Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.613
Filtrar
1.
J Cell Sci ; 137(16)2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39092499

RESUMO

Lamins are intermediate filament proteins that contribute to numerous cellular functions, including nuclear morphology and mechanical stability. The N-terminal head domain of lamin is crucial for higher order filament assembly and function, yet the effects of commonly used N-terminal tags on lamin function remain largely unexplored. Here, we systematically studied the effect of two differently sized tags on lamin A (LaA) function in a mammalian cell model engineered to allow for precise control of expression of tagged lamin proteins. Untagged, FLAG-tagged and GFP-tagged LaA completely rescued nuclear shape defects when expressed at similar levels in lamin A/C-deficient (Lmna-/-) MEFs, and all LaA constructs prevented increased nuclear envelope ruptures in these cells. N-terminal tags, however, altered the nuclear localization of LaA and impaired the ability of LaA to restore nuclear deformability and to recruit emerin to the nuclear membrane in Lmna-/- MEFs. Our finding that tags impede some LaA functions but not others might explain the partial loss of function phenotypes when tagged lamins are expressed in model organisms and should caution researchers using tagged lamins to study the nucleus.


Assuntos
Núcleo Celular , Lamina Tipo A , Membrana Nuclear , Lamina Tipo A/metabolismo , Lamina Tipo A/genética , Animais , Camundongos , Núcleo Celular/metabolismo , Membrana Nuclear/metabolismo , Humanos , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética
2.
Nat Commun ; 15(1): 7000, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39143095

RESUMO

Mutations in the nuclear envelope (NE) protein lamin A/C (encoded by LMNA), cause a severe form of dilated cardiomyopathy (DCM) with early-onset life-threatening arrhythmias. However, molecular mechanisms underlying increased arrhythmogenesis in LMNA-related DCM (LMNA-DCM) remain largely unknown. Here we show that a frameshift mutation in LMNA causes abnormal Ca2+ handling, arrhythmias and disformed NE in LMNA-DCM patient-specific iPSC-derived cardiomyocytes (iPSC-CMs). Mechanistically, lamin A interacts with sirtuin 1 (SIRT1) where mutant lamin A/C accelerates degradation of SIRT1, leading to mitochondrial dysfunction and oxidative stress. Elevated reactive oxygen species (ROS) then activates the Ca2+/calmodulin-dependent protein kinase II (CaMKII)-ryanodine receptor 2 (RYR2) pathway and aggravates the accumulation of SUN1 in mutant iPSC-CMs, contributing to arrhythmias and NE deformation, respectively. Taken together, the lamin A/C deficiency-mediated ROS disorder is revealed as central to LMNA-DCM development. Manipulation of impaired SIRT1 activity and excessive oxidative stress is a potential future therapeutic strategy for LMNA-DCM.


Assuntos
Cardiomiopatia Dilatada , Células-Tronco Pluripotentes Induzidas , Lamina Tipo A , Miócitos Cardíacos , Estresse Oxidativo , Espécies Reativas de Oxigênio , Sirtuína 1 , Cardiomiopatia Dilatada/metabolismo , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/patologia , Lamina Tipo A/metabolismo , Lamina Tipo A/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Humanos , Sirtuína 1/metabolismo , Sirtuína 1/genética , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Fenótipo , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/genética , Arritmias Cardíacas/patologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Mutação da Fase de Leitura , Cálcio/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Membrana Nuclear/metabolismo , Mitocôndrias/metabolismo , Masculino , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/genética
3.
Mol Biol Rep ; 51(1): 898, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39115711

