Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 618
Filtrar
1.
Int J Mol Sci ; 25(14)2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39062848

RESUMO

Recent research has underscored the efficacy of Lactobacillus plantarum (L. plantarum) in managing obesity among healthy adults. This meta-analysis reviewed randomized controlled trials (RCTs) from major databases up to May 2024, focusing on the effects of L. plantarum on body weight, body mass index (BMI), and metabolic parameters. This study has been registered in PROSPERO (number: CRD 42024531611). The analysis of nine studies revealed significant weight reduction and BMI decreases with L. plantarum supplementation compared to a placebo. Notably, using more than two strains together enhanced these effects. Improvements were also observed in abdominal fat and inflammatory markers such as interleukin-6 (IL-6) and high-sensitivity C-reactive protein (hs-CRP). This meta-analysis synthesizes evidence from nine RCTs to test the hypothesis that L. plantarum supplementation effectively reduces body weight and BMI in healthy adults compared to a placebo. However, variations in study designs, probiotic strains, and intervention durations call for more robust trials to confirm these benefits.


Assuntos
Inflamação , Lactobacillus plantarum , Obesidade , Probióticos , Lactobacillus plantarum/fisiologia , Humanos , Obesidade/microbiologia , Obesidade/terapia , Probióticos/uso terapêutico , Índice de Massa Corporal , Ensaios Clínicos Controlados Aleatórios como Assunto , Proteína C-Reativa/metabolismo , Proteína C-Reativa/análise
2.
PLoS One ; 19(7): e0307181, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39046973

RESUMO

Metabolic-associated fatty liver disease (MAFLD) is predominantly associated with metabolic disturbances representing aberrant liver function and increased uric acid (UA) levels. Growing evidences have suggested a close relationship between metabolic disturbances and the gut microbiota. A placebo-controlled, double-blinded, randomized clinical trial was therefore conducted to explore the impacts of daily supplements with various combinations of the probiotics, Lactobacillus fermentum TSF331, Lactobacillus reuteri TSR332, and Lactobacillus plantarum TSP05 with a focus on liver function and serum UA levels. Test subjects with abnormal levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), and UA were recruited and randomly allocated into six groups. Eighty-two participants successfully completed the 60-day intervention without any dropouts or occurrence of adverse events. The serum AST, ALT, and UA levels were significantly reduced in all treatment groups (P < 0.05). The fecal microbiota analysis revealed the intervention led to an increase in the population of commensal bacteria and a decrease in pathobiont bacteria, especially Bilophila wadsworthia. The in vitro study indicated the probiotic treatments reduced lipid accumulation and inflammatory factor expressions in HepG2 cells, and also promoted UA excretion in Caco-2 cells. The supplementation of multi-strain probiotics (TSF331, TSR332, and TSP05) together can improve liver function and UA management and may have good potential in treating asymptomatic MAFLD. Trial registration. The trial was registered in the US Library of Medicine (clinicaltrials.gov) with the number NCT06183801 on December 28, 2023.


Assuntos
Lactobacillus plantarum , Limosilactobacillus fermentum , Limosilactobacillus reuteri , Probióticos , Ácido Úrico , Humanos , Probióticos/administração & dosagem , Lactobacillus plantarum/fisiologia , Masculino , Ácido Úrico/sangue , Ácido Úrico/metabolismo , Feminino , Projetos Piloto , Pessoa de Meia-Idade , Método Duplo-Cego , Fígado/metabolismo , Adulto , Microbioma Gastrointestinal/efeitos dos fármacos , Células Hep G2 , Células CACO-2 , Aspartato Aminotransferases/sangue , Fezes/microbiologia , Alanina Transaminase/sangue
3.
PLoS One ; 19(6): e0303091, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38905169

RESUMO

The primary objective of this investigation was to assess the viability of free and encapsulated Lactobacillus plantarum probiotics in mango juice and under simulated gastrointestinal conditions. Specifically, the probiotics were encapsulated using sodium alginate and alginate-soy protein isolate through the internal gelation method, and the obtained probiotics were characterized for various attributes. Both free and encapsulated probiotics were exposed to challenging conditions, including thermal stress, low temperature, and simulated gastrointestinal conditions. Additionally, both types of probiotics were incorporated into mango juice, and their survival was monitored over a 28-day storage period. Following viability under simulated gastrointestinal conditions, the count of free and encapsulated probiotic cells decreased from initial levels of 9.57 log CFU/mL, 9.55 log CFU/mL, and 9.53 log CFU/mL, 9.56 log CFU/mL to final levels of 6.14 log CFU/mL, 8.31 log CFU/mL, and 6.24 log CFU/mL, 8.62 log CFU/mL, respectively. Notably, encapsulated probiotics exhibited a decrease of 1.24 log CFU and 0.94 log CFU, while free cells experienced a reduction of 3.43 log CFU and 6.24 log CFU in mango juice over the storage period. Encapsulated probiotics demonstrated higher viability in mango juice compared to free probiotics throughout the 28-day storage period. These findings suggest that mango juice can be enriched with probiotics to create a health-promoting beverage.


