Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.097
Filtrar
1.
J Appl Microbiol ; 135(7)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38955370

RESUMO

AIMS: This study aims to evaluate the storage stability of the freeze-dried recombinant Lactococcus lactis NZ3900-fermented milk powder expressing K-ras (Kristen rat sarcoma viral oncogene homolog) mimotopes targeting colorectal cancer in vacuum packaging. METHODS AND RESULTS: The freeze-dried L. lactis-fermented milk powder stored in 4-ply retortable polypropylene (RCPP)-polyamide (PA)-aluminium (AL)-polyethylene terephthalate (PET) and aluminium polyethylene (ALPE) was evaluated throughout 49 days of accelerated storage (38°C and 90% relative humidity). The fermented milk powder stored in 4-ply packaging remained above 6 log10 CFU g-1 viability, displayed lower moisture content (6.1%), higher flowability (43° angle of repose), water solubility (62%), and survivability of L. lactis after simulated gastric and intestinal digestion (>82%) than ALPE packaging after 42 days of accelerated storage. K-ras mimotope expression was detected intracellularly and extracellularly in the freeze-dried L. lactis-fermented milk powder upon storage. CONCLUSIONS: This suggests that fermented milk powder is a suitable food carrier for this live oral vaccine.


Assuntos
Embalagem de Alimentos , Liofilização , Lactococcus lactis , Lactococcus lactis/metabolismo , Lactococcus lactis/genética , Embalagem de Alimentos/métodos , Animais , Vácuo , Pós , Produtos Fermentados do Leite/microbiologia , Fermentação , Leite/química , Genes ras/genética , Armazenamento de Alimentos
2.
Methods Mol Biol ; 2839: 99-110, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39008250

RESUMO

Metal ion homeostasis in mitochondria is essential to maintaining proper cellular physiology. However, the ability of metals to bind off target or form complexes with multiple metabolites presents major challenges to understanding the mechanisms that govern this homeostasis. Adding further to the complexity, some of the major mitochondrial transporters have shown substrate promiscuity. In many cases, mitochondrial metals are found in the matrix compartment that is surrounded by the impermeable inner membrane. Four major classes of transporters facilitate the movement of solute across the inner membrane. These are mitochondrial carrier family, ATP-binding cassette transporters, mitochondrial pyruvate carriers, and sideroflexins. For iron, the matrix is the site of iron-sulfur clusters and heme synthesis and therefore transport must occur in a coordinated fashion with the cellular needs for these critical cofactors. Iron could be transported in numerous forms as it has been shown to form complexes with abundant metabolites such as citrate, nucleotides, or glutathione. Here, we describe assays to study iron (or any metal) transport by mitochondrial carrier family proteins expressed in Lactococcus lactis using a nisin-controlled expression system.


Assuntos
Ferro , Lactococcus lactis , Lactococcus lactis/metabolismo , Lactococcus lactis/genética , Ferro/metabolismo , Metais/metabolismo , Mitocôndrias/metabolismo , Transporte Biológico , Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Nisina/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/genética
3.
Arch Microbiol ; 206(7): 336, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954047

RESUMO

Wild-type Lactococcus lactis strain LAC460 secretes prophage-encoded bacteriocin-like lysin LysL, which kills some Lactococcus strains, but has no lytic effect on the producer. LysL carries two N-terminal enzymatic active domains (EAD), and an unknown C-terminus without homology to known domains. This study aimed to determine whether the C-terminus of LysL carries a cell wall binding domain (CBD) for target specificity of LysL. The C-terminal putative CBD region of LysL was fused with His-tagged green fluorescent protein (HGFPuv). The HGFPuv_CBDlysL gene fusion was ligated into the pASG-IBA4 vector, and introduced into Escherichia coli. The fusion protein was produced and purified with affinity chromatography. To analyse the binding of HGFPuv_CBDLysL to Lactococcus cells, the protein was mixed with LysL-sensitive and LysL-resistant strains, including the LysL-producer LAC460, and the fluorescence of the cells was analysed. As seen in fluorescence microscope, HGFPuv_CBDLysL decorated the cell surface of LysL-sensitive L. cremoris MG1614 with green fluorescence, whereas the resistant L. lactis strains LM0230 and LAC460 remained unfluorescent. The fluorescence plate reader confirmed the microscopy results detecting fluorescence only from four tested LysL-sensitive strains but not from 11 tested LysL-resistant strains. Specific binding of HGFPuv_CBDLysL onto the LysL-sensitive cells but not onto the LysL-resistant strains indicates that the C-terminus of LysL contains specific CBD. In conclusion, this report presents experimental evidence of the presence of a CBD in a lactococcal phage lysin. Moreover, the inability of HGFPuv_CBDLysL to bind to the LysL producer LAC460 may partly explain the host's resistance to its own prophage lysin.