RESUMO

BACKGROUND: The nuclear envelope (NE), which is composed of the outer and inner nuclear membranes, the nuclear pore complex and the nuclear lamina, regulates a plethora of cellular processes, including those that restrict cancer development (genomic stability, cell cycle regulation, and cell migration). Thus, impaired NE is functionally related to tumorigenesis, and monitoring of NE alterations is used to diagnose cancer. However, the chronology of NE changes occurring during cancer evolution and the connection between them remained to be precisely defined, due to the lack of appropriate cell models. METHODS: The expression and subcellular localization of NE proteins (lamins A/C and B1 and the inner nuclear membrane proteins emerin and ß-dystroglycan [ß-DG]) during prostate cancer progression were analyzed, using confocal microscopy and western blot assays, and a prostate cancer cell system comprising RWPE-1 epithelial prostate cells and several prostate cancer cell lines with different invasiveness. RESULTS: Deformed nuclei and the mislocalization and low expression of lamin A/C, lamin B1, and emerin became more prominent as the invasiveness of the prostate cancer lines increased. Suppression of lamin A/C expression was an early event during prostate cancer evolution, while a more extensive deregulation of NE proteins, including ß-DG, occurred in metastatic prostate cells. CONCLUSIONS: The RWPE-1 cell line-based system was found to be suitable for the correlation of NE impairment with prostate cancer invasiveness and determination of the chronology of NE alterations during prostate carcinogenesis. Further study of this cell system would help to identify biomarkers for prostate cancer prognosis and diagnosis.


Assuntos
Lamina Tipo A , Lamina Tipo B , Proteínas de Membrana , Membrana Nuclear , Proteínas Nucleares , Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Neoplasias da Próstata/genética , Membrana Nuclear/metabolismo , Linhagem Celular Tumoral , Proteínas de Membrana/metabolismo , Lamina Tipo B/metabolismo , Lamina Tipo A/metabolismo , Lamina Tipo A/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Distroglicanas/metabolismo , Regulação Neoplásica da Expressão Gênica , Núcleo Celular/metabolismo
4.
Int J Mol Sci ; 25(15)2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39125589

RESUMO

Recent research into laminopathic lipodystrophies-rare genetic disorders caused by mutations in the LMNA gene-has greatly expanded our knowledge of their complex pathology and metabolic implications. These disorders, including Hutchinson-Gilford progeria syndrome (HGPS), Mandibuloacral Dysplasia (MAD), and Familial Partial Lipodystrophy (FPLD), serve as crucial models for studying accelerated aging and metabolic dysfunction, enhancing our understanding of the cellular and molecular mechanisms involved. Research on laminopathies has highlighted how LMNA mutations disrupt adipose tissue function and metabolic regulation, leading to altered fat distribution and metabolic pathway dysfunctions. Such insights improve our understanding of the pathophysiological interactions between genetic anomalies and metabolic processes. This review merges current knowledge on the phenotypic classifications of these diseases and their associated metabolic complications, such as insulin resistance, hypertriglyceridemia, hepatic steatosis, and metabolic syndrome, all of which elevate the risk of cardiovascular disease, stroke, and diabetes. Additionally, a range of published therapeutic strategies, including gene editing, antisense oligonucleotides, and novel pharmacological interventions aimed at addressing defective adipocyte differentiation and lipid metabolism, will be explored. These therapies target the core dysfunctional lamin A protein, aiming to mitigate symptoms and provide a foundation for addressing similar metabolic and genetic disorders.


Assuntos
Lamina Tipo A , Lipodistrofia , Humanos , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Lipodistrofia/genética , Lipodistrofia/metabolismo , Lipodistrofia/terapia , Animais , Laminopatias/genética , Laminopatias/metabolismo , Progéria/genética , Progéria/metabolismo , Progéria/patologia , Mutação , Lipodistrofia Parcial Familiar/genética , Lipodistrofia Parcial Familiar/metabolismo , Lipodistrofia Parcial Familiar/terapia , Metabolismo dos Lipídeos/genética , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Resistência à Insulina/genética , Edição de Genes
5.
Circ Heart Fail ; 17(7): e011548, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38979608