Assuntos
Alginatos , Lactobacillus plantarum , Viabilidade Microbiana , Probióticos , Lactobacillus plantarum/fisiologia , Alginatos/química , Trato Gastrointestinal/microbiologia , Mangifera/microbiologia , Géis/química , Sucos de Frutas e Vegetais/microbiologia , Proteínas de Soja/química
4.
Gut Microbes ; 16(1): 2359501, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38841895

RESUMO

Autism spectrum disorder (ASD) is a neurodevelopmental disorder affecting over 1% of the global population. Individuals with ASD often exhibit complex behavioral conditions, including significant social difficulties and repetitive behaviors. Moreover, ASD often co-occurs with several other conditions, including intellectual disabilities and anxiety disorders. The etiology of ASD remains largely unknown owing to its complex genetic variations and associated environmental risks. Ultimately, this poses a fundamental challenge for the development of effective ASD treatment strategies. Previously, we demonstrated that daily supplementation with the probiotic Lactiplantibacillus plantarum PS128 (PS128) alleviates ASD symptoms in children. However, the mechanism underlying this improvement in ASD-associated behaviors remains unclear. Here, we used a well-established ASD mouse model, induced by prenatal exposure to valproic acid (VPA), to study the physiological roles of PS128 in vivo. Overall, we showed that PS128 selectively ameliorates behavioral abnormalities in social and spatial memory in VPA-induced ASD mice. Morphological examination of dendritic architecture further revealed that PS128 facilitated the restoration of dendritic arborization and spine density in the hippocampus and prefrontal cortex of ASD mice. Notably, PS128 was crucial for restoring oxytocin levels in the paraventricular nucleus and oxytocin receptor signaling in the hippocampus. Moreover, PS128 alters the gut microbiota composition and increases the abundance of Bifidobacterium spp. and PS128-induced changes in Bifidobacterium abundance positively correlated with PS128-induced behavioral improvements. Together, our results show that PS128 treatment can effectively ameliorate ASD-associated behaviors and reinstate oxytocin levels in VPA-induced mice, thereby providing a promising strategy for the future development of ASD therapeutics.


Assuntos
Transtorno do Espectro Autista , Modelos Animais de Doenças , Probióticos , Comportamento Social , Animais , Transtorno do Espectro Autista/terapia , Transtorno do Espectro Autista/microbiologia , Camundongos , Probióticos/administração & dosagem , Feminino , Masculino , Ácido Valproico , Microbioma Gastrointestinal , Comportamento Animal/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Hipocampo/metabolismo , Gravidez , Ocitocina/metabolismo , Córtex Pré-Frontal/metabolismo , Lactobacillus plantarum/fisiologia , Humanos
5.
Appl Microbiol Biotechnol ; 108(1): 361, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38837050

RESUMO

Lactobacillus delbrueckii subsp. bulgaricus and Lactiplantibacillus plantarum are two lactic acid bacteria (LAB) widely used in the food industry. The objective of this work was to assess the resistance of these bacteria to freeze- and spray-drying and study the mechanisms involved in their loss of activity. The culturability and acidifying activity were measured to determine the specific acidifying activity, while membrane integrity was studied by flow cytometry. The glass transitions temperature and the water activity of the dried bacterial suspensions were also determined. Fourier transform infrared (FTIR) micro-spectroscopy was used to study the biochemical composition of cells in an aqueous environment. All experiments were performed after freezing, drying and storage at 4, 23 and 37 °C. The results showed that Lb. bulgaricus CFL1 was sensitive to osmotic, mechanical, and thermal stresses, while Lpb. plantarum WCFS1 tolerated better the first two types of stress but was more sensitive to thermal stress. Moreover, FTIR results suggested that the sensitivity of Lb. bulgaricus CFL1 to freeze-drying could be attributed to membrane and cell wall degradation, whereas changes in nucleic acids and proteins would be responsible of heat inactivation of both strains associated with spray-drying. According to the activation energy values (47-85 kJ/mol), the functionality loss during storage is a chemically limited reaction. Still, the physical properties of the glassy matrix played a fundamental role in the rates of loss of activity and showed that a glass transition temperature 40 °C above the storage temperature is needed to reach good preservation during storage. KEY POINTS: • Specific FTIR bands are proposed as markers of osmotic, mechanic and thermal stress • Lb. bulgaricus CFL1 was sensitive to all three stresses, Lpb. plantarum WCFS1 to thermal stress only • Activation energy revealed chemically limited reactions ruled the activity loss in storage.


