Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.538
Filtrar
1.
Arch Microbiol ; 206(10): 407, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39297992

RESUMO

Biofilm is the primary cause of persistent infections caused by Streptococcus suis (S. suis). Metabolism and AI-2 quorum sensing are intricately linked to S. suis biofilm formation. Although the role of the AI-2 quorum sensing luxS gene in S. suis biofilm has been reported, its specific regulatory mechanism remains unclear. This study explored the differences in biofilm formation and monosaccharide metabolism among the wild type (WT), luxS mutant (ΔluxS) and complement strain (CΔluxS), and Galleria mellonella larvae were used to access the effect of luxS gene deletion on the virulence of S. suis in different monosaccharide medias. The results indicated that deletion of the luxS gene further compromised the monosaccharide metabolism of S. suis, impacting its growth in media with fructose, galactose, rhamnose, and mannose as the sole carbon sources. However, no significant impact was observed in media with glucose and N-acetylglucosamine. This deletion also weakened EPS synthesis, thereby diminishing the biofilm formation capacity of S. suis. Additionally, the downregulation of adhesion gene expression due to luxS gene deletion was found to be independent of the monosaccharide medias of S. suis.


Assuntos
Proteínas de Bactérias , Biofilmes , Liases de Carbono-Enxofre , Monossacarídeos , Percepção de Quorum , Streptococcus suis , Biofilmes/crescimento & desenvolvimento , Liases de Carbono-Enxofre/genética , Liases de Carbono-Enxofre/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Streptococcus suis/genética , Streptococcus suis/metabolismo , Streptococcus suis/crescimento & desenvolvimento , Percepção de Quorum/genética , Monossacarídeos/metabolismo , Animais , Regulação Bacteriana da Expressão Gênica , Deleção de Genes , Virulência/genética , Lactonas/metabolismo , Larva/microbiologia , Homosserina/análogos & derivados , Homosserina/metabolismo
2.
Int J Mol Sci ; 25(17)2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39273612

RESUMO

Zearalenone (ZEN) is a toxic secondary metabolite produced by the Fusarium fungi, which widely contaminates grains, food, and feed, causing health hazards for humans and animals. Therefore, it is essential to find effective ZEN detoxification methods. Enzymatic degradation of ZEN is believed to be an eco-friendly detoxification strategy, specifically thermostable ZEN degradation enzymes are needed in the food and feed industry. In this study, a novel ZEN lactone hydrolase ZHRnZ from Rosellinia necatrix was discovered using bioinformatic and molecular docking technology. The recombinant ZHRnZ showed the best activity at pH 9.0 and 45 °C with more than 90% degradation for ZEN, α-zearalenol (α-ZOL), ß-zearalenol (ß-ZOL) and α-zearalanol (α-ZAL) after incubation for 15 min. We obtained 10 mutants with improved thermostability by single point mutation technology. Among them, mutants E122Q and E122R showed the best performance, which retained more than 30% of their initial activity at 50 °C for 2 min, and approximately 10% of their initial activity at 60 °C for 1 min. The enzymatic kinetic study showed that the catalytic efficiency of E122R was 1.3 times higher than that of the wild-type (WT). Comprehensive consideration suggests that mutant E122R is a promising hydrolase to detoxify ZEN in food and feed.


Assuntos
Estabilidade Enzimática , Hidrolases , Simulação de Acoplamento Molecular , Zearalenona , Zearalenona/metabolismo , Zearalenona/química , Hidrolases/metabolismo , Hidrolases/química , Hidrolases/genética , Cinética , Concentração de Íons de Hidrogênio , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/química , Lactonas/metabolismo , Temperatura , Hypocreales/enzimologia , Hypocreales/genética
3.
Nat Commun ; 15(1): 6906, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39134551