RESUMO

BACKGROUND: LMNA (lamin A/C)-related dilated cardiomyopathy is a rare genetic cause of heart failure. In a phase 2 trial and long-term extension, the selective p38α MAPK (mitogen-activated protein kinase) inhibitor, ARRY-371797 (PF-07265803), was associated with an improved 6-minute walk test at 12 weeks, which was preserved over 144 weeks. METHODS: REALM-DCM (NCT03439514) was a phase 3, randomized, double-blind, placebo-controlled trial in patients with symptomatic LMNA-related dilated cardiomyopathy. Patients with confirmed LMNA variants, New York Heart Association class II/III symptoms, left ventricular ejection fraction ≤50%, implanted cardioverter-defibrillator, and reduced 6-minute walk test distance were randomized to ARRY-371797 400 mg twice daily or placebo. The primary outcome was a change from baseline at week 24 in the 6-minute walk test distance using stratified Hodges-Lehmann estimation and the van Elteren test. Secondary outcomes using similar methodology included change from baseline at week 24 in the Kansas City Cardiomyopathy Questionnaire-physical limitation and total symptom scores, and NT-proBNP (N-terminal pro-B-type natriuretic peptide) concentration. Time to a composite outcome of worsening heart failure or all-cause mortality and overall survival were evaluated using Kaplan-Meier and Cox proportional hazards analyses. RESULTS: REALM-DCM was terminated after a planned interim analysis suggested futility. Between April 2018 and October 2022, 77 patients (aged 23-72 years) received ARRY-371797 (n=40) or placebo (n=37). No significant differences (P>0.05) between groups were observed in the change from baseline at week 24 for all outcomes: 6-minute walk test distance (median difference, 4.9 m [95% CI, -24.2 to 34.1]; P=0.82); Kansas City Cardiomyopathy Questionnaire-physical limitation score (2.4 [95% CI, -6.4 to 11.2]; P=0.54); Kansas City Cardiomyopathy Questionnaire-total symptom score (5.3 [95% CI, -4.3 to 14.9]; P=0.48); and NT-proBNP concentration (-339.4 pg/mL [95% CI, -1131.6 to 452.7]; P=0.17). The composite outcome of worsening heart failure or all-cause mortality (hazard ratio, 0.43 [95% CI, 0.11-1.74]; P=0.23) and overall survival (hazard ratio, 1.19 [95% CI, 0.23-6.02]; P=0.84) were similar between groups. No new safety findings were observed. CONCLUSIONS: Findings from REALM-DCM demonstrated futility without safety concerns. An unmet treatment need remains among patients with LMNA-related dilated cardiomyopathy. REGISTRATION: URL: https://classic.clinicaltrials.gov; Unique Identifiers: NCT03439514, NCT02057341, and NCT02351856.


Assuntos
Cardiomiopatia Dilatada , Lamina Tipo A , Teste de Caminhada , Humanos , Cardiomiopatia Dilatada/fisiopatologia , Cardiomiopatia Dilatada/tratamento farmacológico , Masculino , Feminino , Pessoa de Meia-Idade , Lamina Tipo A/genética , Método Duplo-Cego , Adulto , Função Ventricular Esquerda/efeitos dos fármacos , Resultado do Tratamento , Volume Sistólico/fisiologia , Tolerância ao Exercício/efeitos dos fármacos , Idoso , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/fisiopatologia
6.
Birth Defects Res ; 116(7): e2381, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39073036