Assuntos
Bacteriocinas , Parede Celular , Lactococcus lactis , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Parede Celular/metabolismo , Bacteriocinas/metabolismo , Bacteriocinas/genética , Bacteriocinas/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Domínios Proteicos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/química , Ligação Proteica
4.
PLoS Genet ; 20(7): e1011340, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38950059

RESUMO

Lactococcus lactis is a lactic acid bacterium of major importance for food fermentation and biotechnological applications. The ability to manipulate its genome quickly and easily through competence for DNA transformation would accelerate its general use as a platform for a variety of applications. Natural transformation in this species requires the activation of the master regulator ComX. However, the growth conditions that lead to spontaneous transformation, as well as the regulators that control ComX production, are unknown. Here, we identified the carbon source, nitrogen supply, and pH as key factors controlling competence development in this species. Notably, we showed that these conditions are sensed by three global regulators (i.e., CcpA, CodY, and CovR), which repress comX transcription directly. Furthermore, our systematic inactivation of known signaling systems suggests that classical pheromone-sensing regulators are not involved. Finally, we revealed that the ComX-degrading MecA-ClpCP machinery plays a predominant role based on the identification of a single amino-acid substitution in the adaptor protein MecA of a highly transformable strain. Contrasting with closely-related streptococci, the master competence regulator in L. lactis is regulated both proximally by general sensors and distantly by the Clp degradation machinery. This study not only highlights the diversity of regulatory networks for competence control in Gram-positive bacteria, but it also paves the way for the use of natural transformation as a tool to manipulate this biotechnologically important bacterium.


Assuntos
Proteínas de Bactérias , Regulação Bacteriana da Expressão Gênica , Redes Reguladoras de Genes , Lactococcus lactis , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Transformação Bacteriana/genética , Lactococcus/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Competência de Transformação por DNA/genética
6.
Food Microbiol ; 122: 104555, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38839234

RESUMO

Fermentation contributes to the taste and odor of plant cheeses. The selection of functional cultures for the fermentation of plant cheeses, however, is in its infancy. This study aimed to select lactic acid bacteria for ripening of soy and lupin cheese analogues. Bacillus velezensis and B. amyloliquefaciens were used for germination of seeds to produce proteolytic enzymes; Lactococcus lactis and Lactiplantibacillus plantarum served as primary acidifying cultures. Levilactobacillus hammesii, Furfurilactobacillus milii, or Lentilactobacillus buchneri were assessed as adjunct cultures for the ripening of plant cheese. Growth of bacilli was inhibited at low pH. Both Lc. lactis and Lp. plantarum were inactived during plant cheese ripening. Cell counts of Lv. hammesii remained stable over 45 d of ripening while Ff. milii and Lt. buchneri grew slowly. Sequencing of full length 16S rRNA genes confirmed that the inocula the plant cheeses accounted for more than 98% of the bacterial communities. HPLC analysis revealed that Lt. buchneri metabolized lactate to acetate and 1,2-propanediol during ripening. Bacilli enhanced proteolysis as measured by quantification of free amino nitrogen, and the release of glutamate. LC-MS/MS analysis quantified kokumi-active dipeptides. The concentrations of γ-Glu-Leu, γ-Glu-Ile, and γ-Glu-Ala, γ-Glu-Cys in unripened cheeses were increased by seed germination but γ-Glu-Phe was degraded. Lt. buchneri but not Lv. hammesii or Ff. milii accumulated γ-Glu-Val, γ-Glu-Ile or γ-Glu-Leu during ripening, indicating strain-specific differences. In conclusion, a consortium of bacilli, acidification cultures and adjunct cultures accumulates taste- and kokumi-active compounds during ripening of plant cheeses.


