due to the known increase in ECS porosity (decreased flow resistance) compared to that in the awake state. We corroborate our analytical model with three-dimensional fluid-solid interaction simulations.


Assuntos
Sistema Glinfático , Sistema Glinfático/fisiologia , Encéfalo/irrigação sanguínea , Artérias/fisiologia , Pressão , Transporte Biológico , Líquido Cefalorraquidiano/metabolismo
12.
J Antimicrob Chemother ; 79(6): 1313-1319, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38573940

RESUMO

BACKGROUND: Knowledge regarding CNS pharmacokinetics of moxifloxacin is limited, with unknown consequences for patients with meningitis caused by bacteria resistant to beta-lactams or caused by TB. OBJECTIVE: (i) To develop a novel porcine model for continuous investigation of moxifloxacin concentrations within brain extracellular fluid (ECF), CSF and plasma using microdialysis, and (ii) to compare these findings to the pharmacokinetic/pharmacodynamic (PK/PD) target against TB. METHODS: Six female pigs received an intravenous single dose of moxifloxacin (6 mg/kg) similar to the current oral treatment against TB. Subsequently, moxifloxacin concentrations were determined by microdialysis within five compartments: brain ECF (cortical and subcortical) and CSF (ventricular, cisternal and lumbar) for the following 8 hours. Data were compared to simultaneously obtained plasma samples. Chemical analysis was performed by high pressure liquid chromatography with mass spectrometry. The applied PK/PD target was defined as a maximum drug concentration (Cmax):MIC ratio >8. RESULTS: We present a novel porcine model for continuous in vivo CNS pharmacokinetics for moxifloxacin. Cmax and AUC0-8h within brain ECF were significantly lower compared to plasma and lumbar CSF, but insignificantly different compared to ventricular and cisternal CSF. Unbound Cmax:MIC ratio across all investigated compartments ranged from 1.9 to 4.3. CONCLUSION: A single dose of weight-adjusted moxifloxacin administered intravenously did not achieve adequate target site concentrations within the uninflamed porcine brain ECF and CSF to reach the applied TB CNS target.


Assuntos
Encéfalo , Líquido Extracelular , Microdiálise , Moxifloxacina , Animais , Moxifloxacina/farmacocinética , Moxifloxacina/administração & dosagem , Suínos , Feminino , Líquido Extracelular/química , Líquido Extracelular/metabolismo , Encéfalo/metabolismo , Líquido Cefalorraquidiano/química , Líquido Cefalorraquidiano/metabolismo , Antibacterianos/farmacocinética , Antibacterianos/líquido cefalorraquidiano , Antibacterianos/administração & dosagem , Antibacterianos/sangue , Plasma/química , Fluoroquinolonas/farmacocinética , Fluoroquinolonas/líquido cefalorraquidiano , Fluoroquinolonas/administração & dosagem , Fluoroquinolonas/sangue , Modelos Animais , Cromatografia Líquida de Alta Pressão , Administração Intravenosa , Espectrometria de Massas , Testes de Sensibilidade Microbiana
13.
J Neurosci ; 44(22)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684364

RESUMO

Spinal cerebrospinal fluid-contacting neurons (CSF-cNs) form an evolutionary conserved bipolar cell population localized around the central canal of all vertebrates. CSF-cNs were shown to express molecular markers of neuronal immaturity into adulthood; however, the impact of their incomplete maturation on the chloride (Cl-) homeostasis as well as GABAergic signaling remains unknown. Using adult mice from both sexes, in situ hybridization revealed that a proportion of spinal CSF-cNs (18.3%) express the Na+-K+-Cl- cotransporter 1 (NKCC1) allowing intracellular Cl- accumulation. However, we did not find expression of the K+-Cl- cotransporter 2 (KCC2) responsible for Cl- efflux in any CSF-cNs. The lack of KCC2 expression results in low Cl- extrusion capacity in CSF-cNs under high Cl- load in whole-cell patch clamp. Using cell-attached patch clamp allowing recordings with intact intracellular Cl- concentration, we found that the activation of ionotropic GABAA receptors (GABAA-Rs) induced both depolarizing and hyperpolarizing responses in CSF-cNs. Moreover, depolarizing GABA responses can drive action potentials as well as intracellular calcium elevations by activating voltage-gated calcium channels. Blocking NKCC1 with bumetanide inhibited the GABA-induced calcium transients in CSF-cNs. Finally, we show that metabotropic GABAB receptors have no hyperpolarizing action on spinal CSF-cNs as their activation with baclofen did not mediate outward K+ currents, presumably due to the lack of expression of G-protein-coupled inwardly rectifying potassium (GIRK) channels. Together, these findings outline subpopulations of spinal CSF-cNs expressing inhibitory or excitatory GABAA-R signaling. Excitatory GABA may promote the maturation and integration of young CSF-cNs into the existing spinal circuit.