RESUMO

BACKGROUND: Prior studies report associations of maternal serum Lamin A, encoded by the LMNA gene, with fetal congenital heart disease (CHD). It is unknown whether DNA methylation (DNAm) of cytosine-phosphate-guanine (CpG) sites in LMNA impacts the CHD susceptibility. METHODS: We investigated the associations of LMNA DNAm with CHD using publicly available data of CHD cases (n = 197) and controls (n = 134) from the Gene Expression Omnibus repository. Peripheral blood DNAm was measured using Illumina 850 K BeadChip for cases and 450 K BeadChip for controls. We tested 31 LMNA CpGs to identify differences in DNAm between cases and controls using linear regression correcting for multiple testing with false discovery rate (FDR). In a case-only analysis, we tested the variations in LMNA DNAm between CHD subtypes. To identify the consistency of DNAm across tissue types we compared peripheral blood (n = 197) and heart tissue DNAm (n = 20) in CHD cases. RESULTS: After adjusting for age, sex, and cell types there were significant differences in 17 of the 31 LMNA CpGs between CHD cases and controls (FDR p ≤ .05). We identified lower DNAm of cg09820673 at 3' UTR for hypoplastic left heart syndrome compared to other CHD subtypes. Three CpGs exhibited uniform DNAm in blood and heart tissues in cases. Eleven CpGs showed changes in the same direction in blood and heart tissues in cases compared to controls. CONCLUSION: We identify statistically significant differences in LMNA DNAm between CHD cases and controls. Future studies should investigate the role of maternal LMNA DNAm in CHD development.


Assuntos
Metilação de DNA , Cardiopatias Congênitas , Lamina Tipo A , Humanos , Lamina Tipo A/genética , Metilação de DNA/genética , Cardiopatias Congênitas/genética , Feminino , Masculino , Estudos de Casos e Controles , Predisposição Genética para Doença , Ilhas de CpG/genética , Adulto
7.
Thromb Res ; 241: 109100, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39032390

RESUMO

INTRODUCTION: Hutchinson-Gilford Progeria Syndrome (HGPS) is an ultra-rare premature aging genetic disorder caused by a point mutation in the lamin A gene, LMNA. Children with HGPS display short lifespans and typically die due to myocardial infarction or ischemic stroke, both acute cardiovascular events that are tightly linked to arterial thrombosis. Despite this fact, the effect of the classic HGPS LMNA gene mutation on arterial thrombosis remains unknown. METHODS: Heterozygous LmnaG609G knock-in (LmnaG609G/+) mice, yielding an equivalent classic mutation observed in HGPS patients (c.1824C>T; pG608G mutation in the human LMNA gene) and corresponding wild-type (WT) control littermates underwent photochemically laser-induced carotid injury to trigger thrombosis. Coagulation and fibrinolytic factors were measured. Furthermore, platelet activation and reactivity were investigated. RESULTS: LmnaG609G/+ mice displayed accelerated arterial thrombus formation, as underlined by shortened time to occlusion compared to WT littermates. Levels of factors involved in the coagulation and fibrinolytic system were comparable between groups, while LmnaG609G/+ animals showed higher plasma levels of thrombin-antithrombin complex and lower levels of antithrombin. Bone marrow analysis showed larger megakaryocytes in progeric mice. Lastly, enhanced platelet activation upon adenosine diphosphate, collagen-related peptide, and thrombin stimulation was observed in LmnaG609G/+ animals compared to the WT group, indicating a higher platelet reactivity in progeric animals. CONCLUSIONS: LMNA mutation in HGPS mice accelerates arterial thrombus formation, which is mediated, at least in part, by enhanced platelet reactivity, which consequently augments thrombin generation. Given the wide spectrum of antiplatelet agents available clinically, further investigation is warranted to consider the most suitable antiplatelet regimen for children with HGPS to mitigate disease mortality and morbidity.


Assuntos
Plaquetas , Progéria , Trombose , Animais , Progéria/genética , Progéria/sangue , Progéria/complicações , Camundongos , Trombose/sangue , Trombose/genética , Plaquetas/metabolismo , Ativação Plaquetária , Lamina Tipo A/genética , Modelos Animais de Doenças , Masculino , Humanos
8.
Front Endocrinol (Lausanne) ; 15: 1359211, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38887266