RESUMO

The yield of pearl millet, a resilient cereal crop crucial for African food security, is severely impacted by the root parasitic weed Striga hermonthica, which requires host-released hormones, called strigolactones (SLs), for seed germination. Herein, we identify four SLs present in the Striga-susceptible line SOSAT-C88-P10 (P10) but absent in the resistant 29Aw (Aw). We generate chromosome-scale genome assemblies, including four gapless chromosomes for each line. The Striga-resistant Aw lacks a 0.7 Mb genome segment containing two putative CARLACTONOIC ACID METHYLTRANSFERASE1 (CLAMT1) genes, which may contribute to SL biosynthesis. Functional assays show that P10CLAMT1b produces the SL-biosynthesis intermediate methyl carlactonoate (MeCLA) and that MeCLA is the precursor of P10-specific SLs. Screening a diverse pearl millet panel confirms the pivotal role of the CLAMT1 section for SL diversity and Striga susceptibility. Our results reveal a reason for Striga susceptibility in pearl millet and pave the way for generating resistant lines through marker-assisted breeding or direct genetic modification.


Assuntos
Genoma de Planta , Lactonas , Pennisetum , Striga , Striga/genética , Lactonas/metabolismo , Pennisetum/genética , Pennisetum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Cromossomos de Plantas/genética , Doenças das Plantas/parasitologia , Doenças das Plantas/genética , Metiltransferases/metabolismo , Metiltransferases/genética , Plantas Daninhas/genética , Plantas Daninhas/metabolismo , Resistência à Doença/genética , Reguladores de Crescimento de Plantas/metabolismo
4.
Methods Mol Biol ; 2851: 107-114, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39210175

RESUMO

Hydroxy fatty acids (HFAs) are fatty acids with hydroxyl functional groups attached to the main chain. HFAs are used in widely diverse industrial applications, healthy functional foods, artificial food flavorings, and alcoholic beverages. A lactic acid bacterium (LAB), Lactobacillus sakei, hydroxylates oleic acid. Furthermore, the hydroxyl fatty acid was identified by GC-MS as 10-hydroxystearic acid. The Lactobacillus sakei hydroxylated more than 90% of the oleic acid in the medium at 15 °C after 30-48 h. The hydroxyl enzyme needs a coenzyme for an electron donor as NADPH. The enzyme is useful for assay with monitoring NADPH concentration used an A340 device. The hydroxylate fatty acids are converted by LAB lactonize aroma lactone from commercial yeast strains, which can be detected directly by scent. Commercial beer brewing yeast T-58 produced the highest concentration of aroma lactone from hydroxyl fatty acids. Furthermore, the aroma lactone is identified by GC-MS as gamma-dodecalactone. The ratio of conversion is 87%. These results suggest that the lactonization conversion system is useful to hydroxylate fatty acids for alcoholic beverages.


Assuntos
Ácidos Graxos , Cromatografia Gasosa-Espectrometria de Massas , Hidroxilação , Ácidos Graxos/metabolismo , Ácidos Graxos/química , Lactobacillales/metabolismo , Lactonas/metabolismo , Ácido Oleico/metabolismo
5.
Sci Adv ; 10(35): eadq3942, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39196928

RESUMO

Strigolactones exhibit dual functionality as regulators of plant architecture and signaling molecules in the rhizosphere. The important model crop rice exudes a blend of different strigolactones from its roots. Here, we identify the inaugural noncanonical strigolactone, 4-oxo-methyl carlactonoate (4-oxo-MeCLA), in rice root exudate. Comprehensive, cross-species coexpression analysis allowed us to identify a cytochrome P450, OsCYP706C2, and two methyl transferases as candidate enzymes for this noncanonical rice strigolactone biosynthetic pathway. Heterologous expression in yeast and Nicotiana benthamiana indeed demonstrated the role of these enzymes in the biosynthesis of 4-oxo-MeCLA, which, expectedly, is derived from carlactone as substrate. The oscyp706c2 mutants do not exhibit a tillering phenotype but do have delayed mycorrhizal colonization and altered root phenotype. This work sheds light onto the intricate complexity of strigolactone biosynthesis in rice and delineates its role in symbiosis and development.