Assuntos
Membro 2 da Família 12 de Carreador de Soluto , Medula Espinal , Simportadores , Animais , Camundongos , Medula Espinal/metabolismo , Feminino , Masculino , Membro 2 da Família 12 de Carreador de Soluto/metabolismo , Simportadores/metabolismo , Cotransportadores de K e Cl- , Transdução de Sinais/fisiologia , Neurônios/metabolismo , Neurônios/fisiologia , Ácido gama-Aminobutírico/metabolismo , Líquido Cefalorraquidiano/metabolismo , Líquido Cefalorraquidiano/fisiologia , Camundongos Endogâmicos C57BL , Receptores de GABA-A/metabolismo , Cloretos/metabolismo , Cloretos/líquido cefalorraquidiano , Cloretos/farmacologia , Neurônios GABAérgicos/metabolismo , Neurônios GABAérgicos/fisiologia
14.
J Nanobiotechnology ; 22(1): 200, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654299

RESUMO

The glymphatic system plays an important role in the transportation of cerebrospinal fluid (CSF) and the clearance of metabolite waste in brain. However, current imaging modalities for studying the glymphatic system are limited. Herein, we apply NIR-II nanoprobes with non-invasive and high-contrast advantages to comprehensively explore the function of glymphatic system in mice under anesthesia and cerebral ischemia-reperfusion injury conditions. Our results show that the supplement drug dexmedetomidine (Dex) enhances CSF influx in the brain, decreases its outflow to mandibular lymph nodes, and leads to significant differences in CSF accumulation pattern in the spine compared to isoflurane (ISO) alone, while both ISO and Dex do not affect the clearance of tracer-filled CSF into blood circulation. Notably, we confirm the compromised glymphatic function after cerebral ischemia-reperfusion injury, leading to impaired glymphatic influx and reduced glymphatic efflux. This technique has great potential to elucidate the underlying mechanisms between the glymphatic system and central nervous system diseases.


Assuntos
Sistema Glinfático , Traumatismo por Reperfusão , Animais , Sistema Glinfático/metabolismo , Camundongos , Traumatismo por Reperfusão/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Encéfalo/metabolismo , Dexmedetomidina/farmacologia , Acidente Vascular Cerebral , Anestesia , Isoflurano/farmacologia , Nanopartículas/química , Líquido Cefalorraquidiano/metabolismo , Líquido Cefalorraquidiano/química
15.
J Cereb Blood Flow Metab ; 44(7): 1063-1077, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38546534

RESUMO

Metabolomic analysis of cerebrospinal fluid (CSF) is used to improve diagnostics and pathophysiological understanding of neurological diseases. Alterations in CSF metabolite levels can partly be attributed to changes in brain metabolism, but relevant transport processes influencing CSF metabolite concentrations should be considered. The entry of molecules including metabolites into the central nervous system (CNS), is tightly controlled by the blood-brain, blood-CSF, and blood-spinal cord barriers, where aquaporins and membrane-bound carrier proteins regulate influx and efflux via passive and active transport processes. This report therefore provides reference for future CSF metabolomic work, by providing a detailed summary of the current knowledge on the location and function of the involved transporters and routing of metabolites from blood to CSF and from CSF to blood.


Assuntos
Barreira Hematoencefálica , Humanos , Barreira Hematoencefálica/metabolismo , Transporte Biológico/fisiologia , Animais , Sistema Nervoso Central/metabolismo , Líquido Cefalorraquidiano/metabolismo , Metabolômica/métodos , Proteínas de Membrana Transportadoras/metabolismo , Aquaporinas/metabolismo
16.
Nat Neurosci ; 27(5): 913-926, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38528202

RESUMO

Piezo1 regulates multiple aspects of the vascular system by converting mechanical signals generated by fluid flow into biological processes. Here, we find that Piezo1 is necessary for the proper development and function of meningeal lymphatic vessels and that activating Piezo1 through transgenic overexpression or treatment with the chemical agonist Yoda1 is sufficient to increase cerebrospinal fluid (CSF) outflow by improving lymphatic absorption and transport. The abnormal accumulation of CSF, which often leads to hydrocephalus and ventriculomegaly, currently lacks effective treatments. We discovered that meningeal lymphatics in mouse models of Down syndrome were incompletely developed and abnormally formed. Selective overexpression of Piezo1 in lymphatics or systemic administration of Yoda1 in mice with hydrocephalus or Down syndrome resulted in a notable decrease in pathological CSF accumulation, ventricular enlargement and other associated disease symptoms. Together, our study highlights the importance of Piezo1-mediated lymphatic mechanotransduction in maintaining brain fluid drainage and identifies Piezo1 as a promising therapeutic target for treating excessive CSF accumulation and ventricular enlargement.