Assuntos
Queijo , Fermentação , Microbiologia de Alimentos , Queijo/microbiologia , Queijo/análise , Lupinus/microbiologia , Lupinus/crescimento & desenvolvimento , Glycine max/microbiologia , Glycine max/crescimento & desenvolvimento , Paladar , Bacillus/metabolismo , Bacillus/genética , Bacillus/crescimento & desenvolvimento , Concentração de Íons de Hidrogênio , Lactobacillales/metabolismo , Lactobacillales/genética , Lactobacillales/crescimento & desenvolvimento , Lactococcus lactis/metabolismo , Lactococcus lactis/crescimento & desenvolvimento , Lactococcus lactis/genética , RNA Ribossômico 16S/genética
7.
Anal Chem ; 96(28): 11247-11254, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38941069

RESUMO

Evaluating the dynamic interaction of microorganisms and mammalian cells is challenging due to the lack of suitable platforms for examining interspecies interactions in biologically relevant coculture conditions. In this work, we demonstrate the interaction between probiotic bacteria (Lactococcus lactis and Escherichia coli) and A498 human cancer cells in vitro, utilizing a hydrogel-based platform in a label-free manner by infrared spectroscopy. The L. lactis strain recapitulated in the compartment system secretes polypeptide molecules such as nisin, which has been reported to trigger cell apoptosis. We propose a mid-infrared (IR) spectroscopic imaging approach to monitor the variation of biological components utilizing kidney cells (A498) as a model system cocultured with bacteria. We characterized the biochemical composition (i.e., nucleic acids, protein secondary structures, and lipid conformations) label-free using an unbiased measurement. Several IR spectral features, including unsaturated fatty acids, ß-turns in protein, and nucleic acids, were utilized to predict cellular response. These features were then applied to establish a quantitative relationship through a multivariate regression model to predict cellular dynamics in the coculture system to assess the effect of nisin on A498 kidney cancer cells cocultured with bacteria. Overall, our study sheds light on the potential of using IR spectroscopic imaging as a label-free tool to monitor complex microbe-host cell interactions in biological systems. This integration will enable mechanistic studies of interspecies interactions with insights into their underlying physiological processes.


Assuntos
Técnicas de Cocultura , Escherichia coli , Probióticos , Humanos , Escherichia coli/metabolismo , Probióticos/metabolismo , Nisina/farmacologia , Nisina/química , Nisina/metabolismo , Lactococcus lactis/metabolismo , Espectrofotometria Infravermelho , Linhagem Celular Tumoral
8.
Appl Microbiol Biotechnol ; 108(1): 397, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38922350

RESUMO

Functional M cells are differentiated by receptor activator of NF-κB ligand (RANKL) and capture of luminal antigens to initiate immune responses. We aimed to use postbiotic-based recombinant chicken RANKL (cRANKL) to promote M cell differentiation and test the efficacy of oral vaccines. Chicks were divided into three groups that were administered phosphate-buffered saline (PBS), cell extracts of wild-type Lactococcus lactis subsp. lactis IL1403 (WT_CE), or cell extracts of recombinant L. lactis expressing cRANKL (cRANKL_CE). The expression of the M cell marker was measured, and the gut microbiome was profiled. The efficiency of the infectious bursal disease (IBD) vaccine was tested after 12 consecutive days of administering cRANKL_CE. The chickens that were administered cRANKL_CE (p = 0.038) had significantly higher Annexin A5 (ANXA5) mRNA expression levels than those in the PBS group (PBS vs. WT_CE, p = 0.657). In the gut microbiome analysis, no significant changes were observed. However, the relative abundance of Escherichia-Shigella was negatively correlated (r = - 0.43, p = 0.019) with ANXA5 mRNA expression in Peyer's patches. cRANKL_CE/IBD (p = 0.018) had significantly higher IBD-specific faecal IgA levels than PBS/IBD (PBS/IBD vs. WT_CE/IBD, p = 0.217). Postbiotic-based recombinant cRANKL effectively improved the expression of M cell markers and the efficiency of oral vaccines. No significant changes were observed in the gut microbiome after administration of postbiotic-based recombinant cRANKL. This strategy can be used for the development of feed additives and adjuvants. KEY POINTS: • Postbiotic-based recombinant cRANKL enhanced the expression of ANXA5 in chicken. • The relative abundance of Escherichia-Shigella was negatively correlated with ANXA5 expression. • Postbiotic-based recombinant cRANKL effectively improved the efficiency of oral vaccine.