RESUMO

Background: There is a lack of information on the clinical and molecular presentation of familial partial lipodystrophy (FPLD), a rare genetic disorder characterized by partial subcutaneous fat loss. Objective: This study aimed to provide a comprehensive assessment of the clinical, metabolic, and genetic features of FPLD in the Brazilian population. Methods: In a multicenter cross-sectional investigation we evaluated patients with FPLD across five Brazilian reference centers for lipodystrophies. Diagnosis of FPLD was made by clinical evaluation and genetic confirmation. Data on genetic, clinical, and metabolic characteristics were captured. Statistical analysis involved the utilization of the Kruskal-Wallis test to identify differences. Results: The study included 106 patients with genetic confirmation of FPLD. The mean age was 44 ± 15 years, and they were predominantly female (78.3%). LMNA pathogenic variants were identified in 85.8% of patients, PPARG in 10.4%, PLIN1 in 2.8%, and MFN2 in 0.9%. Diabetes mellitus (DM) was highly prevalent (57.5%), affecting 54 females (50.9%). Median triglycerides levels were 199 mg/dL (54-2724 mg/dL), severe hypertriglyceridemia (≥ 500 mg/dL) was found in 34.9% and pancreatitis in 8.5%. Metabolic-associated fatty liver disease (MAFLD) was observed in 56.6%, and cardiovascular disease in 10.4%. The overall mortality rate was 3.8%, due to cardiovascular events. Conclusion: This study presents an extensive cohort of Brazilian patients with FPLD, predominantly DM with several multisystem complications. A comprehensive characterization of lipodystrophy syndromes is crucial for effective patient management and care.


Assuntos
Lipodistrofia Parcial Familiar , Humanos , Feminino , Masculino , Lipodistrofia Parcial Familiar/genética , Lipodistrofia Parcial Familiar/epidemiologia , Adulto , Estudos Transversais , Pessoa de Meia-Idade , Brasil/epidemiologia , Morbidade , Lamina Tipo A/genética
9.
Cells ; 13(12)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38920652

RESUMO

Mesenchymal stem cells (MSCs) of placental origin hold great promise in tissue engineering and regenerative medicine for diseases affecting cartilage and bone. However, their utility has been limited by their tendency to undergo premature senescence and phenotypic drift into adipocytes. This study aimed to explore the potential involvement of a specific subset of aging and antiaging genes by measuring their expression prior to and following in vitro-induced differentiation of placental MSCs into chondrocytes and osteoblasts as opposed to adipocytes. The targeted genes of interest included the various LMNA/C transcript variants (lamin A, lamin C, and lamin A∆10), sirtuin 7 (SIRT7), and SM22α, along with the classic aging markers plasminogen activator inhibitor 1 (PAI-1), p53, and p16INK4a. MSCs were isolated from the decidua basalis of human term placentas, expanded, and then analyzed for phenotypic properties by flow cytometry and evaluated for colony-forming efficiency. The cells were then induced to differentiate in vitro into chondrocytes, osteocytes, and adipocytes following established protocols. The mRNA expression of the targeted genes was measured by RT-qPCR in the undifferentiated cells and those fully differentiated into the three cellular lineages. Compared to undifferentiated cells, the differentiated chondrocytes demonstrated decreased expression of SIRT7, along with decreased PAI-1, lamin A, and SM22α expression, but the expression of p16INK4a and p53 increased, suggesting their tendency to undergo premature senescence. Interestingly, the cells maintained the expression of lamin C, which indicates that it is the primary lamin variant influencing the mechanoelastic properties of the differentiated cells. Notably, the expression of all targeted genes did not differ from the undifferentiated cells following osteogenic differentiation. On the other hand, the differentiation of the cells into adipocytes was associated with decreased expression of lamin A and PAI-1. The distinct patterns of expression of aging and antiaging genes following in vitro-induced differentiation of MSCs into chondrocytes, osteocytes, and adipocytes potentially reflect specific roles for these genes during and following differentiation in the fully functional cells. Understanding these roles and the network of signaling molecules involved can open opportunities to improve the handling and utility of MSCs as cellular precursors for the treatment of cartilage and bone diseases.