Assuntos
Liofilização , Liofilização/métodos , Espectroscopia de Infravermelho com Transformada de Fourier , Secagem por Atomização , Viabilidade Microbiana , Lactobacillus plantarum/metabolismo , Lactobacillus plantarum/fisiologia , Lactobacillus delbrueckii/metabolismo , Lactobacillus delbrueckii/fisiologia , Lactobacillales/metabolismo , Lactobacillales/fisiologia , Dessecação
6.
Sci Rep ; 14(1): 12319, 2024 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-38811623

RESUMO

Heat-killed Lactiplantibacillus plantarum L-137 (HK L-137) has been suggested to enhance the intestinal barrier in obese mice, leading to improvement of metabolic abnormalities and adipose tissue inflammation, and in healthy humans with overweight, leading to improvement of systemic inflammation. However, its detailed mechanism of action has not been clarified. Therefore, this study investigated the effects of HK L-137 on the permeability of rat small intestinal epithelial IEC-6 cells, tight junction-related gene and protein expression and localization, and intracellular signaling pathways involved in barrier function. Treatment of IEC-6 cells with HK L-137 for 26 h significantly reduced the permeability to fluorescein isothiocyanate-dextran (FD-4). HK L-137 also increased gene and protein expression of zonula occludens-1 (ZO-1), an important tight junction protein, without affecting the localization. Furthermore, inhibition of the extracellular signal-regulated kinase (ERK)1/2 pathway in IEC-6 cells canceled the HK L-137-related reduction in permeability to FD-4. Phosphorylation of ERK in IEC-6 cells was induced 15 min after the addition of HK L-137. These results suggest that HK L-137 reduces intestinal permeability partly through activating the ERK pathway and increasing expression of the ZO-1 gene and protein. Enhancement of intestinal barrier function with HK L-137 might be effective in preventing and treating leaky gut, for which no specific therapeutic tool has been established.


Assuntos
Células Epiteliais , Mucosa Intestinal , Proteína da Zônula de Oclusão-1 , Animais , Ratos , Proteína da Zônula de Oclusão-1/metabolismo , Proteína da Zônula de Oclusão-1/genética , Células Epiteliais/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Linhagem Celular , Intestino Delgado/metabolismo , Intestino Delgado/microbiologia , Probióticos/farmacologia , Permeabilidade , Lactobacillus plantarum/fisiologia , Junções Íntimas/metabolismo , Temperatura Alta , Sistema de Sinalização das MAP Quinases , Fosforilação , Função da Barreira Intestinal
7.
Microbiol Spectr ; 12(6): e0035324, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38717160

RESUMO

Candida albicans (C. albicans) and Lactiplantibacillus plantarum subsp. plantarum (L. plantarum) are frequently identified in various niches, but their dual-species interaction, especially with C. albicans in yeast form, remains unclear. This study aimed to investigate the dual-species interaction of L. plantarum and C. albicans, including proliferation, morphology, and transcriptomes examined by selective agar plate counting, microscopy, and polymicrobial RNA-seq, respectively. Maintaining a stable and unchanged growth rate, L. plantarum inhibited C. albicans yeast cell proliferation but not hyphal growth. Combining optical microscopy and atomic force microscopy, cell-to-cell direct contact and co-aggregation with L. plantarum cells surrounding C. albicans yeast cells were observed during dual-species interaction. Reduced C. albicans yeast cell proliferation in mixed culture was partially due to L. plantarum cell-free culture supernatant but not the acidic environment. Upon polymicrobial transcriptomics analysis, interesting changes were identified in both L. plantarum and C. albicans gene expression. First, two L. plantarum quorum-sensing systems showed contrary changes, with the activation of lamBDCA and repression of luxS. Second, the upregulation of stress response-related genes and downregulation of cell cycle, cell survival, and cell integrity-related pathways were identified in C. albicans, possibly connected to the stress posed by L. plantarum and the reduced yeast cell proliferation. Third, a large scale of pathogenesis and virulence factors were downregulated in C. albicans, indicating the potential interruption of pathogenic activities by L. plantarum. Fourth, partial metabolism and transport pathways were changed in L. plantarum and C. albicans. The information in this study might aid in understanding the behavior of L. plantarum and C. albicans in dual-species interaction.IMPORTANCEThe anti-Candida albicans activity of Lactiplantibacillus plantarum has been explored in the past decades. However, the importance of C. albicans yeast form and the effect of C. albicans on L. plantarum had also been omitted. In this study, the dual-species interaction of L. plantarum and C. albicans was investigated with a focus on the transcriptomes. Cell-to-cell direct contact and co-aggregation with L. plantarum cells surrounding C. albicans yeast cells were observed. Upon polymicrobial transcriptomics analysis, interesting changes were identified, including contrary changes in two L. plantarum quorum-sensing systems and reduced cell survival-related pathways and pathogenesis determinants in C. albicans.