Assuntos
Galinhas , Microbioma Gastrointestinal , Lactococcus lactis , Ligante RANK , Proteínas Recombinantes , Animais , Galinhas/imunologia , Administração Oral , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Lactococcus lactis/imunologia , Ligante RANK/imunologia , Ligante RANK/genética , Ligante RANK/metabolismo , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/administração & dosagem , Infecções por Birnaviridae/prevenção & controle , Infecções por Birnaviridae/imunologia , Infecções por Birnaviridae/veterinária , Doenças das Aves Domésticas/prevenção & controle , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/microbiologia , Vírus da Doença Infecciosa da Bursa/imunologia , Vírus da Doença Infecciosa da Bursa/genética , Diferenciação Celular , Nódulos Linfáticos Agregados/imunologia
9.
Elife ; 122024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38695350

RESUMO

Bacteria utilize various strategies to prevent internal dehydration during hypertonic stress. A common approach to countering the effects of the stress is to import compatible solutes such as glycine betaine, leading to simultaneous passive water fluxes following the osmotic gradient. OpuA from Lactococcus lactis is a type I ABC-importer that uses two substrate-binding domains (SBDs) to capture extracellular glycine betaine and deliver the substrate to the transmembrane domains for subsequent transport. OpuA senses osmotic stress via changes in the internal ionic strength and is furthermore regulated by the 2nd messenger cyclic-di-AMP. We now show, by means of solution-based single-molecule FRET and analysis with multi-parameter photon-by-photon hidden Markov modeling, that the SBDs transiently interact in an ionic strength-dependent manner. The smFRET data are in accordance with the apparent cooperativity in transport and supported by new cryo-EM data of OpuA. We propose that the physical interactions between SBDs and cooperativity in substrate delivery are part of the transport mechanism.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Proteínas de Bactérias , Lactococcus lactis , Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Betaína/metabolismo , Microscopia Crioeletrônica , Transferência Ressonante de Energia de Fluorescência , Lactococcus lactis/metabolismo , Concentração Osmolar , Osmorregulação , Ligação Proteica , Domínios Proteicos , Imagem Individual de Molécula
10.
Lett Appl Microbiol ; 77(6)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38816215

RESUMO

γ-Aminobutyric acid (GABA) is an inhibitory neurotransmitter of the central nervous system that impacts physical and mental health. Low GABA levels have been documented in several diseases, including multiple sclerosis and depression, and studies suggest that GABA could improve disease outcomes in those conditions. Probiotic bacteria naturally produce GABA and have been engineered to enhance its synthesis. Strains engineered thus far use inducible expression systems that require the addition of exogenous molecules, which complicates their development as therapeutics. This study aimed to overcome this challenge by engineering Lactococcus lactis with a constitutive GABA synthesis gene cassette. GABA synthesizing and transport genes (gadB and gadC) were cloned onto plasmids downstream of constitutive L. lactis promoters [P2, P5, shortened P8 (P8s)] of different strengths and transformed into L. lactis. Fold increase in gadCB expression conferred by these promoters (P2, P5, and P8s) was 322, 422, and 627, respectively, compared to the unmodified strain (P = 0.0325, P8s). GABA synthesis in the highest gadCB expressing strain, L. lactis-P8s-glutamic acid decarboxylase (GAD), was dependent on media supplementation with glutamic acid and significantly higher than the unmodified strain (P < 0.0001, 125 mM, 200 mM glutamic acid). Lactococcus lactis-P8s-GAD is poised for therapeutic testing in animal models of low-GABA-associated disease.


Assuntos
Glutamato Descarboxilase , Lactococcus lactis , Regiões Promotoras Genéticas , Ácido gama-Aminobutírico , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Ácido gama-Aminobutírico/metabolismo , Ácido gama-Aminobutírico/biossíntese , Glutamato Descarboxilase/genética , Glutamato Descarboxilase/metabolismo , Engenharia Genética , Plasmídeos/genética , Ácido Glutâmico/metabolismo , Engenharia Metabólica , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
11.
World J Microbiol Biotechnol ; 40(7): 199, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38727988