Assuntos
Líquido Cefalorraquidiano , Canais Iônicos , Vasos Linfáticos , Animais , Camundongos , Líquido Cefalorraquidiano/metabolismo , Hidrocefalia/genética , Canais Iônicos/metabolismo , Canais Iônicos/genética , Vasos Linfáticos/metabolismo , Mecanotransdução Celular/fisiologia , Meninges/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pirazinas , Tiadiazóis , Humanos
17.
Methods Mol Biol ; 2754: 351-359, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38512676

RESUMO

Glymphatic system denotes a brain-wide pathway that eliminates extracellular solutes from brain. It is driven by the flow of brain interstitial fluid (ISF) and cerebrospinal fluid (CSF) via perivascular spaces. Glymphatic convective flow is driven by cerebral arterial pulsation, which is facilitated by a water channel, aquaporin-4 (AQP4) expressed in astrocytic end-foot processes. Since its discovery, the glymphatic system receives a considerable scientific attention due to its pivotal role in clearing metabolic waste as well as neurotoxic substances such as amyloid b peptide. Tau is a microtubule binding protein, however it is also physiologically released into extracellular fluids. The presence of tau in the blood stream indicates that it is eventually cleared from the brain to the periphery, however, the detailed mechanisms that eliminate extracellular tau from the central nervous system remained to be elucidated. Recently, we and others have reported that extracellular tau is eliminated from the brain to CSF by an AQP4 dependent mechanism, suggesting the involvement of the glymphatic system. In this chapter, we describe the detailed protocol of how we can assess glymphatic outflow of tau protein from brain to CSF in mice.


Assuntos
Sistema Glinfático , Proteínas tau , Camundongos , Animais , Proteínas tau/metabolismo , Encéfalo/metabolismo , Líquido Extracelular/metabolismo , Aquaporina 4/metabolismo , Líquido Cefalorraquidiano/metabolismo
19.
NMR Biomed ; 37(8): e5126, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38403795

RESUMO

The brain relies on an effective clearance mechanism to remove metabolic waste products for the maintenance of homeostasis. Recent studies have focused on elucidating the forces that drive the motion of cerebrospinal fluid (CSF), responsible for removal of these waste products. We demonstrate that vascular responses evoked using controlled manipulations of partial pressure of carbon dioxide (PaCO2) levels, serve as an endogenous driver of CSF clearance from the brain. To demonstrate this, we retrospectively surveyed our database, which consists of brain metastases patients from whom blood oxygen level-dependent (BOLD) images were acquired during targeted hypercapnic and hyperoxic respiratory challenges. We observed a correlation between CSF inflow signal around the fourth ventricle and CO2-induced changes in cerebral blood volume. By contrast, no inflow signal was observed in response to the nonvasoactive hyperoxic stimulus, validating our measurements. Moreover, our results establish a link between the rate of the hemodynamic response (to elevated PaCO2) and peritumoral edema load, which we suspect may affect CSF flow, consequently having implications for brain clearance. Our expanded perspective on the factors involved in neurofluid flow underscores the importance of considering both cerebrovascular responses, as well as the brain mechanical properties, when evaluating CSF dynamics in the context of disease processes.


Assuntos
Encéfalo , Dióxido de Carbono , Circulação Cerebrovascular , Humanos , Dióxido de Carbono/metabolismo , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/irrigação sanguínea , Circulação Cerebrovascular/fisiologia , Masculino , Feminino , Líquido Cefalorraquidiano/metabolismo , Pessoa de Meia-Idade , Imageamento por Ressonância Magnética
20.
Nature ; 627(8002): 165-173, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38326613

RESUMO

The arachnoid barrier delineates the border between the central nervous system and dura mater. Although the arachnoid barrier creates a partition, communication between the central nervous system and the dura mater is crucial for waste clearance and immune surveillance1,2. How the arachnoid barrier balances separation and communication is poorly understood. Here, using transcriptomic data, we developed transgenic mice to examine specific anatomical structures that function as routes across the arachnoid barrier. Bridging veins create discontinuities where they cross the arachnoid barrier, forming structures that we termed arachnoid cuff exit (ACE) points. The openings that ACE points create allow the exchange of fluids and molecules between the subarachnoid space and the dura, enabling the drainage of cerebrospinal fluid and limited entry of molecules from the dura to the subarachnoid space. In healthy human volunteers, magnetic resonance imaging tracers transit along bridging veins in a similar manner to access the subarachnoid space. Notably, in neuroinflammatory conditions such as experimental autoimmune encephalomyelitis, ACE points also enable cellular trafficking, representing a route for immune cells to directly enter the subarachnoid space from the dura mater. Collectively, our results indicate that ACE points are a critical part of the anatomy of neuroimmune communication in both mice and humans that link the central nervous system with the dura and its immunological diversity and waste clearance systems.


Assuntos
Aracnoide-Máter , Encéfalo , Dura-Máter , Animais , Humanos , Camundongos , Aracnoide-Máter/anatomia & histologia , Aracnoide-Máter/irrigação sanguínea , Aracnoide-Máter/imunologia , Aracnoide-Máter/metabolismo , Transporte Biológico , Encéfalo/anatomia & histologia , Encéfalo/irrigação sanguínea , Encéfalo/imunologia , Encéfalo/metabolismo , Dura-Máter/anatomia & histologia , Dura-Máter/irrigação sanguínea , Dura-Máter/imunologia , Dura-Máter/metabolismo , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/metabolismo , Perfilação da Expressão Gênica , Imageamento por Ressonância Magnética , Camundongos Transgênicos , Espaço Subaracnóideo/anatomia & histologia , Espaço Subaracnóideo/irrigação sanguínea , Espaço Subaracnóideo/imunologia , Espaço Subaracnóideo/metabolismo , Líquido Cefalorraquidiano/metabolismo , Veias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...