Assuntos
Candida albicans , Interações Microbianas , Percepção de Quorum , Candida albicans/genética , Candida albicans/patogenicidade , Candida albicans/fisiologia , Candida albicans/metabolismo , Candida albicans/crescimento & desenvolvimento , Percepção de Quorum/genética , Virulência/genética , Lactobacillus plantarum/genética , Lactobacillus plantarum/metabolismo , Lactobacillus plantarum/fisiologia , Regulação Fúngica da Expressão Gênica , Transcriptoma , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
8.
Gut Microbes ; 16(1): 2338946, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38656273

RESUMO

Synbiotics combine the concepts of probiotics and prebiotics to synergistically enhance the health-associated effects of both components. Previously, we have shown that the intestinal persistence of inulin-utilizing L. plantarum Lp900 is significantly increased in rats fed an inulin-supplemented, high-calcium diet. Here we employed a competitive population dynamics approach to demonstrate that inulin and GOS can selectively enrich L. plantarum strains that utilize these substrates for growth during in vitro cultivation, but that such enrichment did not occur during intestinal transit in rats fed a GOS or inulin-supplemented diet. The intestinal persistence of all L. plantarum strains increased irrespective of their prebiotic utilization phenotype, which was dependent on the calcium level of the diet. Analysis of fecal microbiota and intestinal persistence decline rates indicated that prebiotic utilization capacity did not selectively stimulate intestinal persistence in prebiotic supplemented diets. Moreover, microbiota and organic acid profile analyses indicate that the prebiotic utilizing probiotic strains are vastly outcompeted by the endogenous prebiotic-utilizing microbiota, and that the collective enhanced persistence of all L. plantarum strains is most likely explained by their well-established tolerance to organic acids.


Assuntos
Fezes , Microbioma Gastrointestinal , Inulina , Prebióticos , Animais , Prebióticos/administração & dosagem , Inulina/metabolismo , Inulina/administração & dosagem , Ratos , Fezes/microbiologia , Lactobacillus plantarum/metabolismo , Lactobacillus plantarum/fisiologia , Masculino , Probióticos/administração & dosagem , Simbióticos/administração & dosagem , Ratos Sprague-Dawley
9.
J Nutr Biochem ; 125: 109560, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38163625

RESUMO

Food allergy is an abnormal immune reaction triggered by food protein antigens. Relevant studies have suggested that probiotic supplementation was with the potential to alleviate food allergy. This study aimed to explore the effects of Lactobacillus plantarum A56 on the alleviation of ovalbumin (OVA)-induced food allergy via immunomodulatory function, antioxidation, and modification of intestinal microbiota. Balb/c mice were sensitized with OVA (20 µg/mouse) by intraperitoneal injection for 3 weeks and accompanied by oral administration of L. plantarum A56 (109 CFU/mL), subsequently with orally challenged twice by OVA at 50 mg/mL for 1 week. The results showed that oral supplementation of L. plantarum A56 could effectively relieve allergic symptoms of mice, and decreased OVA-specific IgE and IgG1 concentrations. It also declined interleukin (IL)-4 level, raised interferon-γ (IFN-γ) in serum, and splenocyte supernatant, and the qPCR results were consistent with above results. Moreover, L. plantarum A56 treatment also fortified superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) levels, and reduced malondialdehyde (MDA) level in serum. The increased nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and forkhead box O1 (Foxo1) expression indicated that L. plantarum A56 exerted antioxidation through Nrf2-Foxo1 pathway. In addition, L. plantarum A56 treatment elevated Bacteroidetes richness, ASV/OTU number, species diversity, etc. Notably, Spearman correlation analysis indicated that Bacteroidetes displayed obviously negative correlation with IgE and IgG1, but Actinobacteria and Acidobacteria exhibited significantly positive correlation with IgG1 and IgE. Collectively, these results suggested that L. plantarum A56 could alleviate OVA-induced food allergy by regulating Th1/Th2 imbalance, antioxidation, and modulating intestinal microbiota.