RESUMO

Glucagon-like peptide-1(GLP-1) is an incretin hormone secreted primarily from the intestinal L-cells in response to meals. GLP-1 is a key regulator of energy metabolism and food intake. It has been proven that P9 protein from A. muciniphila could increase GLP-1 release and improve glucose homeostasis in HFD-induced mice. To obtain an engineered Lactococcus lactis which produced P9 protein, mature polypeptide chain of P9 was codon-optimized, fused with N-terminal signal peptide Usp45, and expressed in L. lactis NZ9000. Heterologous secretion of P9 by recombinant L. lactis NZP9 were successfully detected by SDS-PAGE and western blotting. Notably, the supernatant of L. lactis NZP9 stimulated GLP-1 production of NCI-H716 cells. The relative expression level of GLP-1 biosynthesis gene GCG and PCSK1 were upregulated by 1.63 and 1.53 folds, respectively. To our knowledge, this is the first report on the secretory expression of carboxyl-terminal processing protease P9 from A. muciniphila in L. lactis. Our results suggest that genetically engineered L. lactis which expressed P9 may have therapeutic potential for the treatment of diabetes, obesity and other metabolic disorders.


Assuntos
Akkermansia , Peptídeo 1 Semelhante ao Glucagon , Lactococcus lactis , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Peptídeo 1 Semelhante ao Glucagon/genética , Akkermansia/genética , Akkermansia/metabolismo , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Humanos , Células L , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Animais , Camundongos , Linhagem Celular , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
12.
Biochemistry ; 63(10): 1347-1358, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38691339

RESUMO

The physiological role of dihydroorotate dehydrogenase (DHOD) enzymes is to catalyze the oxidation of dihydroorotate to orotate in pyrimidine biosynthesis. DHOD enzymes are structurally diverse existing as both soluble and membrane-associated forms. The Family 1 enzymes are soluble and act either as conventional single subunit flavin-dependent dehydrogenases known as Class 1A (DHODA) or as unusual heterodimeric enzymes known as Class 1B (DHODB). DHODBs possess two active sites separated by ∼20 Å, each with a noncovalently bound flavin cofactor. NAD is thought to interact at the FAD containing site, and the pyrimidine substrate is known to bind at the FMN containing site. At the approximate center of the protein is a single Fe2S2 center that is assumed to act as a conduit, facilitating one-electron transfers between the flavins. We present anaerobic transient state analysis of a DHODB enzyme from Lactoccocus lactis. The data presented primarily report the exothermic reaction that reduces orotate to dihydroorotate. The reductive half reaction reveals rapid two-electron reduction that is followed by the accumulation of a four-electron reduced state when NADH is added in excess, suggesting that the initial two electrons acquired reside on the FMN cofactor. Concomitant with the first reduction is the accumulation of a long-wavelength absorption feature consistent with the blue form of a flavin semiquinone. Spectral deconvolution and fitting to a model that includes reversibility for the second electron transfer reveals equilibrium accumulation of a flavin bisemiquinone state that has features of both red and blue semiquinones. Single turnover reactions with limiting NADH and excess orotate reveal that the flavin bisemiquinone accumulates with reduction of the enzyme by NADH and decays with reduction of the pyrimidine substrate, establishing the bisemiquinone as a fractional state of the two-electron reduced intermediate observed.


Assuntos
Di-Hidro-Orotato Desidrogenase , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/química , Lactococcus lactis/enzimologia , Lactococcus lactis/metabolismo , Oxirredução , Domínio Catalítico , Cinética , Mononucleotídeo de Flavina/metabolismo , Mononucleotídeo de Flavina/química , NAD/metabolismo , NAD/química , Catálise , Flavinas/metabolismo , Biocatálise , Flavina-Adenina Dinucleotídeo/metabolismo , Flavina-Adenina Dinucleotídeo/química
13.
Proc Natl Acad Sci U S A ; 121(21): e2401738121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38743623

RESUMO

Studies have determined that nonredox enzymes that are cofactored with Fe(II) are the most oxidant-sensitive targets inside Escherichia coli. These enzymes use Fe(II) cofactors to bind and activate substrates. Because of their solvent exposure, the metal can be accessed and oxidized by reactive oxygen species, thereby inactivating the enzyme. Because these enzymes participate in key physiological processes, the consequences of stress can be severe. Accordingly, when E. coli senses elevated levels of H2O2, it induces both a miniferritin and a manganese importer, enabling the replacement of the iron atom in these enzymes with manganese. Manganese does not react with H2O2 and thereby preserves enzyme activity. In this study, we examined several diverse microbes to identify the metal that they customarily integrate into ribulose-5-phosphate 3-epimerase, a representative of this enzyme family. The anaerobe Bacteroides thetaiotaomicron, like E. coli, uses iron. In contrast, Bacillus subtilis and Lactococcus lactis use manganese, and Saccharomyces cerevisiae uses zinc. The latter organisms are therefore well suited to the oxidizing environments in which they dwell. Similar results were obtained with peptide deformylase, another essential enzyme of the mononuclear class. Strikingly, heterologous expression experiments show that it is the metal pool within the organism, rather than features of the protein itself, that determine which metal is incorporated. Further, regardless of the source organism, each enzyme exhibits highest turnover with iron and lowest turnover with zinc. We infer that the intrinsic catalytic properties of the metal cannot easily be retuned by evolution of the polypeptide.


