Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 221
Filtrar
1.
Food Microbiol ; 122: 104563, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38839237

RESUMO

Thermosonication (UT) prestress treatments combining with varied fermentation patterns has been revealed as an effective method to regulate post-acidification as exerted by Lactobacillus delbrueckii subsp. bulgaricus (L. delbrueckii), but sono-biochemical controlling mechanisms remain elusive. This study employed physiological and transcriptomic analysis to explore the response mechanism of L. delbrueckii to UT-induced microstress (600 W, 33 kHz, 10 min). UT stress-induced inhibition of acidification of L. delbrueckii during (post)-fermentation was first confirmed, relying on the UT process parameters such as stress exposure duration and UT power. The significantly enhanced membrane permeability in cells treated by 600 W for 10 min than the microbes stressed by 420 W for 20 min suggested the higher dependence of UT-derived stresses on the treatment durations, relative to the ultrasonic powers. In addition, ultrasonication treatment-induced changes in cell membrane integrity enhanced and/or disrupted permeability of L. delbrueckii, resulting in an imbalance in intracellular conditions associated with corresponding alterations in metabolic behaviors and fermentation efficiencies. UT-prestressed inoculum exhibited a 21.46% decrease in the membrane potential during the lag phase compared to untreated samples, with an intracellular pH of 5.68 ± 0.12, attributed to the lower activities of H+-ATPase and lactate dehydrogenase due to UT stress pretreatments. Comparative transcriptomic analysis revealed that UT prestress influenced the genes related to glycolysis, pyruvate metabolism, fatty acid synthesis, and ABC transport. The genes encoding 3-oxoacyl-[acyl-carrier-protein] reductases I, II, and III, CoA carboxylase, lactate dehydrogenase, pyruvate oxidase, glucose-6-phosphate isomerase, and glycerol-3-phosphate dehydrogenase were downregulated, thus identifying the relevance of the UT microstresses-downregulated absorption and utilization of carbohydrates with the attenuated fatty acid production and energy metabolisms. These findings could contribute to provide a better understanding of the inactivated effects on the post-acidification of L. delbrueckii by ultrasonic pretreatments, thus providing theoretical basis for the targeted optimization of acidification inhibition efficiencies for yogurt products during chilled preservation processes.


Assuntos
Fermentação , Perfilação da Expressão Gênica , Lactobacillus delbrueckii , Lactobacillus delbrueckii/metabolismo , Lactobacillus delbrueckii/genética , Concentração de Íons de Hidrogênio , Transcriptoma , Sonicação , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética
2.
Appl Microbiol Biotechnol ; 108(1): 361, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38837050

RESUMO

Lactobacillus delbrueckii subsp. bulgaricus and Lactiplantibacillus plantarum are two lactic acid bacteria (LAB) widely used in the food industry. The objective of this work was to assess the resistance of these bacteria to freeze- and spray-drying and study the mechanisms involved in their loss of activity. The culturability and acidifying activity were measured to determine the specific acidifying activity, while membrane integrity was studied by flow cytometry. The glass transitions temperature and the water activity of the dried bacterial suspensions were also determined. Fourier transform infrared (FTIR) micro-spectroscopy was used to study the biochemical composition of cells in an aqueous environment. All experiments were performed after freezing, drying and storage at 4, 23 and 37 °C. The results showed that Lb. bulgaricus CFL1 was sensitive to osmotic, mechanical, and thermal stresses, while Lpb. plantarum WCFS1 tolerated better the first two types of stress but was more sensitive to thermal stress. Moreover, FTIR results suggested that the sensitivity of Lb. bulgaricus CFL1 to freeze-drying could be attributed to membrane and cell wall degradation, whereas changes in nucleic acids and proteins would be responsible of heat inactivation of both strains associated with spray-drying. According to the activation energy values (47-85 kJ/mol), the functionality loss during storage is a chemically limited reaction. Still, the physical properties of the glassy matrix played a fundamental role in the rates of loss of activity and showed that a glass transition temperature 40 °C above the storage temperature is needed to reach good preservation during storage. KEY POINTS: • Specific FTIR bands are proposed as markers of osmotic, mechanic and thermal stress • Lb. bulgaricus CFL1 was sensitive to all three stresses, Lpb. plantarum WCFS1 to thermal stress only • Activation energy revealed chemically limited reactions ruled the activity loss in storage.