Assuntos
Hipersensibilidade Alimentar , Microbioma Gastrointestinal , Lactobacillus plantarum , Camundongos , Animais , Lactobacillus plantarum/fisiologia , Fator 2 Relacionado a NF-E2 , Hipersensibilidade Alimentar/terapia , Imunoglobulina E , Imunoglobulina G , Camundongos Endogâmicos BALB C
10.
J Nutr Biochem ; 124: 109505, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37890709

RESUMO

Ulcerative colitis (UC) is a chronic, non-specific inflammatory sickness of the intestinal tract, chiefly implicating the rectum and colon, which is characterized by chronic or subacute diarrhea, mucopurulent stools, and abdominal pain. The pathogeny of UC is still uncertain, and it is thought that multiple factors interact to cause the disease, such as environment, genetics, gut microbes, and immunity. Injuring the intestinal barrier is one of the most significant features of UC and includes mechanical, chemical, immune, and biological barriers. Plenty of research has shown that probiotics, as profitable bacteria in the gut, can play a prominent role in the treatment of UC by improving gut barrier function and modulating gut immunity. Lactobacillus plantarum (L. plantarum), a common probiotic, has made outstanding contributions to food and medicine, and many studies in recent years have shown that L. plantarum has great preventive and therapeutic effects on ulcerative colitis and restores the intestinal barrier. This paper reviews the mechanisms of L. plantarum for improving the intestinal barrier function of UC organisms, mainly including regulating the immune response, inhibiting oxidative stress, raising the expression of tight junction (TJ) proteins, promoting the formation of mucin, improving the composition of gut flora, and raising the levels of short-chain fatty acids (SCFAs), which offers some help for the clinical therapy of UC.


Assuntos
Colite Ulcerativa , Colite , Lactobacillus plantarum , Humanos , Animais , Camundongos , Colite Ulcerativa/tratamento farmacológico , Lactobacillus plantarum/fisiologia , Função da Barreira Intestinal , Estresse Oxidativo , Fezes , Sulfato de Dextrana , Modelos Animais de Doenças , Colo , Camundongos Endogâmicos C57BL
11.
J Dairy Sci ; 107(5): 2760-2773, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38135047

RESUMO

This study aims to identify lactic acid bacteria (LAB) isolates possessing physiological characteristics suitable for use as probiotics in yogurt fermentation. Following acid and bile salt tolerance tests, Lactiplantibacillus plantarum (NUC08 and NUC101), Lacticaseibacillus rhamnosus (NUC55 and NUC201), and Lacticaseibacillus paracasei (NUC159, NUC216, and NUC351) were shortlisted based on intraspecies distribution for further evaluation. Their physiological probiotic properties, including transit tolerance, adhesion, autoaggregation, surface hydrophobicity, biofilm formation, and antibacterial activity, were assessed. Principal component analysis indicated that Lactiplantibacillus plantarum NUC08 was the preferred choice among the evaluated strains. Subsequent investigations revealed that co-culturing Lactiplantibacillus plantarum NUC08 with 2 yogurt starter strains resulted in a cooperative and synergistic effect, enhancing the growth of mixed strains and increasing their tolerance to simulated gastric and intestinal conditions. Additionally, when Vibrio harveyi bioluminescent reporter strain was used, the 3 cocultured strains cooperated to induce the activity of a quorum sensing (QS) molecule autoinducer-2 (AI-2), hinting a potential connection between phenotypic traits and QS in the cocultured strains. Importantly, LAB viable counts were significantly higher in yogurt co-fermented with Lactiplantibacillus plantarum NUC08, consistently throughout the storage period. In conclusion, the study demonstrates that the probiotic strain Lactiplantibacillus plantarum NUC08 can be employed in synergy with yogurt starter strains, affirming its potential for use in the development of functional fermented dairy products.


Assuntos
Produtos Fermentados do Leite , Lactobacillus plantarum , Probióticos , Animais , Iogurte/microbiologia , Lactobacillus plantarum/fisiologia , Lactobacillaceae
12.
Nutrients ; 15(21)2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37960165

RESUMO

Colorectal cancer (CRC) is a significant health concern and is the third most commonly diagnosed and second deadliest cancer worldwide. CRC has been steadily increasing in developing countries owing to factors such as aging and epidemics. Despite extensive research, the exact pathogenesis of CRC remains unclear, and its causes are complex and variable. Numerous in vitro, animal, and clinical trials have demonstrated the efficacy of probiotics such as Lactobacillus plantarum in reversing the adverse outcomes of CRC. These findings suggest that probiotics play vital roles in the prevention, adjuvant treatment, and prognosis of CRC. In this study, we constructed a mouse model of CRC using an intraperitoneal injection of azomethane combined with dextran sodium sulfate, while administering 5-fluorouracil as well as high- and low-doses of L. plantarum Zhang-LL live or heat-killed strains. Weight changes and disease activity indices were recorded during feeding, and the number of polyps and colon length were measured after euthanasia. HE staining was used to observe the histopathological changes in the colons of mice, and ELISA was used to detect the expression levels of IL-1ß, TNF-α, and IFN-γ in serum. To investigate the specific mechanisms involved in alleviating CRC progression, gut microbial alterations were investigated using 16S rRNA amplicon sequencing and non-targeted metabolomics, and changes in genes related to CRC were assessed using eukaryotic transcriptomics. The results showed that both viable and heat-killed strains of L. plantarum Zhang-LL in high doses significantly inhibited tumorigenesis, colon shortening, adverse inflammatory reactions, intestinal tissue damage, and pro-inflammatory factor expression upregulation. Specifically, in the gut microbiota, the abundance of the dominant flora Acutalibacter muris and Lactobacillus johnsonii was regulated, PGE2 expression was significantly reduced, the arachidonic acid metabolism pathway was inhibited, and CD22-mediated B-cell receptor regulation-related gene expression was upregulated. This study showed that L. plantarum Zhang-LL live or heat-inactivated strains alleviated CRC progression by reducing the abundance of potentially pathogenic bacteria, increasing the abundance of beneficial commensal bacteria, mediating the arachidonic acid metabolism pathway, and improving host immunogenicity.