Assuntos
Diferenciação Celular , Condrogênese , Células-Tronco Mesenquimais , Osteogênese , Placenta , Humanos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Feminino , Placenta/metabolismo , Placenta/citologia , Diferenciação Celular/genética , Condrogênese/genética , Gravidez , Osteogênese/genética , Biomarcadores/metabolismo , Senescência Celular/genética , Condrócitos/metabolismo , Condrócitos/citologia , Envelhecimento , Lamina Tipo A/metabolismo , Lamina Tipo A/genética
10.
Proc Natl Acad Sci U S A ; 121(27): e2406946121, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38917015

RESUMO

Progerin, the protein that causes Hutchinson-Gilford progeria syndrome, triggers nuclear membrane (NM) ruptures and blebs, but the mechanisms are unclear. We suspected that the expression of progerin changes the overall structure of the nuclear lamina. High-resolution microscopy of smooth muscle cells (SMCs) revealed that lamin A and lamin B1 form independent meshworks with uniformly spaced openings (~0.085 µm2). The expression of progerin in SMCs resulted in the formation of an irregular meshwork with clusters of large openings (up to 1.4 µm2). The expression of progerin acted in a dominant-negative fashion to disrupt the morphology of the endogenous lamin B1 meshwork, triggering irregularities and large openings that closely resembled the irregularities and openings in the progerin meshwork. These abnormal meshworks were strongly associated with NM ruptures and blebs. Of note, the progerin meshwork was markedly abnormal in nuclear blebs that were deficient in lamin B1 (~50% of all blebs). That observation suggested that higher levels of lamin B1 expression might normalize the progerin meshwork and prevent NM ruptures and blebs. Indeed, increased lamin B1 expression reversed the morphological abnormalities in the progerin meshwork and markedly reduced the frequency of NM ruptures and blebs. Thus, progerin expression disrupts the overall structure of the nuclear lamina, but that effect-along with NM ruptures and blebs-can be abrogated by increased lamin B1 expression.


Assuntos
Lamina Tipo A , Lamina Tipo B , Lâmina Nuclear , Lâmina Nuclear/metabolismo , Lamina Tipo A/metabolismo , Lamina Tipo A/genética , Lamina Tipo B/metabolismo , Lamina Tipo B/genética , Humanos , Progéria/metabolismo , Progéria/genética , Progéria/patologia , Animais , Precursores de Proteínas/metabolismo , Precursores de Proteínas/genética , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Camundongos
11.
Sci Rep ; 14(1): 12826, 2024 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834813

RESUMO

Lamin A/C gene (LMNA) mutations contribute to severe striated muscle laminopathies, affecting cardiac and skeletal muscles, with limited treatment options. In this study, we delve into the investigations of five distinct LMNA mutations, including three novel variants and two pathogenic variants identified in patients with muscular laminopathy. Our approach employs zebrafish models to comprehensively study these variants. Transgenic zebrafish expressing wild-type LMNA and each mutation undergo extensive morphological profiling, swimming behavior assessments, muscle endurance evaluations, heartbeat measurement, and histopathological analysis of skeletal muscles. Additionally, these models serve as platform for focused drug screening. We explore the transcriptomic landscape through qPCR and RNAseq to unveil altered gene expression profiles in muscle tissues. Larvae of LMNA(L35P), LMNA(E358K), and LMNA(R453W) transgenic fish exhibit reduced swim speed compared to LMNA(WT) measured by DanioVision. All LMNA transgenic adult fish exhibit reduced swim speed compared to LMNA(WT) in T-maze. Moreover, all LMNA transgenic adult fish, except LMNA(E358K), display weaker muscle endurance than LMNA(WT) measured by swimming tunnel. Histochemical staining reveals decreased fiber size in all LMNA mutations transgenic fish, excluding LMNA(WT) fish. Interestingly, LMNA(A539V) and LMNA(E358K) exhibited elevated heartbeats. We recognize potential limitations with transgene overexpression and conducted association calculations to explore its effects on zebrafish phenotypes. Our results suggest lamin A/C overexpression may not directly impact mutant phenotypes, such as impaired swim speed, increased heart rates, or decreased muscle fiber diameter. Utilizing LMNA zebrafish models for drug screening, we identify L-carnitine treatment rescuing muscle endurance in LMNA(L35P) and creatine treatment reversing muscle endurance in LMNA(R453W) zebrafish models. Creatine activates AMPK and mTOR pathways, improving muscle endurance and swim speed in LMNA(R453W) fish. Transcriptomic profiling reveals upstream regulators and affected genes contributing to motor dysfunction, cardiac anomalies, and ion flux dysregulation in LMNA mutant transgenic fish. These findings faithfully mimic clinical manifestations of muscular laminopathies, including dysmorphism, early mortality, decreased fiber size, and muscle dysfunction in zebrafish. Furthermore, our drug screening results suggest L-carnitine and creatine treatments as potential rescuers of muscle endurance in LMNA(L35P) and LMNA(R453W) zebrafish models. Our study offers valuable insights into the future development of potential treatments for LMNA-related muscular laminopathy.