Assuntos
Escherichia coli , Ferro , Manganês , Manganês/metabolismo , Ferro/metabolismo , Escherichia coli/metabolismo , Escherichia coli/genética , Peróxido de Hidrogênio/metabolismo , Saccharomyces cerevisiae/metabolismo , Bacillus subtilis/enzimologia , Bacillus subtilis/metabolismo , Bacillus subtilis/genética , Zinco/metabolismo , Lactococcus lactis/enzimologia , Lactococcus lactis/metabolismo , Oxirredução , Metais/metabolismo
14.
Nat Commun ; 15(1): 3955, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38729929

RESUMO

Widespread manganese-sensing transcriptional riboswitches effect the dependable gene regulation needed for bacterial manganese homeostasis in changing environments. Riboswitches - like most structured RNAs - are believed to fold co-transcriptionally, subject to both ligand binding and transcription events; yet how these processes are orchestrated for robust regulation is poorly understood. Through a combination of single-molecule and bulk approaches, we discover how a single Mn2+ ion and the transcribing RNA polymerase (RNAP), paused immediately downstream by a DNA template sequence, are coordinated by the bridging switch helix P1.1 in the representative Lactococcus lactis riboswitch. This coordination achieves a heretofore-overlooked semi-docked global conformation of the nascent RNA, P1.1 base pair stabilization, transcription factor NusA ejection, and RNAP pause extension, thereby enforcing transcription readthrough. Our work demonstrates how a central, adaptable RNA helix functions analogous to a molecular fulcrum of a first-class lever system to integrate disparate signals for finely balanced gene expression control.


Assuntos
RNA Polimerases Dirigidas por DNA , Regulação Bacteriana da Expressão Gênica , Lactococcus lactis , Conformação de Ácido Nucleico , RNA Bacteriano , Riboswitch , Transcrição Gênica , Riboswitch/genética , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , RNA Polimerases Dirigidas por DNA/genética , RNA Bacteriano/metabolismo , RNA Bacteriano/genética , RNA Bacteriano/química , Manganês/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Imagem Individual de Molécula
15.
Cell Rep ; 43(4): 114110, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38607912

RESUMO

Transmembrane transporter proteins are essential for maintaining cellular homeostasis and, as such, are key drug targets. Many transmembrane transporter proteins are known to undergo large structural rearrangements during their functional cycles. Despite the wealth of detailed structural and functional data available for these systems, our understanding of their dynamics and, consequently, how they function is generally limited. We introduce an innovative approach that enables us to directly measure the dynamics and stability of interdomain interactions of transmembrane proteins using optical tweezers. Focusing on the osmoregulatory ATP-binding cassette transporter OpuA from Lactococcus lactis, we examine the mechanical properties and potential interactions of its substrate-binding domains. Our measurements are performed in lipid nanodiscs, providing a native-mimicking environment for the transmembrane protein. The technique provides high spatial and temporal resolution and allows us to study the functionally relevant motions and interdomain interactions of individual transmembrane transporter proteins in real time in a lipid bilayer.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Proteínas de Bactérias , Lactococcus lactis , Pinças Ópticas , Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/química , Lactococcus lactis/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Ligação Proteica , Domínios Proteicos , Imagem Individual de Molécula , Estabilidade Proteica , Bicamadas Lipídicas/metabolismo , Bicamadas Lipídicas/química
16.
Appl Environ Microbiol ; 90(5): e0041424, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38563750