Assuntos
Lactonas , Oryza , Proteínas de Plantas , Raízes de Plantas , Oryza/genética , Oryza/metabolismo , Lactonas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/genética , Vias Biossintéticas , Regulação da Expressão Gênica de Plantas , Sistema Enzimático do Citocromo P-450/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Mutação , Fenótipo , Micorrizas/metabolismo
6.
J Agric Food Chem ; 72(36): 19920-19930, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39213540

RESUMO

Parasitic weeds, such as Orobanche and Striga, threaten crops globally. Contiguous efforts on the discovery and development of structurally novel seed germination stimulants targeting HYPOSENSITIVE TO LIGHT/KARRIKIN INSENSITIVE 2 (HTL/KAI2) have been made with the goal of weed control. Here, we demonstrate that a natural compound dehydrocostus lactone (DCL) exhibits effective "suicide germination" activity against Orobanche cumana and covalently binds to OcKAI2d2 on two catalytic serine sites with the second modification dependent on the first one. The same interactions and covalent modifications of DCL are also confirmed in AtKAI2. Further in-depth evolution analysis indicates that the proposed two catalytic sites are present throughout the streptophyte algae, hornworts, lycophytes, and seed plants. This discovery is particularly noteworthy as it signifies the first confirmation of a plant endogenous molecule directly binding to KAI2, which is valuable for unraveling the elusive identity of the KAI2 ligand and for targeting KAI2 paralogues for the development of novel germination stimulants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Germinação , Lactonas , Orobanche , Serina , Orobanche/química , Orobanche/metabolismo , Orobanche/crescimento & desenvolvimento , Arabidopsis/metabolismo , Arabidopsis/química , Arabidopsis/crescimento & desenvolvimento , Germinação/efeitos dos fármacos , Serina/metabolismo , Serina/química , Lactonas/metabolismo , Lactonas/química , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/química , Sementes/química , Sementes/metabolismo , Sementes/crescimento & desenvolvimento , Plantas Daninhas/metabolismo , Plantas Daninhas/efeitos dos fármacos , Plantas Daninhas/crescimento & desenvolvimento , Plantas Daninhas/química , Ligação Proteica , Hidrolases
7.
Cells ; 13(16)2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39195251

RESUMO

This study uncovers the potential of salicylic acid (SA) and synthetic Strigolactone (GR24) in enhancing menthol biosynthesis and antioxidant defense mechanisms in Mentha piperita L. Our comprehensive analysis, which included a series of controlled experiments and data analysis of the effects of these phytohormones on enzymatic antioxidants catalase (CAT) and ascorbate peroxidase (APX) and non-enzymatic antioxidants, including carotenoids and proline, revealed promising results. The study also examined their impact on lipid peroxidation, hydrogen peroxide levels, and the expression of genes critical to menthol and menthofuran synthesis. The results indicated that SA and GR24 significantly increased menthol production and reduced the levels of menthofuran and pulegone, suggesting upregulation in the plant's innate defense systems. Furthermore, the activities of CAT and APX were elevated, reflecting a strengthened antioxidant response. Interestingly, the menthofuran synthase (MFS) was higher in the control group. At the same time, pulegone reductase (PR) genes and menthol dehydrogenase (MDH) gene expression were upregulated, highlighting the protective effects of SA and GR24. These findings underscore the potential of SA and GR24 to serve as effective bio-stimulants, improving the quality and resilience of peppermint plants and thereby contributing to eco-friendly agricultural practices in pollution-stressed environments.


Assuntos
Antioxidantes , Mentha piperita , Compostos Fitoquímicos , Ácido Salicílico , Ácido Salicílico/farmacologia , Ácido Salicílico/metabolismo , Antioxidantes/metabolismo , Compostos Fitoquímicos/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Lactonas/farmacologia , Lactonas/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Mentol/farmacologia , Peróxido de Hidrogênio/metabolismo , Catalase/metabolismo , Catalase/genética
8.
J Am Chem Soc ; 146(33): 23449-23456, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39133525

RESUMO

Natural products are important precursors for antibiotic drug design. These chemical scaffolds serve as synthetic inspiration for chemists who leverage their structures to develop novel antibacterials and chemical probes. We have previously studied carolacton, a natural product macrolactone fromSorangium cellulosum, and discovered a simplified derivative, A2, that maintained apparent biofilm inhibitory activity, although the biological target was unknown. Herein, we utilize affinity-based protein profiling (AfBPP) in situ during biofilm formation to identify the protein target using a photoexcitable cross-linking derivative of A2. From these studies, we identified glucan binding protein B (GbpB), a peptidoglycan hydrolase, as the primary target of A2. Further characterization of the interaction between A2 and GbpB, as well as PcsB, a closely related homologue from the more pathogenic S. pneumoniae, revealed binding to the catalytic CHAP (cysteine, histidine, aminopeptidase) domain. To the best of our knowledge, this is the first report of a small-molecule binder of a conserved and essential bacterial CHAP hydrolase, revealing its potential as an antibiotic target. This work also highlights A2 as a useful tool compound for streptococci and as an initial scaffold for the design of more potent CHAP binders.