Assuntos
Animais Geneticamente Modificados , Carnitina , Creatina , Lamina Tipo A , Músculo Esquelético , Mutação , Peixe-Zebra , Animais , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Músculo Esquelético/efeitos dos fármacos , Creatina/metabolismo , Carnitina/metabolismo , Modelos Animais de Doenças , Laminopatias/genética , Laminopatias/metabolismo , Natação , Transcriptoma , Humanos
13.
Int J Mol Sci ; 25(11)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38892025

RESUMO

Pathogenic variants in LMNA have been associated with a wide spectrum of muscular conditions: the laminopathies. LMNA-related congenital muscular dystrophy is a laminopathy characterised by the early onset of symptoms and often leads to a fatal outcome at young ages. Children face a heightened risk of malignant arrhythmias. No established paediatric protocols for managing this condition are available. We review published cases and provide insights into disease progression in two twin sisters with LMNA-related muscular dystrophy. Our objective is to propose a cardiac surveillance and management plan tailored specifically for paediatric patients. We present a family of five members, including two twin sisters with LMNA-related muscular dystrophy. A comprehensive neuromuscular and cardiac work-up was performed in all family members. Genetic analysis using massive sequencing technology was performed in both twins. Clinical assessment showed that only the twins showed diagnoses of LMNA-related muscular dystrophy. Follow-up showed an early onset of symptoms and life-threatening arrhythmias, with differing disease progressions despite both twins passing away. Genetic analysis identified a de novo rare missense deleterious variant in the LMNA gene. Other additional rare variants were identified in genes associated with myasthenic syndrome. Early-onset neuromuscular symptoms could be related to a prognosis of worse life-threatening arrhythmias in LMNA related muscular dystrophy. Being a carrier of other rare variants may be a modifying factor in the progression of the phenotype, although further studies are needed. There is a pressing need for specific cardiac recommendations tailored to the paediatric population to mitigate the risk of malignant arrhythmias.


Assuntos
Lamina Tipo A , Distrofias Musculares , Gêmeos Monozigóticos , Humanos , Lamina Tipo A/genética , Gêmeos Monozigóticos/genética , Feminino , Distrofias Musculares/genética , Distrofias Musculares/terapia , Masculino , Criança , Linhagem , Pré-Escolar , Arritmias Cardíacas/genética , Arritmias Cardíacas/etiologia
14.
Adv Sci (Weinh) ; 11(30): e2307751, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38894550

RESUMO

Genomic instability is not only a hallmark of senescent cells but also a key factor driving cellular senescence, and replication stress is the main source of genomic instability. Defective prelamin A processing caused by lamin A/C (LMNA) or zinc metallopeptidase STE24 (ZMPSTE24) gene mutations results in premature aging. Although previous studies have shown that dysregulated lamin A interferes with DNA replication and causes replication stress, the relationship between lamin A dysfunction and replication stress remains largely unknown. Here, an increase in baseline replication stress and genomic instability is found in prelamin A-expressing cells. Moreover, prelamin A confers hypersensitivity of cells to exogenous replication stress, resulting in decreased cell survival and exacerbated genomic instability. These effects occur because prelamin A promotes MRE11-mediated resection of stalled replication forks. Fanconi anemia (FA) proteins, which play important roles in replication fork maintenance, are downregulated by prelamin A in a retinoblastoma (RB)/E2F-dependent manner. Additionally, prelamin A inhibits the activation of the FA pathway upon replication stress. More importantly, FA pathway downregulation is an upstream event of p53-p21 axis activation during the induction of prelamin A expression. Overall, these findings highlight the critical role of FA pathway dysfunction in driving replication stress-induced genomic instability and cellular senescence in prelamin A-expressing cells.