RESUMO

Lactococcus lactis, a lactic acid bacterium used in food fermentations and commonly found in the human gut, is known to possess a fermentative metabolism. L. lactis, however, has been demonstrated to transfer metabolically generated electrons to external electron acceptors, a process termed extracellular electron transfer (EET). Here, we investigated an L. lactis mutant with an unusually high capacity for EET that was obtained in an adaptive laboratory evolution (ALE) experiment. First, we investigated how global gene expression had changed, and found that amino acid metabolism and nucleotide metabolism had been affected significantly. One of the most significantly upregulated genes encoded the NADH dehydrogenase NoxB. We found that this upregulation was due to a mutation in the promoter region of NoxB, which abolished carbon catabolite repression. A unique role of NoxB in EET could be attributed and it was directly verified, for the first time, that NoxB could support respiration in L. lactis. NoxB, was shown to be a novel type-II NADH dehydrogenase that is widely distributed among gut microorganisms. This work expands our understanding of EET in Gram-positive electroactive microorganisms and the special significance of a novel type-II NADH dehydrogenase in EET.IMPORTANCEElectroactive microorganisms with extracellular electron transfer (EET) ability play important roles in biotechnology and ecosystems. To date, there have been many investigations aiming at elucidating the mechanisms behind EET, and determining the relevance of EET for microorganisms in different niches. However, how EET can be enhanced and harnessed for biotechnological applications has been less explored. Here, we compare the transcriptomes of an EET-enhanced L. lactis mutant with its parent and elucidate the underlying reason for its superior performance. We find that one of the most significantly upregulated genes is the gene encoding the NADH dehydrogenase NoxB, and that upregulation is due to a mutation in the catabolite-responsive element that abolishes carbon catabolite repression. We demonstrate that NoxB has a special role in EET, and furthermore show that it supports respiration to oxygen, which has never been done previously. In addition, a search reveals that this novel NoxB-type NADH dehydrogenase is widely distributed among gut microorganisms.


Assuntos
Proteínas de Bactérias , Lactococcus lactis , NADH Desidrogenase , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Lactococcus lactis/enzimologia , Transporte de Elétrons , NADH Desidrogenase/metabolismo , NADH Desidrogenase/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Mutação , Regulação Bacteriana da Expressão Gênica , Fermentação
17.
Benef Microbes ; 15(3): 331-341, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38677715

RESUMO

This study investigated the anti-inflammatory effects of cell-free supernatant of Lactococcus lactis IDCC 2301 on lipopolysaccharide (LPS)-induced RAW 264.7 macrophages. Expression of inflammatory mediators and cytokines, and the production of nitric oxide (NO) and prostaglandin E2 (PGE2) were qualitatively analysed. The expression of signal transductors in inflammatory cascades was quantified by western blot. Treatment with cell-free supernatant of L. lactis IDCC 2301 significantly decreased the mRNA expression levels of tumour necrosis factor (TNF-α) and interleukins including IL-1ß and IL-6. The levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX-2) were also remarkably reduced in LPS-induced macrophages after the treatment. Furthermore, L. lactis IDCC 2301 reduced the levels of both dephosphorylated and phosphorylated forms of nuclear factor-kappa B (NF-κB), IκB-α, extracellular signal-regulated kinases (ERK), c-Jun amino-terminal kinases (JNK), and p38 in LPS-induced RAW 264.7 cells. Therefore, L. lactis IDCC 2301 shows anti-inflammatory activity by suppressing the NF-κB and mitogen-activated protein kinase (MAPK) signaling pathways.


Assuntos
Anti-Inflamatórios , Lactococcus lactis , Lipopolissacarídeos , Macrófagos , NF-kappa B , Óxido Nítrico , Lactococcus lactis/metabolismo , Lactococcus lactis/genética , Animais , Camundongos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , NF-kappa B/metabolismo , Anti-Inflamatórios/farmacologia , Células RAW 264.7 , Óxido Nítrico/metabolismo , Citocinas/metabolismo , Citocinas/genética , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Dinoprostona/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Meios de Cultivo Condicionados/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/genética
18.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38618721

RESUMO

The gut microbiota of insects has been shown to regulate host detoxification enzymes. However, the potential regulatory mechanisms involved remain unknown. Here, we report that gut bacteria increase insecticide resistance by activating the cap "n" collar isoform-C (CncC) pathway through enzymatically generated reactive oxygen species (ROS) in Bactrocera dorsalis. We demonstrated that Enterococcus casseliflavus and Lactococcus lactis, two lactic acid-producing bacteria, increase the resistance of B. dorsalis to ß-cypermethrin by regulating cytochrome P450 (P450) enzymes and α-glutathione S-transferase (GST) activities. These gut symbionts also induced the expression of CncC and muscle aponeurosis fibromatosis. BdCncC knockdown led to a decrease in resistance caused by gut bacteria. Ingestion of the ROS scavenger vitamin C in resistant strain affected the expression of BdCncC/BdKeap1/BdMafK, resulting in reduced P450 and GST activity. Furthermore, feeding with E. casseliflavus or L. lactis showed that BdNOX5 increased ROS production, and BdNOX5 knockdown affected the expression of the BdCncC/BdMafK pathway and detoxification genes. Moreover, lactic acid feeding activated the ROS-associated regulation of P450 and GST activity. Collectively, our findings indicate that symbiotic gut bacteria modulate intestinal detoxification pathways by affecting physiological biochemistry, thus providing new insights into the involvement of insect gut microbes in the development of insecticide resistance.