Assuntos
Liofilização , Liofilização/métodos , Espectroscopia de Infravermelho com Transformada de Fourier , Secagem por Atomização , Viabilidade Microbiana , Lactobacillus plantarum/metabolismo , Lactobacillus plantarum/fisiologia , Lactobacillus delbrueckii/metabolismo , Lactobacillus delbrueckii/fisiologia , Lactobacillales/metabolismo , Lactobacillales/fisiologia , Dessecação
3.
Front Biosci (Elite Ed) ; 16(2): 11, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38939910

RESUMO

BACKGROUND: Flaxseed mucilage (FSM) is one of the healthy components of flaxseed. FSM is an example of a material that can be used in the food, cosmetic, and pharmaceutical industries due to its rheological properties. FSM consists mainly of two polysaccharides, arabinoxylan, and rhamnogalacturonan I, and it also contains protein components and minerals. The prospect of using FSM in food is due to its gelling, water binding, emulsifying, and foaming properties. In addition, valuable natural sources of phenolic compounds such as lignans, phenolic acids, flavonoids, phenylpropanoids, and tannins are partially extracted from flaxseed in FSM. These antioxidant components have pharmacological properties, including anti-diabetic, anti-hypertensive, immunomodulatory, anti-inflammatory and neuroprotective properties. A combination of FSM and lactobacilli in dairy foods can improve their functional properties. This study aimed to develop dairy products by adding of FSM and using two lactic acid bacteria (LAB). FSM (0.2%) was used as an ingredient to improve both the texture and antioxidant properties of the product. METHODS: Skim milk was fermented with 0.2% flaxseed mucilage using Lactobacillus delbrueckii subs. bulgaricus and the probiotic Lactiplantibacillus plantarum AG9. The finished fermented milk products were stored at 4 °C for 14 days. Quantitative chemical, textural, and antioxidant analyses were carried out. RESULTS: Adding 0.2% FSM to the dairy product stimulated the synthesis of lactic acid. FSM increased the viscosity and water-holding capacity of L. bulgaricus or L. bulgaricus/L. plantarum AG9 fermented milk products. Combining these starter strains with FSM promoted the formation of a hard, elastic, resilient casein matrix in the product. When only L. plantarum AG9 was used for the fermentation, the dairy product had a high syneresis and a low viscosity and firmness; such a product is inferior in textural characteristics to the variant with commercial L. bulgaricus. The addition of FSM improved the textural properties of this variant. The use of L. plantarum AG9 and FSM makes it possible to obtain a fermented milk product with the highest content of polyphenolic compounds, which have the highest antioxidant properties and stimulate lipase and α-glucosidase inhibitor synthesis. Combining of L. bulgaricus and L. plantarum AG9 in the starter (20% of the total mass of the starter) and adding of 0.2% FSM is the optimal combination for obtaining a dairy product with high textural and antioxidant properties. CONCLUSIONS: The physicochemical properties (viscosity, syneresis, water holding capacity, texture) and antioxidant properties of fermented milk were improved. In the future, as part of the work to investigate the functional properties of dairy products with FSM, studies will be conducted using in in vivo models.


Assuntos
Linho , Lactobacillus delbrueckii , Mucilagem Vegetal , Linho/química , Lactobacillus delbrueckii/metabolismo , Mucilagem Vegetal/química , Lactobacillus plantarum/metabolismo , Antioxidantes/química , Antioxidantes/análise , Produtos Fermentados do Leite/microbiologia , Produtos Fermentados do Leite/análise , Animais , Leite/química , Fermentação
4.
J Agric Food Chem ; 72(27): 15198-15212, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38941263

RESUMO

Numerous studies have highlighted the potential of Lactic acid bacteria (LAB) fermentation of whey proteins for alleviating allergies. Nonetheless, the impact of LAB-derived metabolites on whey proteins antigenicity during fermentation remains uncertain. Our objective was to elucidate the impact of small molecular metabolites on the antigenicity of α-lactalbumin (α-LA) and ß-lactoglobulin (ß-LG). Through metabolomic analysis, we picked 13 bioactive small molecule metabolites from Lactobacillus delbrueckii subsp. bulgaricus DLPU F-36 for coincubation with α-LA and ß-LG, respectively. The outcomes revealed that valine, arginine, benzoic acid, 2-keto butyric acid, and glutaric acid significantly diminished the sensitization potential of α-LA and ß-LG, respectively. Moreover, chromatographic analyses unveiled the varying influence of small molecular metabolites on the structure of α-LA and ß-LG, respectively. Notably, molecular docking underscored that the primary active sites of α-LA and ß-LG involved in protein binding to IgE antibodies aligned with the interaction sites of small molecular metabolites. In essence, LAB-produced metabolites wield a substantial influence on the antigenic properties of whey proteins.


Assuntos
Lactobacillus delbrueckii , Simulação de Acoplamento Molecular , Proteínas do Soro do Leite , Lactobacillus delbrueckii/metabolismo , Lactobacillus delbrueckii/química , Lactobacillus delbrueckii/imunologia , Proteínas do Soro do Leite/química , Proteínas do Soro do Leite/metabolismo , Fermentação , Lactoglobulinas/química , Lactoglobulinas/imunologia , Lactoglobulinas/metabolismo , Lactalbumina/química , Lactalbumina/imunologia , Lactalbumina/metabolismo , Animais , Bovinos , Antígenos/imunologia , Antígenos/química
5.
Food Res Int ; 186: 114322, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729712