Assuntos
Biofilmes , Biofilmes/efeitos dos fármacos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Antibacterianos/farmacologia , Antibacterianos/química , Sondas Moleculares/química , Sondas Moleculares/metabolismo , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , N-Acetil-Muramil-L-Alanina Amidase/química , Lactonas/química , Lactonas/metabolismo , Lactonas/farmacologia , Hidrolases/metabolismo , Hidrolases/química , Hidrolases/antagonistas & inibidores
9.
Plant Physiol Biochem ; 215: 108982, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39089046

RESUMO

Phosphate (P) and nitrogen (N) fertilization affect rice tillering, indicating that P- and N-regulated tiller growth has a crucial effect on grain yield. Cytokinins and strigolactones (SLs) promote and inhibit tiller bud outgrowth, respectively; however, the underlying mechanisms are unclear. In this study, tiller bud outgrowth and cytokinin fractions were evaluated in rice plants fertilized at different levels of P and N. Low phosphate or nitrogen (LP or LN) reduced rice tiller numbers and bud elongation, in line with low cytokinin levels in tiller buds and xylem sap as well as low TCSn:GUS expression, a sensitive cytokinin signal reporter, in the stem base. Furthermore, exogenous cytokinin (6-benzylaminopurin, 6-BA) administration restored bud length and TCSn:GUS activity in LP- and LN-treated plants to similar levels as control plants. The TCSn:GUS activity and tiller bud outgrowth were less affected by LP and LN supplies in SL-synthetic and SL-signaling mutants (d17 and d53) compared to LP- and LN-treated wild-type (WT) plants, indicating that SL modulate tiller bud elongation under LP and LN supplies by reducing the cytokinin levels in tiller buds. OsCKX9 (a cytokinin catabolism gene) transcription in buds and roots was induced by LP, LN supplies and by adding the SL analog GR24. A reduced response of cytokinin fractions to LP and LN supplies was observed in tiller buds and xylem sap of the d53 mutant compared to WT plants. These results suggest that cytokinin catabolism and transport are involved in SL-modulated rice tillering fueled by P and N fertilization.


Assuntos
Citocininas , Lactonas , Nitrogênio , Oryza , Fosfatos , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Oryza/efeitos dos fármacos , Citocininas/metabolismo , Nitrogênio/metabolismo , Lactonas/metabolismo , Lactonas/farmacologia , Fosfatos/metabolismo , Transporte Biológico/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Plantas/metabolismo
10.
Plant Physiol Biochem ; 215: 109054, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39163653

RESUMO

Strigolactone (SL), a plant hormone derived from carotenoids, has been recognized for its pivotal role in regulating plant growth. Nevertheless, the influence of SL on tall fescue (Festuca arundinacea) under low-light conditions remains unclear. This study aimed to investigate the impact of SL on various aspects of tall fescue, including its morphological characteristics, photosynthesis, levels of antioxidant and concentrations of SL, under low light intensity (LI). The findings showed that GR24, an artificial analog of SL, positively influenced several parameters of tall fescue under LI. In particular, it enhanced the morphological features such as plant height, leaf width, and biomass, while reducing the number of tillers. Furthermore, it improved the efficiency of photosynthetic by enhancing chlorophyll fluorescence and the gas exchange parameters, mitigating cell damage and improving the contents of antioxidants by increasing the levels of antioxidant enzymes and non-enzymatic antioxidant compounds. Moreover, treatment with SL led to elevated concentrations of this hormone and the levels of gene expression in related pathways. Owing to the immaturity of the genetic transformation system in tall fescue, partial validation through transgenic and mutant materials was obtained using Arabidopsis (Arabidopsis thaliana). These findings demonstrate that SL alleviates the physiological indicators of tall fescue under LI stress and enhances its tolerance to shade. Additionally, it suggests that SL may regulate the shade tolerance of tall fescue through the involvement of FaD14.