Assuntos
Colite , Lactobacillus plantarum , Probióticos , Animais , Camundongos , Lactobacillus plantarum/fisiologia , Ácido Araquidônico/metabolismo , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Colite/induzido quimicamente , Colite/terapia , Colite/microbiologia , Transformação Celular Neoplásica , Carcinogênese , Modelos Animais de Doenças , Sulfato de Dextrana
13.
Nutrients ; 15(21)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37960257

RESUMO

Antibiotic-associated diarrhea (AAD) refers to diarrhea caused by gut microbiota disorders after the use of antibiotics, which seriously threatens the health of humans and animals. Therefore, it is necessary to find an effective therapy to treat AAD. This research aimed to explore the effects of Lactobacillus plantarum H-6 (L. plantarum H-6) and Weissella viridescens J-1 (W. viridescens J-1) on alleviating antibiotic-associated diarrhea induced by lincomycin hydrochloride (LH) in mice. The results show that L. plantarum H-6 could significantly reduce the expression of pro-inflammatory factors such as IL-1ß and IL-6 in colon tissue. At the same time, L. plantarum H-6 significantly increased the abundance of Lactobacillus and Akkermansia, decreased the abundance of Bacteroides, and increased the contents of L-tryptophan, LysoPC (20:4 (8Z, 11Z, 14Z, 17Z)), reduced riboflavin, threoninyl-methionine, and N-palmitoyl in serum. However, W. viridescens J-1 had little effect on the treatment of AAD. It can be concluded that L. plantarum H-6 can regulate mice's colonic microbial composition, improve their serum metabolic process, and alleviate antibiotic-associated diarrhea. This research may provide a novel therapeutic option for AAD.


Assuntos
Microbioma Gastrointestinal , Lactobacillus plantarum , Probióticos , Humanos , Camundongos , Animais , Lactobacillus plantarum/fisiologia , Diarreia/induzido quimicamente , Diarreia/tratamento farmacológico , Lactobacillus , Antibacterianos/farmacologia , Probióticos/uso terapêutico
14.
Cells ; 12(21)2023 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-37947616

RESUMO

Probiotic bacteria belonging to Lactobacillus spp. are important producers of bioactive molecules, known as postbiotics, that play essential roles in the immunological support of the intestinal mucosa. In this study, the system of co-culture of intestinal epithelial cells with macrophage cells in vitro was used to study the potential effect of postbiotic fractions of L. rhamonosus and L. plantarum on the modulation of the immune response induced by pro-inflammatory stimuli. This study's results revealed that the presence of probiotic bacterial components on the mucosal surface in the early and late stage of inflammatory conditions is based on cellular interactions that control inflammation and consequent damage to the intestinal epithelium. In our studies, heat killed fractions of probiotic bacteria and their extracted proteins showed a beneficial effect on controlling inflammation, regardless of the strain tested, consequently protecting intestinal barrier damage. In conclusion, the presented results emphasize that the fractions of probiotic bacteria of L. plantarum and L. rhamnosus may play a significant role in the regulation of LPS-mediated cytotoxic activity in intestinal epithelial cells. The fractions of probiotic strains of L. rhamnosus and L. plantarum showed the potential to suppress inflammation, effectively activating the anti-inflammatory cytokine IL-10 and modulating the IL-18-related response.