RESUMO

Lactobacillus delbrueckii subsp. lactis CIDCA 133 is a health-promoting bacterium that can alleviate gut inflammation and improve the epithelial barrier in a mouse model of mucositis. Despite these beneficial effects, the protective potential of this strain in other inflammation models, such as inflammatory bowel disease, remains unexplored. Herein, we examined for the first time the efficacy of Lactobacillus delbrueckii CIDCA 133 incorporated into a fermented milk formulation in the recovery of inflammation, epithelial damage, and restoration of gut microbiota in mice with dextran sulfate sodium-induced colitis. Oral administration of Lactobacillus delbrueckii CIDCA 133 fermented milk relieved colitis by decreasing levels of inflammatory factors (myeloperoxidase, N-acetyl-ß-D-glucosaminidase, toll-like receptor 2, nuclear factor-κB, interleukins 10 and 6, and tumor necrosis factor), secretory immunoglobulin A levels, and intestinal paracellular permeability. This immunobiotic also modulated the expression of tight junction proteins (zonulin and occludin) and the activation of short-chain fatty acids-related receptors (G-protein coupled receptors 43 and 109A). Colonic protection was effectively associated with acetate production and restoration of gut microbiota composition. Treatment with Lactobacillus delbrueckii CIDCA 133 fermented milk increased the abundance of Firmicutes members (Lactobacillus genus) while decreasing the abundance of Proteobacteria (Helicobacter genus) and Bacteroidetes members (Bacteroides genus). These promising outcomes influenced the mice's mucosal healing, colon length, body weight, and disease activity index, demonstrating that this immunobiotic could be explored as an alternative approach for managing inflammatory bowel disease.


Assuntos
Colite , Produtos Fermentados do Leite , Sulfato de Dextrana , Microbioma Gastrointestinal , Lactobacillus delbrueckii , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Colite/microbiologia , Colite/induzido quimicamente , Colite/metabolismo , Colite/tratamento farmacológico , Lactobacillus delbrueckii/metabolismo , Produtos Fermentados do Leite/microbiologia , Camundongos , Probióticos/uso terapêutico , Masculino , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Mucosa Intestinal/microbiologia , Mucosa Intestinal/metabolismo , Inflamação , Colo/microbiologia , Colo/metabolismo , Lactobacillus
6.
Food Funct ; 15(11): 5987-5999, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38742436

RESUMO

The considerable value of whey is evident from its significant potential applications and contributions to the functional food and nutraceutical market. The by-products were individually obtained during functional chhurpi and novel soy chhurpi cheese production using defined lactic acid bacterial strains of Sikkim Himalaya's traditional chhurpi. Hydrolysis of substrate proteins by starter proteinases resulted in a comparable peptide content in whey and soy whey which was associated with antioxidant and ACE inhibition potential. Peptidome analysis of Lactobacillus delbrueckii WS4 whey and soy whey revealed the presence of several bioactive peptides including the multifunctional peptides PVVVPPFLQPE and YQEPVLGPVRGPFPIIV. In silico analyses predicted the antihypertensive potential of whey and soy whey peptides with strong binding affinity for ACE active sites. QSAR models predicted the highest ACE inhibition potential (IC50) for the ß-casein-derived decapeptide PVRGPFPIIV (0.95 µM) and the Kunitz trypsin inhibitor protein-derived nonapeptide KNKPLVVQF (16.64 µM). Chhurpi whey and soy whey can be explored as a valuable source of diverse and novel bioactive peptides for applications in designer functional foods development.


Assuntos
Lactobacillus delbrueckii , Peptídeos , Lactobacillus delbrueckii/metabolismo , Peptídeos/química , Peptídeos/farmacologia , Inibidores da Enzima Conversora de Angiotensina/química , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Queijo/microbiologia , Queijo/análise , Soro do Leite/química , Alimento Funcional , Antioxidantes/farmacologia , Antioxidantes/química , Proteínas do Soro do Leite/química
7.
Sci Rep ; 14(1): 9689, 2024 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-38678043

RESUMO

Today, probiotics are considered to be living microorganisms whose consumption has a certain number of beneficial effects on the consumer. The present study aimed to investigate the effect of a new probiotic extract (Lactobacillus delbrueckii subsp. lactis KUMS Y33) on the differentiation process of human adipose-derived stem cells (hADSCs) into adipocytes and osteocytes and, as a result, clarify its role in the prevention and treatment of bone age disease. Several bacteria were isolated from traditional yogurt. They were evaluated to characterize the probiotic's activity. Then, the isolated hADSCs were treated with the probiotic extract, and then osteogenesis and adipogenesis were induced. To evaluate the differentiation process, oil red O and alizarin red staining, a triglyceride content assay, an alkaline phosphatase (ALP) activity assay, as well as real-time PCR and western blot analysis of osteocyte- and adipocyte-specific genes, were performed. Ultimately, the new strain was sequenced and registered on NBCI. In the probiotic-treated group, the triglyceride content and the gene expression and protein levels of C/EBP-α and PPAR-γ2 (adipocyte-specific markers) were significantly decreased compared to the control group (P < 0.05), indicating an inhibited adipogenesis process. Furthermore, the probiotic extract caused a significant increase in the ALP activity, the expression levels of RUNX2 and osteocalcin, and the protein levels of collagen I and FGF-23 (osteocyte-specific markers) in comparison to the control group (P < 0.05), indicating an enhanced osteogenesis process. According to the results of the present study, the probiotic extract inhibits adipogenesis and significantly increases osteogenesis, suggesting a positive role in the prevention and treatment of osteoporosis and opening a new aspect for future in-vivo study.