Assuntos
Microbioma Gastrointestinal , Resistência a Inseticidas , Piretrinas , Espécies Reativas de Oxigênio , Tephritidae , Animais , Espécies Reativas de Oxigênio/metabolismo , Piretrinas/farmacologia , Piretrinas/metabolismo , Resistência a Inseticidas/genética , Tephritidae/microbiologia , Tephritidae/genética , Inseticidas/farmacologia , Inseticidas/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Lactobacillales/genética , Lactobacillales/metabolismo , Lactobacillales/efeitos dos fármacos , Lactobacillales/fisiologia , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Enterococcus/genética , Enterococcus/metabolismo , Enterococcus/efeitos dos fármacos , Glutationa Transferase/genética , Glutationa Transferase/metabolismo
19.
Food Microbiol ; 121: 104514, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38637076

RESUMO

The enzymatic repertoire of starter cultures belonging to the Lactococcus genus determines various important characteristics of fermented dairy products but might change in response to the substantial environmental changes in the manufacturing process. Assessing bacterial proteome adaptation in dairy and other food environments is challenging due to the high matrix-protein concentration and is even further complicated in particularly cheese by the high fat concentrations, the semi-solid state of that matrix, and the non-growing state of the bacteria. Here, we present bacterial harvesting and processing procedures that enable reproducible, high-resolution proteome determination in lactococcal cultures harvested from laboratory media, milk, and miniature Gouda cheese. Comparative proteome analysis of Lactococcus cremoris NCDO712 grown in laboratory medium and milk revealed proteome adaptations that predominantly reflect the differential (micro-)nutrient availability in these two environments. Additionally, the drastic environmental changes during cheese manufacturing only elicited subtle changes in the L. cremoris NCDO712 proteome, including modified expression levels of enzymes involved in flavour formation. The technical advances we describe offer novel opportunities to evaluate bacterial proteomes in relation to their performance in complex, protein- and/or fat-rich food matrices and highlight the potential of steering starter culture performance by preculture condition adjustments.


Assuntos
Queijo , Produtos Fermentados do Leite , Lactococcus lactis , Animais , Proteoma/metabolismo , Fermentação , Queijo/microbiologia , Leite/microbiologia , Lactococcus lactis/genética , Lactococcus lactis/metabolismo
20.
Peptides ; 177: 171220, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38636811

RESUMO

Nisin A is a lantibiotic bacteriocin typically produced by strains of Lactococcus lactis. This bacteriocin has been approved as a natural food preservative since the late 1980 s and shows antimicrobial activity against a range of food-borne spoilage and pathogenic microorganisms. The therapeutic potential of nisin A has also been explored increasingly both in human and veterinary medicine. Nisin has been shown to be effective in treating bovine mastitis, dental caries, cancer, and skin infections. Recently, it was demonstrated that nisin has an affinity for the same receptor used by SARS-CoV-2 to enter human cells and was proposed as a blocker of the viral infection. Several nisin variants produced by distinct bacterial strains or modified by bioengineering have been described since the discovery of nisin A. These variants present modifications in the peptide structure, biosynthesis, mode of action, and spectrum of activity. Given the importance of nisin for industrial and therapeutic applications, the objective of this study was to describe the characteristics of the nisin variants, highlighting the main differences between these molecules and their potential applications. This review will be useful to researchers interested in studying the specifics of nisin A and its variants.


Assuntos
Antibacterianos , Nisina , Nisina/química , Nisina/farmacologia , Humanos , Animais , Antibacterianos/farmacologia , Antibacterianos/química , Lactococcus lactis/metabolismo , Lactococcus lactis/genética , Bovinos , SARS-CoV-2/efeitos dos fármacos , Tratamento Farmacológico da COVID-19
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...