Assuntos
Festuca , Lactonas , Luz , Fotossíntese , Lactonas/metabolismo , Festuca/metabolismo , Festuca/efeitos da radiação , Festuca/genética , Festuca/crescimento & desenvolvimento , Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/efeitos da radiação , Antioxidantes/metabolismo , Estresse Fisiológico , Reguladores de Crescimento de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Compostos Heterocíclicos com 3 Anéis/metabolismo , Clorofila/metabolismo
11.
Plant Physiol Biochem ; 215: 109057, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39173365

RESUMO

Strigolactones (SLs) constitute essential phytohormones that control pathogen defense, resilience to phosphate deficiency and abiotic stresses. Furthermore, SLs are released into the soil by roots, especially in conditions in which there is inadequate phosphate or nitrogen available. SLs have the aptitude to stimulate the root parasite plants and symbiotic cooperation with arbuscular mycorrhizal (AM) fungi in rhizosphere. The use of mineral resources, especially phosphorus (P), by host plants is accelerated by AMF, which also improves plant growth and resilience to a series of biotic and abiotic stresses. Thus, these SL treatments that promote rhizobial symbiosis are substitutes for artificial fertilizers and other chemicals, supporting ecologically friendly farming practices. Moreover, SLs have become a fascinating target for abiotic stress adaptation in plants, with an array of uses in sustainable agriculture. In this review, the biological activity has been summarized that SLs as a signaling hormone for AMF symbiosis, nutrient acquisition, and abiotic stress tolerance through interaction with other hormones. Furthermore, the processes behind the alterations in the microbial population caused by SL are clarified, emphasizing the interplay with other signaling mechanisms. This review covers the latest developments in SL studies as well as the properties of SLs on microbial populations, plant hormone transductions, interactions and abiotic stress tolerance.


Assuntos
Lactonas , Micorrizas , Estresse Fisiológico , Simbiose , Micorrizas/fisiologia , Simbiose/fisiologia , Lactonas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/microbiologia , Raízes de Plantas/metabolismo , Plantas/metabolismo , Plantas/microbiologia
12.
Enzyme Microb Technol ; 180: 110499, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39191068

RESUMO

Zearalenone (ZEN) is a fungal toxin produced by Fusarium exospore, which poses a significant threat to both animal and human health due to its reproductive toxicity. Removing ZEN through ZEN lactonase is currently the most effective method reported, however, all published ZEN lactonases suffer from the poor thermal stability, losing almost all activity after 10 min of treatment at 55℃. In this study, we heterologously expressed ZHD11A from Phialophora macrospora and engineered it via semi-rational design. A mutant I160Y-G242S that can retain about 40 % residual activity at 55℃ for 10 min was obtained, which is the most heat-tolerant ZEN hydrolase reported to date. Moreover, the specific activity of the I160Y-G242S was also elevated 2-fold compared to ZHD11A from 220 U/mg to 450 U/mg, which is one of the most active ZEN lactonses reported. Dynamics analysis revealed that the decreased flexibility of the main-chain carbons contributes to increased thermal stability and the improved substrate binding affinity and catalytic turnover contribute to enhanced activity of variant I160Y-G242S. In all, the mutant I160Y-G242S is an excellent candidate for the industrial application of ZEN degradation.


Assuntos
Estabilidade Enzimática , Zearalenona , Zearalenona/metabolismo , Zearalenona/química , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/química , Cinética , Engenharia de Proteínas , Hidrolases/metabolismo , Hidrolases/genética , Hidrolases/química , Lactonas/metabolismo , Lactonas/química , Temperatura Alta , Especificidade por Substrato
13.
Nat Commun ; 15(1): 6500, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39090154