Assuntos
Adipogenia , Diferenciação Celular , Lactobacillus delbrueckii , Células-Tronco Mesenquimais , Osteogênese , Probióticos , Humanos , Probióticos/farmacologia , Osteogênese/efeitos dos fármacos , Adipogenia/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Lactobacillus delbrueckii/metabolismo , Diferenciação Celular/efeitos dos fármacos , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Células Cultivadas , Adipócitos/metabolismo , Adipócitos/efeitos dos fármacos , Adipócitos/citologia
8.
Cell Biochem Funct ; 42(2): e3981, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38509733

RESUMO

Systemic lupus erythematosus (SLE) is known as an autoimmune disorder that is characterized by the breakdown of self-tolerance, resulting in disease onset and progression. Macrophages have been implicated as a factor in the development of SLE through faulty phagocytosis of dead cells or an imbalanced M1/M2 ratio. The study aimed to investigate the immunomodulatory effects of Lactobacillus delbrueckii and Lactobacillus rhamnosus on M1 and M2 macrophages in new case lupus patients. For this purpose, blood monocytes were collected from lupus patients and healthy people and were cultured for 5 days to produce macrophages. For 48 h, the macrophages were then cocultured with either probiotics or lipopolysaccharides (LPS). Flow cytometry and real-time polymerase chain reaction were then used to analyze the expression of cluster of differentiation (CD) 14, CD80, and human leukocyte antigen - DR (HLADR) markers, as well as cytokine expression (interleukin [IL]1-ß, IL-12, tumor necrosis factor α [TNF-α], IL-10, and transforming growth factor beta [TGF-ß]). The results indicated three distinct macrophage populations, M0, M1, and M2. In both control and patient-derived macrophage-derived monocytes (MDMs), the probiotic groups showed a decrease in CD14, CD80, and HLADR expression compared to the LPS group. This decrease was particularly evident in M0 and M2 macrophages from lupus patients and M1 macrophages from healthy subjects. In addition, the probiotic groups showed increased levels of IL-10 and TGF-ß and decreased levels of IL-12, IL1-ß, and TNF-α in MDMs from both healthy and lupus subjects compared to the LPS groups. Although there was a higher expression of pro-inflammatory cytokines in lupus patients, there was a higher expression of anti-inflammatory cytokines in healthy subjects. In general, L. delbrueckii and L. rhamnosus could induce anti-inflammatory effects on MDMs from both healthy and lupus subjects.


Assuntos
Lacticaseibacillus rhamnosus , Lactobacillus delbrueckii , Lúpus Eritematoso Sistêmico , Probióticos , Humanos , Monócitos/metabolismo , Monócitos/patologia , Interleucina-10 , Lactobacillus delbrueckii/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , Citocinas/metabolismo , Anti-Inflamatórios/farmacologia , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Interleucina-12/metabolismo , Interleucina-12/farmacologia , Interleucina-12/uso terapêutico , Fator de Crescimento Transformador beta/metabolismo , Probióticos/farmacologia
9.
Molecules ; 29(6)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38542894

RESUMO

The lactic acid bacteria Streptococcus thermophilus and Lactobacillus helveticus are commonly used as starter cultures in dairy product production. This study aimed to investigate the characteristics of fermented milk using different ratios of these strains and analyze the changes in volatile compounds during fermentation and storage. A 10:1 ratio of Streptococcus thermophilus CICC 6063 to Lactobacillus helveticus CICC 6064 showed optimal fermentation time (4.2 h), viable cell count (9.64 log10 colony-forming units/mL), and sensory evaluation score (79.1 points). In total, 56 volatile compounds were identified and quantified by solid-phase microextraction and gas chromatography-mass spectrometry (SPME-GC-MS), including aldehydes, ketones, acids, alcohols, esters, and others. Among these, according to VIP analysis, 2,3-butanedione, acetoin, 2,3-pentanedione, hexanoic acid, acetic acid, acetaldehyde, and butanoic acid were identified as discriminatory volatile metabolites for distinguishing between different time points. Throughout the fermentation and storage process, the levels of 2,3-pentanedione and acetoin exhibited synergistic dynamics. These findings enhance our understanding of the chemical and molecular characteristics of milk fermented with Streptococcus thermophilus and Lactobacillus helveticus, providing a basis for improving the flavor and odor of dairy products during fermentation and storage.