Assuntos
Lacticaseibacillus rhamnosus , Lactobacillus plantarum , Probióticos , Humanos , Lactobacillus plantarum/fisiologia , Lactobacillus/fisiologia , Probióticos/farmacologia , Inflamação
15.
Biomed Pharmacother ; 169: 115812, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37979376

RESUMO

Gut microbiota (GM) contributes to the production of immune-regulatory molecules and cytokines. However, our understanding regarding intricate relationship between Lactobacillus plantarum and GM on regulation of immune function remained limited. To investigate the effect of Lactobacillus plantarum on an immunosuppressed mouse model, we employed cyclophosphamide treatment and conducted various analysis including H&E (hematoxylin-eosin staining), immunohistochemistry, 16S rRNA gene sequencing, and RT-PCR. Our results demonstrated that the administration of Lactobacillus plantarum had significant immunoenhancing effects in the immune-suppressed mice, as evidenced by the restoration of functional expression of specific immune markers in the spleen and an increase in the number of goblet cells in intestine (P < 0.05). Microbial taxonomic analysis revealed alterations in the gut microbiota composition, characterized by a decrease in the richness of Firmicutes and an increase in the proportion of Verrucomicrobia and Actinobacteria following cyclophosphamide treatment. Furthermore, cyclophosphamide treatment significantly suppressed the mRNA expression of inflammatory cytokines (P < 0.05), which were subsequently restored after administration of Lactobacillus plantarum. These observations provide valuable insights into the complex interplay between probiotics, gut microbiota, and immune system functioning.


Assuntos
Microbioma Gastrointestinal , Lactobacillus plantarum , Probióticos , Camundongos , Animais , Lactobacillus plantarum/fisiologia , Microbioma Gastrointestinal/fisiologia , RNA Ribossômico 16S/genética , Intestinos , Citocinas , Ciclofosfamida/farmacologia , Probióticos/farmacologia
16.
Int J Biol Macromol ; 253(Pt 7): 127320, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37832615

RESUMO

The purpose of this study was to screen lactic acid bacteria active against Streptococcus pneumoniae and to analyze the genetic basis of their probiotic functions from the genome. We isolated a novel Lactiplantibacillus plantarum VHProbi P06 from pickles, which showed strong antibacterial activity against S. pneumoniae, adhesion to 5-8F cells, and inhibition of S. pneumoniae colonization in the respiratory tract. Genome of VHProbi P06 was analyzed, we found one class II bacteriocin synthesis gene cluster. Genome of the strain contained 42 adhesion-related protein-coding genes, and implicated three exopolysaccharide biosynthesis gene clusters with low homologous to L. plantarum WCFS1. Moreover, VHProbi P06 possessed 3 intact phage regions and 117 Carbohydrate Active Enzyme genes. By comparing the genomes of five L. plantarum, 275 unique genes were found in VHProbi P06. Finally, the gene prediction was verified, the bacteriocin PlnJK produced by P06 was identified by LC-MS/MS, and the laminar exopolysaccharide with a weight-averaged molecular of 125.37 KDa was also found. This study provides a theoretical basis for the application of VHProbi P06 to the upper respiratory tract to resist pathogenic bacteria.


Assuntos
Bacteriocinas , Lactobacillus plantarum , Probióticos , Streptococcus pneumoniae/genética , Cromatografia Líquida , Espectrometria de Massas em Tandem , Bacteriocinas/genética , Bacteriocinas/farmacologia , Lactobacillus plantarum/fisiologia
17.
Future Microbiol ; 18: 1197-1209, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37882738

RESUMO

It has been understood for nearly a century that patients with intestinal inflammatory disease (IBD) have a higher risk of developing colorectal cancer (CRC). Recently, two species of lactic acid bacteria, Lactobacillus plantarum and Lactococcus lactis, have been investigated as therapeutic agents for IBD. These bacteria have been shown to survive gastric transit, to adhere and colonize in the intestinal tract of humans and modulate the intestinal microbiota and immune response. L. plantarum and L. lactis might be used as multifunctional drugs for the treatment of IBD and the prevention or treatment of CRC. This article summarizes current knowledge of L. plantarum and L. lactis as therapeutic and preventative agents for IBD and CRC, respectively.


Assuntos
Neoplasias Colorretais , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Lactobacillus plantarum , Lactococcus lactis , Humanos , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/microbiologia , Intestinos , Lactobacillus plantarum/fisiologia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/prevenção & controle
18.
Int J Biol Macromol ; 246: 125639, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37394217

RESUMO

Probiotic products that contain lactobacilli have long histories of safe use as Lactobacillus strains have many physiological functions in the gastrointestinal tract (GIT). However, the viability of probiotics can be affected by food processing and the adverse environment. This study investigated the O/W (Oil-in-water emulsions) emulsions formed by coagulation of casein/GA (Gum Arabic) complexes for Lactiplantibacillus plantarum microencapsulation, and the stability of the strains during gastrointestinal environment were also determined. The results showed that the particle size of the emulsion decreased from 9.72 µm to 5.48 µm when the GA concentration increased from 0 to 2 (w/v), and the emulsion particles were found to be more uniform as observed by CLSM (Confocal Laser Scanning Microscope). The surface of this microencapsulated casein/GA composite forms smooth, dense agglomerates and has high viscoelasticity, which effectively improved casein's emulsifying activity (8.66 ± 0.17 m2/g). After the casein/GA complexes microencapsulation, a higher viable count was detected after gastrointestinal digestion in vitro, and the activity of L. plantarum is more stable (about 7.51 log CFU/mL) during 35 days of storage at 4 °C. The results of study will help to design lactic acid bacteria encapsulation systems based on the GIT environment for the oral delivery strategy.