RESUMO

Phytohormone levels are regulated through specialized enzymes, participating not only in their biosynthesis but also in post-signaling processes for signal inactivation and cue depletion. Arabidopsis thaliana (At) carboxylesterase 15 (CXE15) and carboxylesterase 20 (CXE20) have been shown to deplete strigolactones (SLs) that coordinate various growth and developmental processes and function as signaling molecules in the rhizosphere. Here, we elucidate the X-ray crystal structures of AtCXE15 (both apo and SL intermediate bound) and AtCXE20, revealing insights into the mechanisms of SL binding and catabolism. The N-terminal regions of CXE15 and CXE20 exhibit distinct secondary structures, with CXE15 characterized by an alpha helix and CXE20 by an alpha/beta fold. These structural differences play pivotal roles in regulating variable SL hydrolysis rates. Our findings, both in vitro and in planta, indicate that a transition of the N-terminal helix domain of CXE15 between open and closed forms facilitates robust SL hydrolysis. The results not only illuminate the distinctive process of phytohormone breakdown but also uncover a molecular architecture and mode of plasticity within a specific class of carboxylesterases.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Hidrolases de Éster Carboxílico , Lactonas , Arabidopsis/metabolismo , Arabidopsis/enzimologia , Lactonas/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Hidrolases de Éster Carboxílico/metabolismo , Hidrolases de Éster Carboxílico/química , Hidrolases de Éster Carboxílico/genética , Cristalografia por Raios X , Reguladores de Crescimento de Plantas/metabolismo , Modelos Moleculares , Hidrólise , Conformação Proteica
14.
Methods Mol Biol ; 2830: 51-62, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38977567

RESUMO

Seed germination of a parasitic plant Striga hermonthica is elicited by strigolactones which are exuded from roots of host plants. Here, we describe a high-throughput germination assay and a method for visualizing in vivo strigolactone receptor functions with a fluorogenic probe.


Assuntos
Germinação , Lactonas , Sementes , Striga , Striga/fisiologia , Striga/crescimento & desenvolvimento , Striga/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Lactonas/metabolismo , Lactonas/farmacologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/parasitologia , Sondas Moleculares/química , Corantes Fluorescentes/química
15.
Physiol Plant ; 176(4): e14419, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38973451

RESUMO

Abiotic stress impairs plant growth and development, thereby causing low yield and inferior quality of crops. Increasing studies reported that strigolactones (SL) are plant hormones that enhance plant stress resistance by regulating plant physiological processes and gene expressions. In this review, we introduce the response and regulatory role of SL in salt, drought, light, heat, cold and cadmium stresses in plants. This review also discusses how SL alleviate the damage of abiotic stress in plants, furthermore, introducing the mechanisms of SL enhancing plant stress resistance at the genetic level. Under abiotic stress, the exogenous SL analog GR24 can induce the biosynthesis of SL in plants, and endogenous SL can alleviate the damage caused by abiotic stress. SL enhanced the stress resistance of plants by protecting photosynthesis, enhancing the antioxidant capacity of plants and promoting the symbiosis between plants and arbuscular mycorrhiza (AM). SL interact with abscisic acid (ABA), salicylic acid (SA), auxin, cytokinin (CK), jasmonic acid (JA), hydrogen peroxide (H2O2) and other signal molecules to jointly regulate plant stress resistance. Lastly, both the importance of SL and their challenges for future work are outlined in order to further elucidate the specific mechanisms underlying the roles of SL in plant responses to abiotic stress.


Assuntos
Lactonas , Reguladores de Crescimento de Plantas , Estresse Fisiológico , Lactonas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Plantas/metabolismo , Plantas/efeitos dos fármacos , Plantas/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos
16.
Methods Mol Biol ; 2827: 109-143, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38985266

RESUMO

Plant growth regulators are routinely added to in vitro culture media to foster the growth and differentiation of the cells, tissues, and organs. However, while the literature on usage of the more common auxins, cytokinins, gibberellins, abscisic acid, and ethylene is vast, other compounds that also have shown a growth-regulating activity have not been studied as frequently. Such substances are also capable of modulating the responses of plant cells and tissues in vitro by regulating their growth, differentiation, and regeneration competence, but also by enhancing their responses toward biotic and abiotic stress agents and improving the production of secondary metabolites of interest. This chapter will discuss the in vitro effects of several of such less frequently added plant growth regulators, including brassinosteroids (BRS), strigolactones (SLs), phytosulfokines (PSKs), methyl jasmonate, salicylic acid (SA), sodium nitroprusside (SNP), hydrogen sulfite, various plant growth retardants and inhibitors (e.g., ancymidol, uniconazole, flurprimidol, paclobutrazol), and polyamines.