Assuntos
Lactobacillus delbrueckii , Lactobacillus helveticus , Pentanonas , Animais , Leite/química , Streptococcus thermophilus/metabolismo , Fermentação , Acetoína/análise , Lactobacillus delbrueckii/metabolismo , Cetonas/análise
10.
Lett Appl Microbiol ; 77(4)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38521981

RESUMO

It is a problem that influenza virus infection increases susceptibility to secondary bacterial infection in lungs leading to lethal pneumonia. We previously reported that exopolysaccharides (EPS) derived from Lactobacillus delbrueckii ssp. bulgaricus OLL1073R-1 (OLL1073R-1) could prevent against influenza virus infection followed by secondary bacterial infection in vitro. Therefore, the present study assessed whether EPS derived OLL1073R-1 protects the alveolar epithelial barrier disfunction caused by influenza virus infection. After A549 cells treated with EPS or without EPS were infected influenza virus A/Puerto Rico/8/34 (IFV) for 12 h, the levels of tight junction genes expression and inflammatory genes expression were measured by reverse transcription polymerase chain reaction. As results, EPS treatment could protect against low-titer IFV infection, but not high-titer IFV infection, followed by suppression of the increased expression of inflammatory cytokine gene levels and recovery of the decrease in the expression level of ZO-1 gene that was caused by low-titer IFV infection, leading to an improvement trend in the barrier function. Our findings showed that EPS derived from OLL1073R-1 could inhibit low-titer IFV infection leading to maintenance of the epithelial barrier function through the suppression of inflammatory cytokine genes expression.


Assuntos
Infecções Bacterianas , Influenza Humana , Lactobacillus delbrueckii , Orthomyxoviridae , Humanos , Lactobacillus delbrueckii/genética , Lactobacillus delbrueckii/metabolismo , Junções Íntimas , Citocinas/genética , Citocinas/metabolismo
11.
J Dairy Sci ; 107(8): 5402-5415, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38331185

RESUMO

The synergistic fermentation of milk by Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus is one of the key factors that determines the quality of yogurt. In this study, the mechanism whereby yogurt flavor compounds are produced by a mixture of S. thermophilus SIT-20.S and L. delbrueckii ssp. bulgaricus SIT-17.B were investigated by examining the flavor production, growth, and gene transcription of these strains. The results showed that yogurt produced by a 10:1 mixture of the aforementioned strains had the highest abundance of acetoin, whereas yogurt produced by a 1:1 mixture had the highest abundance of diacetyl and acetaldehyde. In addition, the growth of S. thermophilus SIT-20.S was enhanced in the 10:1 mixture. Transcriptomic analysis revealed differentially expressed genes in the flavor-compound-related pathways of S. thermophilus SIT-20.S and L. delbrueckii ssp. bulgaricus SIT-17.B in yogurts produced by 10:1 and 1:1 mixtures compared with those produced by either strain alone. Mixed fermentations regulated the expression of genes related to glycolysis, resulting in an increase of pyruvate, which is an important precursor for diacetyl and acetoin synthesis. The gene encoding the acetoin reductase (SIT-20S_orf01454) was decreased in S. thermophilus SIT-20.S, which ensured the accumulation of acetoin. In addition, the gene encoding the acetaldehyde dehydrogenase (SIT-20S_orf00949) was upregulated in S. thermophilus SIT-20.S, and the expression of alcohol dehydrogenase (SIT-20S_orf01479; SIT-17B_orf00943) was downregulated in both strains, maintaining the abundance of acetaldehyde. In addition, the gene encoding the NADH oxidase (SIT-17B_orf00860) in L. delbrueckii ssp. bulgaricus SIT-17.B were upregulated, which promoted the accumulation of diacetyl and acetoin. Overall, we characterized the mechanism by which S. thermophilus and L. delbrueckii ssp. bulgaricus synergistically generated yogurt flavor compounds during their production of yogurt and highlighted the importance of appropriate proportions of fermentation starters for improving the flavor of yogurts.


Assuntos
Fermentação , Iogurte , Animais , Aromatizantes , Acetoína/metabolismo , Lactobacillus delbrueckii/genética , Lactobacillus delbrueckii/metabolismo , Streptococcus thermophilus/genética , Streptococcus thermophilus/metabolismo , Leite/química , Transcriptoma , Paladar , Diacetil/metabolismo
12.
Food Funct ; 15(5): 2655-2667, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38362628

RESUMO

Peptides in milk fermented with Lactobacillus delbrueckii QS306 before and after ultrahigh pressure treatment were identified using proteomics. Subsequently, 16 stable tripeptides were screened out based on activity score prediction, PeptideCutter analysis, and hydrophobicity calculations. Among them, WRP, WSR, and YRP showed the best angiotensin-converting enzyme (ACE) inhibitory activity, and their semi-inhibitory concentrations were 46.707, 300.121, and 89.555 µM, respectively. WRP and WSR were competitive inhibitors, whereas YRP was non-competitive. Gastrointestinal simulation revealed that WRP and YRP had better gastrointestinal stability. The values of RMSD, ΔGbind, ΔGpol, and RSMF obtained from molecular dynamics simulation indicated that the interaction of WRP and ACE was stable. Thus, Lactobacillus delbrueckii QS306-fermented milk can serve as an important source of ACE inhibitory peptides both before and after ultrahigh pressure treatment. The strategy of in silico screening, activity evaluation, and molecular dynamics simulation adopted in this study can be applied to the large-scale screening of novel peptides with high ACE inhibitory activity.