Assuntos
Lactobacillus plantarum , Probióticos , Goma Arábica , Caseínas , Emulsões , Lactobacillus , Trato Gastrointestinal/microbiologia , Lactobacillus plantarum/fisiologia
19.
Front Immunol ; 14: 1195382, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37465686

RESUMO

Lactobacillus plantarum has recently been found to be a natural source feed additive bacteria with great advantages in food safety and animal welfare. Discovering novel strains with commercial application potentiation could benefit the local poultry industry, and in particular support Chinese farmers. In this study, we tested a recently isolated novel strain of Lactobacillus plantarum GX17 as a feed additive on the growth performance and intestinal barrier functions of 1-day-old Chinese yellow-feather chicks. As good as other commercial probiotics, feeding with Lactobacillus plantarum GX17 showed significant improvements in humoral immune responses and enhanced the immune effect after vaccination for either the Newcastle disease vaccine or the avian influenza vaccine. This study also found that feeding with Lactobacillus plantarum GX17 improved the feed-to-weight ratio and caused a significant increase of the villus length to crypt depth ratio. Furthermore, Lactobacillus plantarum GX17 significantly up-regulated the mRNA expression of CLDN, MUC2, and TLR2, all of which are jejunum-associated barrier genes, indicating an improvement of the intestinal barrier functions by enhancing the tight junction between epithelia cells. These results are comparable to the effects of feeding the commercial complex probiotics that improve the expression levels of CLDN, ocludin, MUC2, TLR2, and TLR4. In terms of maintaining intestinal health, commercial complex probiotics increased the relative abundance of Parabacteroides and Romboutsia, while Lactobacillus plantarum GX17 increased the relative abundance of Pseudoflavonifractor. Our data suggest that Lactobacillus plantarum GX17 could enhance the intestinal absorption of nutrients and therefore improve the growth performance of Chinese yellow-feather chicks. In conclusion, compared with the commercial complex probiotics, Lactobacillus plantarum GX17 has more positive effects on the growth performance and intestinal barrier function of yellow-feather chickens, and can be used as a feed additive.


Assuntos
Microbioma Gastrointestinal , Lactobacillus plantarum , Animais , Lactobacillus plantarum/fisiologia , Galinhas/microbiologia , Plumas , Receptor 2 Toll-Like
20.
Nutrients ; 15(11)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37299563

RESUMO

Probiotics are prospective for the prevention and treatment of cardiovascular diseases. Until now, systematic studies on the amelioration of hypercholesterolemia have been rare in terms of (cholesterol metabolism and transportation, reshaping of gut microbiota, as well as yielding SCFAs) intervention with lactic acid bacteria (LAB). In this study, strains of Lactiplantibacillus plantarum, WLPL21, WLPL72, and ZDY04, from fermented food and two combinations (Enterococcus faecium WEFA23 with L. plantarum WLPL21 and WLPL72) were compared for their effect on hypercholesterolemia. Comprehensively, with regard to the above aspects, L. plantarum WLPL21 showed the best mitigatory effect among all groups, which was revealed by decreasing total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) levels, upregulated cholesterol metabolism (Cyp27a1, Cyp7b1, Cyp7a1, and Cyp8b1) levels in the liver, cholesterol transportation (Abca1, Abcg5, and Abcg8) in the ileum or liver, and downregulated Npc1l1. Moreover, it reshaped the constitution of gut microbiota; specifically, the ratio of Firmicutes to Bacteroidetes (F/B) was downregulated; the relative abundance of Allobaculum, Blautia, and Lactobacillus was upregulated by 7.48-14.82-fold; and that of Lachnoclostridium and Desulfovibrio was then downregulated by 69.95% and 60.66%, respectively. In conclusion, L. plantarum WLPL21 improved cholesterol metabolism and transportation, as well as the abundance of gut microbiota, for alleviating high-cholesterol-diet-induced hypercholesterolemia.


Assuntos
Microbioma Gastrointestinal , Hipercolesterolemia , Hiperlipidemias , Lactobacillus plantarum , Probióticos , Camundongos , Animais , Hipercolesterolemia/prevenção & controle , Microbioma Gastrointestinal/fisiologia , Estudos Prospectivos , Colesterol/metabolismo , Probióticos/farmacologia , Dieta Hiperlipídica , Lactobacillus plantarum/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...