Assuntos
Reguladores de Crescimento de Plantas , Reguladores de Crescimento de Plantas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Técnicas de Cultura de Tecidos/métodos , Brassinosteroides/farmacologia , Brassinosteroides/metabolismo , Desenvolvimento Vegetal/efeitos dos fármacos , Plantas/metabolismo , Plantas/efeitos dos fármacos , Lactonas/farmacologia , Lactonas/metabolismo , Oxilipinas/farmacologia , Oxilipinas/metabolismo , Ciclopentanos/farmacologia , Ciclopentanos/metabolismo , Ácido Salicílico/farmacologia , Ácido Salicílico/metabolismo , Acetatos/farmacologia , Acetatos/metabolismo
17.
Chem Res Toxicol ; 37(8): 1356-1363, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39028893

RESUMO

The Alternaria mycotoxins alternariol (AOH) and alternariol 9-O-monomethyl ether (AME) are pervasive food contaminants known to exert adverse effects in vitro, yet their toxicokinetics remain inadequately understood. Thus, this study endeavors to elucidate the qualitative and quantitative aspects of the phase I metabolism of AOH and AME. To pursue this goal, reduced nicotinamide adenine dinucleotide phosphate (NADPH)-fortified porcine, rat, and human liver microsomes were incubated for 0-10 min with AOH or AME within a concentration range of 1-100 and 1-50 µM, respectively. The decline in the parent toxin concentration was monitored via liquid chromatography coupled to tandem mass spectrometry, whereas coupling to high-resolution mass spectrometry provided insights into the composition of the arising metabolic mixture. The collected quantitative data allowed us to calculate the hepatic intrinsic clearance rates of AOH and AME, marking a notable contribution to the field. Moreover, we unveiled interspecies differences in the pattern and rate of the phase I metabolism of the investigated mycotoxins. The presented findings lay the groundwork for physiologically based toxicokinetic modeling aimed at estimating local concentrations of these mycotoxins in specific organs, enhancing our understanding of their mode of action and adverse health effects.


Assuntos
Lactonas , Microssomos Hepáticos , Animais , Lactonas/metabolismo , Ratos , Humanos , Microssomos Hepáticos/metabolismo , Suínos , Medição de Risco , Fígado/metabolismo , Especificidade da Espécie , Espectrometria de Massas em Tandem
18.
Water Res ; 262: 122137, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39059198

RESUMO

Bacterial biofilms pose significant a public health risk as an environmental reservoir for opportunistic aquatic bacterial pathogens. Understanding the interspecies roles of complex bacterial biofilms under different stimuli and regulatory mechanisms of stress responses is the key to controlling their dissemination. Herein, two-species mixture (TSM) biofilms (Staphylococcus aureus and Pseudomonas aeruginosa) were constructed in a flowthrough reactor. Compared with the single-species biofilms, the TSM biofilm had higher growth activity to reach maturity faster, forming a staggered community structure. Moreover, the TSM biofilm exhibited greatly improved resistance to different antibiotics (16-128 times higher), especially to those that act on protein synthesis and cell membrane integrity, when compared to single planktonic microorganisms. In the presence of stimuli, photocatalysis effectively inactivated the TSM biofilm within 10 h, a 4-fold shorter inactivation time compared to UVC irradiation. In addition, photocatalysis effectively depleted the extracellular polymers of the TSM biofilm and inhibited secretion of their interspecies quorum sensing signaling molecule autoinducer-2 (AI-2). However, the expression of AI-2 induced related virulence factors, and biofilm growth-related genes were initially up-regulated 3 - 10 fold for the TSM biofilm within the first 2 - 4 h of photocatalysis, followed by significant down-regulation. Furthermore, the addition of the AI-2 precursor 4,5-dihydroxy-2,3-pentanedione effectively delayed the photocatalytic inactivation efficiency of the TSM biofilm compared to the control. These results suggest that photocatalysis can effectively inactivate biofilms by inhibiting interspecies cooperation by quenching AI-2 in the TSM biofilm. This work sheds light on controlling biofilms in public health engineering systems.