Assuntos
Lactobacillus delbrueckii , Lactobacillus , Leite , Animais , Leite/química , Lactobacillus delbrueckii/metabolismo , Inibidores da Enzima Conversora de Angiotensina/química , Simulação de Dinâmica Molecular , Peptídeos/química , Peptidil Dipeptidase A/metabolismo , Simulação de Acoplamento Molecular
13.
Prep Biochem Biotechnol ; 54(5): 668-679, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38190739

RESUMO

For complete utilization of high glucose at ∼100 g/L, a high cell density (HCD) continuous fermentation system was established using Lb. delbrueckii NCIM 2025 for the bioproduction of lactic acid (LA). An integrated membrane cell recycling system coupled with the continuous bioreactor, aided to achieve the highest 34.77 g/L h LA productivity and 0.94-0.98 g/g yield. ∼34 times higher productivity was observed (in comparison to batch fermentation conducted in this study), when the continuous operations were carried out at the maximum dilution rate and wet cell weight i.e. 0.36 h-1 and 230 g/L, respectively. These results show the potential of this method for large-scale lactic acid production because it not only produces high titers but also ensures that glucose is used effectively. The method's superior performance in comparison to earlier studies suggests it as an affordable and sustainable alternative for the production of LA.


Assuntos
Reatores Biológicos , Fermentação , Glucose , Ácido Láctico , Lactobacillus delbrueckii , Ácido Láctico/metabolismo , Ácido Láctico/biossíntese , Glucose/metabolismo , Lactobacillus delbrueckii/metabolismo , Lactobacillus delbrueckii/crescimento & desenvolvimento
14.
J Dairy Sci ; 107(6): 3443-3450, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38216036

RESUMO

Lactobacillus delbrueckii ssp. bulgaricus and Streptococcus thermophilus are symbiotic starters widely used in yogurt fermentation. They exchange metabolites to meet their nutritional demands during fermentation, promoting mutual growth. Although S. thermophilus produces fumaric acid, and the addition of fumaric acid has been shown to promote the growth of L. bulgaricus monoculture, whether fumaric acid produced by S. thermophilus is used by L. bulgaricus during coculture remains unclear. Furthermore, the importance of fumaric acid metabolism in the growth of L. bulgaricus is yet to be elucidated. Therefore, in this study, we investigated the importance of fumaric acid metabolism in L. bulgaricus monocultures and coculture with S. thermophilus. We deleted the fumarate reductase gene (frd), which is responsible for the metabolism of fumaric acid to succinic acid, in L. bulgaricus strains 2038 and NCIMB 701373. Both Δfrd strains exhibited longer fermentation times than their parent strains, and fumaric acid was metabolized to malic acid rather than succinic acid. Coculture of Δfrd strains with S. thermophilus 1131 also resulted in a longer fermentation time, and the accumulation of malic acid was observed. These results indicated that fumaric acid produced by S. thermophilus is used by L. bulgaricus as a symbiotic substance during yogurt fermentation and that the metabolism of fumaric acid to succinic acid by fumarate reductase is a key factor determining the fermentation ability of L. bulgaricus.


Assuntos
Fermentação , Fumaratos , Lactobacillus delbrueckii , Iogurte , Lactobacillus delbrueckii/metabolismo , Fumaratos/metabolismo , Iogurte/microbiologia , Succinato Desidrogenase/metabolismo , Streptococcus thermophilus/metabolismo
15.
Tissue Barriers ; 12(1): 2184157, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36852963

RESUMO

Lactic acid bacteria (LAB) are commonly used probiotics that improve human health in various aspects. We previously reported that yogurt starter strains, Lactobacillus delbrueckii subsp. bulgaricus 2038 and Streptococcus thermophilus 1131, potentially enhance the intestinal epithelial barrier function by inducing the expression of antimicrobial peptides in the small intestine. However, their effects on physical barrier functions remain unknown. In this study, we found that both strains ameliorated the decreased trans-epithelial resistance and the increased permeability of fluorescein isothiocyanate-dextran induced by tumor necrosis factor (TNF)-α and interferon (IFN)-γ in Caco-2 cells. We also demonstrated that LAB prevented a decrease in the expression and disassembly of tight junctions (TJs) induced by TNF-α and IFN-γ. To assess the repair activity of TJs, a calcium switch assay was performed. Both strains were found to promote the reassembly of TJs, and their activity was canceled by the inhibitor of AMP-activated protein kinase (AMPK). Moreover, these strains showed increased AMPK phosphorylation. These observations suggest that the strains ameliorated physical barrier dysfunction via the activation of AMPK. The activities preventing barrier destruction induced by TNF-α and IFN-γ were strain-dependent. Several strains containing L. bulgaricus 2038 and S. thermophilus 1131 significantly suppressed the barrier impairment, and L. bulgaricus 2038 showed the strongest activity among them. Our findings suggest that the intake of L. bulgaricus 2038 and S. thermophilus 1131 is a potential strategy for the prevention and repair of leaky gut.