Assuntos
Biofilmes , Pseudomonas aeruginosa , Percepção de Quorum , Staphylococcus aureus , Pseudomonas aeruginosa/fisiologia , Staphylococcus aureus/fisiologia , Catálise , Antibacterianos/farmacologia , Lactonas/metabolismo , Homosserina/análogos & derivados , Microbiologia da Água , Raios Ultravioleta
19.
J Biotechnol ; 393: 17-30, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39025368

RESUMO

Ricinoleic acid (RA) from castor oil was employed in biotransformation of peach-flavoured γ-decalactone (GDL), using a Candida parapsilosis strain (MTCC13027) which was isolated from waste of pineapple crown base. Using four variables-pH, cell density, amount of RA, and temperature-the biotransformation parameters were optimized using RSM and BBD. Under optimized conditions (pH 6, 10 % of microbial cells, 10 g/L RA at 28°C), the conversion was maximum and resulted to 80 % (+)-GDL (4.4 g/L/120 h) yield in shake flask (500 mL). Furthermore, optimization was achieved by adjusting the aeration and agitation parameters in a 3 L bioreactor, which were then replicated in a 10 L bioreactor to accurately determine the amount of (+)-GDL. In bioreactor condition, 4.7 g/L (>85 %) of (+)-GDL is produced with 20 % and 40 % dissolved oxygen (1.0 vvm) at 150 rpm in 72 h and 66 h, respectively. Further, a new Al-Mg-Ca-Si composite column-chromatography method is developed to purify enantiospecific (+)-GDL (99.9 %). This (+)-GDL is 100 % nature-identical as validated through 14C-radio-carbon dating. Thorough chemical investigation of enantiospecific (+)-GDL is authenticated for its use as flavour. This bioflavour has been developed through a cost-effective biotechnological process in response to the demand from the food industry on commercial scale.


Assuntos
Reatores Biológicos , Candida parapsilosis , Óleo de Rícino , Lactonas , Ácidos Ricinoleicos , Ácidos Ricinoleicos/metabolismo , Ácidos Ricinoleicos/química , Reatores Biológicos/microbiologia , Óleo de Rícino/química , Óleo de Rícino/metabolismo , Candida parapsilosis/metabolismo , Lactonas/metabolismo , Lactonas/química , Aromatizantes/metabolismo , Aromatizantes/química , Biotransformação
20.
Sci Rep ; 14(1): 16004, 2024 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992288

RESUMO

The formation of symbionts by using different combinations of endophytic bacteria, microalgae, and fungi to purify antibiotics-containing wastewater is an effective and promising biomaterial technology. As it enhances the mixed antibiotics removal performance of the bio-system, this technology is currently extensively studied. Using exogenous supplementation of various low concentrations of the phytohormone strigolactone analogue GR24, the removal of various antibiotics from simulated wastewater was examined. The performances of Chlorella vulgaris monoculture, activated sludge-C. vulgaris-Clonostachys rosea, Bacillus licheniformis-C. vulgaris-C. rosea, and endophytic bacteria (S395-2)-C. vulgaris-C. rosea co-culture systems were systematically compared. Their removal capacities for tetracycline, oxytetracycline, and chlortetracycline antibiotics from simulated wastewater were assessed. Chlorella vulgaris-endophytic bacteria-C. rosea co-cultures achieved the best performance under 0.25 mg L-1 antibiotics, which could be further enhanced by GR24 supplementation. This result demonstrates that the combination of endophytic bacteria with microalgae and fungi is superior to activated sludge-B. licheniformis-microalgae-fungi systems. Exogenous supplementation of GR24 is an effective strategy to improve the performance of antibiotics removal from wastewater.


Assuntos
Antibacterianos , Microalgas , Microalgas/metabolismo , Antibacterianos/farmacologia , Chlorella vulgaris/metabolismo , Técnicas de Cocultura , Lactonas/metabolismo , Águas Residuárias/química , Águas Residuárias/microbiologia , Compostos Heterocíclicos com 3 Anéis/isolamento & purificação , Esgotos/microbiologia , Poluentes Químicos da Água , Biodegradação Ambiental , Purificação da Água/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...