Assuntos
Proteínas Quinases Ativadas por AMP , Lactobacillus delbrueckii , Humanos , Proteínas Quinases Ativadas por AMP/metabolismo , Células CACO-2 , Iogurte/microbiologia , Fator de Necrose Tumoral alfa/metabolismo , Lactobacillus delbrueckii/metabolismo
16.
J Dairy Sci ; 107(4): 1928-1949, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37939838

RESUMO

This study evaluated 75 strains of lactic acid bacteria (LAB) isolated from traditional dairy products in western China for their probiotic properties. Among them, Limosilactobacillus fermentum WXZ 2-1, Lactiplantibacillus plantarum TXZ 2-35, Companilactobacillus crustorum QHS 9, and Companilactobacillus crustorum QHS 10 demonstrated potential probiotic characteristics. The antioxidant capacity of these 4 strains was assessed, revealing that L. fermentum WXZ 2-1 exhibited the highest antioxidant capacity. Furthermore, when cocultured with Streptococcus salivarius ssp. thermophilus and Lactobacillus delbrueckii ssp. bulgaricus, L. fermentum WXZ 2-1 demonstrated a synergistic effect in growth medium and goat milk. To explore its effect on goat milk fermentation, different amounts of L. fermentum WXZ 2-1 were added to goat milk, and its physicochemical properties, antioxidant activity, flavor substances, and metabolomics were analyzed. The study found that the incorporation of L. fermentum WXZ 2-1 in goat milk fermentation significantly improved the texture characteristics, antioxidant capacity, and flavor of fermented goat milk. These findings highlight the potential of L. fermentum WXZ 2-1 as a valuable probiotic strain for enhancing the functionality and desirability of fermented goat milk, contributing to the development of novel functional foods with improved health benefits and enhanced quality attributes.


Assuntos
Lactobacillus delbrueckii , Lactobacillus plantarum , Limosilactobacillus fermentum , Probióticos , Animais , Leite/química , Antioxidantes/metabolismo , Lactobacillus plantarum/metabolismo , Lactobacillus delbrueckii/metabolismo , Cabras/metabolismo , Fermentação , Probióticos/metabolismo
17.
J Biotechnol ; 374: 90-100, 2023 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-37572793

RESUMO

The fermentation process of milk to yoghurt using Lactobacillus delbrueckii subsp. bulgaricus in co-culture with Streptococcus thermophilus is hallmarked by the breakdown of lactose to organic acids such as lactate. This leads to a substantial decrease in pH - both in the medium, as well as cytosolic. The latter impairs metabolic activities due to the pH-dependence of enzymes, which compromises microbial growth. To quantitatively elucidate the impact of the acidification on metabolism of L. bulgaricus in an integrated way, we have developed a proton-dependent computational model of lactose metabolism and casein degradation based on experimental data. The model accounts for the influence of pH on enzyme activities as well as cellular growth and proliferation of the bacterial population. We used a machine learning approach to quantify the cell volume throughout fermentation. Simulation results show a decrease in metabolic flux with acidification of the cytosol. Additionally, the validated model predicts a similar metabolic behaviour within a wide range of non-limiting substrate concentrations. This computational model provides a deeper understanding of the intricate relationships between metabolic activity and acidification and paves the way for further optimization of yoghurt production under industrial settings.


Assuntos
Lactobacillus delbrueckii , Lactobacillus delbrueckii/metabolismo , Lactose , Metabolismo dos Carboidratos , Fermentação , Concentração de Íons de Hidrogênio
18.
J Sci Food Agric ; 103(15): 7494-7505, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37411001

RESUMO

BACKGROUND: Enterotoxigenic Escherichia coli (ETEC) is a pathogen that causes traveler's diarrhea, for which an effective vaccine is lacking. Previous studies showed that Limosilactobacillus reuteri could inhibit E. coli, effectively increase the expression of its tight junction protein, and reduce the adhesion of ETEC to the intestinal epithelial Caco-2 cell line. In this study, three kinds of yogurt with different starter cultures were first prepared: Lm. reuteri yogurt (fermented by Lm. reuteri alone), traditional yogurt (fermented by Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus at a ratio of 1:1) and mixed yogurt (fermented by Lm. reuteri, S. thermophilus and L. delbrueckii subsp. bulgaricus at a ratio of 1:1:1). The physiological properties, oxidative stress, intestinal barrier function, tight junction protein, pathological conditions and intestinal microbiota composition were investigated. RESULTS: The data showed that Lm. reuteri-fermented yogurt pregavage could effectively alleviate the intestinal barrier impairment caused by ETEC in mice. It alleviated intestinal villus shortening and inflammatory cell infiltration, decreased plasma diamine oxidase concentration and increased claudin-1 and occludin expression in the jejunum of ETEC-infected mice. In addition, Lm. reuteri-fermented yogurt significantly reduced the ETEC load in fecal samples, reversed the increase in Pseudomonadota abundance and decreased Bacteroidota abundance caused by ETEC infection. Furthermore, the composition of the intestinal microbiota could maintain a stable state similar to that in healthy mice. CONCLUSION: These findings indicate that Lm. reuteri-fermented yogurt could alleviate intestinal barrier damage, inhibit ETEC growth and maintain the stability of the intestinal microbiota during ETEC infection. © 2023 Society of Chemical Industry.


Assuntos
Escherichia coli Enterotoxigênica , Infecções por Escherichia coli , Lactobacillus delbrueckii , Limosilactobacillus reuteri , Humanos , Animais , Camundongos , Diarreia/prevenção & controle , Iogurte , Células CACO-2 , Viagem , Lactobacillus delbrueckii/metabolismo , Infecções por Escherichia coli/prevenção & controle , Proteínas de Junções Íntimas/metabolismo
19.
Molecules ; 28(13)2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37446903

RESUMO

Yak yogurt, which is rich in microorganisms, is a naturally fermented dairy product prepared with ancient and modern techniques by Chinese herdsmen in the Qinghai-Tibet Plateau. The objective of this research was to assess the impact of Lactobacillus bulgaricus and Streptococcus thermophilus starter cultures on the quality and shelf life of yak yogurt, as well as the genetic stability across multiple generations, in comparison to commercially available plain yogurt and peach oat flavor yogurt. Following that, the samples were evenly divided into four treatment groups denoted as T1 (treatment 1), T2, T3, and T4, with each group employing a distinct source of yogurt formulation. T1 included L. bulgaricus, T2 comprised S. thermophilus, T3 consisted of plain yogurt, and T4 represented peach oat yogurt flavor. The findings indicate that T1 yogurt consistently presents a lower pH and higher acidity compared to the other three yogurt types throughout the entire generation process. Moreover, the fat content in all generations of the four yogurt types exceeds the national standard of 3.1 g/100 g, while the total solid content shows a tendency to stabilize across generations. The protein content varies significantly among each generation, with T1 and T4 yogurt indicating higher levels compared to the T2 and T3 yogurt groups. In terms of overall quality, T1 and T4 yogurt are superior to T2 and T3 yogurt, with T1 yogurt being the highest in quality among all groups. The findings revealed that the inclusion of L. bulgaricus led to enhanced flavor, texture, and genetic stability in yak yogurt. This study will serve as a valuable source of data, support, and methodology for the development and screening of compound starters to be utilized in milk fermentation in future research and applications.


Assuntos
Lactobacillus delbrueckii , Iogurte , Animais , Bovinos , Iogurte/análise , Leite/química , Tibet , Lactobacillus delbrueckii/metabolismo , Streptococcus thermophilus/metabolismo , Fermentação
20.
Int J Biol Macromol ; 245: 125375, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37321439

RESUMO

We present the structure, biological activity, peptide composition, and emulsifying properties of pea protein isolate (PPI) after hydrolysis by cell envelope proteinase (CEP) from Lactobacillus delbrueckii subsp. bulgaricus. Hydrolysis resulted in the unfolding of the PPI structure, characterized by an increase in fluorescence and UV absorption, which was related to thermal stability as demonstrated by a significant increase in ΔH and the thermal denaturation temperature (from 77.25 ± 0.05 to 84.45 ± 0.04 °C). The hydrophobic amino acid of PPI significantly increased from 218.26 ± 0.04 to 620.77 ± 0.04 followed by 557.18 ± 0.05 mg/100 g, which was related to their emulsifying properties, with the maximum emulsifying activity index (88.62 ± 0.83 m2/g, after 6 h hydrolysis) and emulsifying stability index (130.77 ± 1.12 min, after 2 h hydrolysis). Further, the results of LC-MS/MS analysis demonstrated that the CEP tended to hydrolyze peptides with an N-terminus dominated by Ser and a C-terminus dominated by Leu, which enhanced the biological activity of pea protein hydrolysates, as supported by their relatively high antioxidant (ABTS+ and DPPH radical scavenging rates were 82.31 ± 0.32% and 88.95 ± 0.31%) and ACE inhibitory (83.56 ± 1.70%) activities after 6 h of hydrolysis. 15 peptide sequences (score > 0.5) possessed both antioxidant and ACE inhibitory activity potential according to the BIOPEP database. This study provides theoretical guidance for the development of CEP-hydrolyzed peptides with antioxidant and ACE inhibitory activity that can be used as emulsifiers in functional foods.


Assuntos
Lactobacillus delbrueckii , Peptídeo Hidrolases , Peptídeo Hidrolases/metabolismo , Lactobacillus delbrueckii/metabolismo , Hidrolisados de Proteína/química , Pisum sativum/metabolismo , Antioxidantes/farmacologia , Cromatografia Líquida , Espectrometria de Massas em Tandem , Peptídeos/química , Endopeptidases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...