Assuntos
Replicação do DNA , Instabilidade Genômica , Lamina Tipo A , Instabilidade Genômica/genética , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Humanos , Replicação do DNA/genética , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Senescência Celular/genética
15.
Cell Rep ; 43(6): 114284, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38814785

RESUMO

Nuclear envelope (NE) ruptures are emerging observations in Lamin-related dilated cardiomyopathy, an adult-onset disease caused by loss-of-function mutations in Lamin A/C, a nuclear lamina component. Here, we test a prevailing hypothesis that NE ruptures trigger the pathological cGAS-STING cytosolic DNA-sensing pathway using a mouse model of Lamin cardiomyopathy. The reduction of Lamin A/C in cardio-myocyte of adult mice causes pervasive NE ruptures in cardiomyocytes, preceding inflammatory transcription, fibrosis, and fatal dilated cardiomyopathy. NE ruptures are followed by DNA damage accumulation without causing immediate cardiomyocyte death. However, cGAS-STING-dependent inflammatory signaling remains inactive. Deleting cGas or Sting does not rescue cardiomyopathy in the mouse model. The lack of cGAS-STING activation is likely due to the near absence of cGAS expression in adult cardiomyocytes at baseline. Instead, extracellular matrix (ECM) signaling is activated and predicted to initiate pro-inflammatory communication from Lamin-reduced cardiomyocytes to fibroblasts. Our work nominates ECM signaling, not cGAS-STING, as a potential inflammatory contributor in Lamin cardiomyopathy.


Assuntos
Matriz Extracelular , Proteínas de Membrana , Miócitos Cardíacos , Membrana Nuclear , Nucleotidiltransferases , Transdução de Sinais , Animais , Nucleotidiltransferases/metabolismo , Nucleotidiltransferases/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Camundongos , Membrana Nuclear/metabolismo , Matriz Extracelular/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Lamina Tipo A/metabolismo , Lamina Tipo A/genética , Cardiomiopatias/metabolismo , Cardiomiopatias/patologia , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Cardiomiopatia Dilatada/patologia , Cardiomiopatia Dilatada/metabolismo , Cardiomiopatia Dilatada/genética , Dano ao DNA
16.
J Proteome Res ; 23(6): 1970-1982, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38718259

RESUMO

Lamin A/C (LMNA) is an important component of nuclear lamina. Mutations cause arrhythmia, heart failure, and sudden cardiac death. While LMNA-associated cardiomyopathy typically has an aggressive course that responds poorly to conventional heart failure therapies, there is variability in severity and age of penetrance between and even within specific mutations, which is poorly understood at the cellular level. Further, this heterogeneity has not previously been captured to mimic the heterozygous state, nor have the hundreds of clinical LMNA mutations been represented. Herein, we have overexpressed cardiopathic LMNA variants in HEK cells and utilized state-of-the-art quantitative proteomics to compare the global proteomic profiles of (1) aggregating Q353 K alone, (2) Q353 K coexpressed with WT, (3) aggregating N195 K coexpressed with WT, and (4) nonaggregating E317 K coexpressed with WT to help capture some of the heterogeneity between mutations. We analyzed each data set to obtain the differentially expressed proteins (DEPs) and applied gene ontology (GO) and KEGG pathway analyses. We found a range of 162 to 324 DEPs from over 6000 total protein IDs with differences in GO terms, KEGG pathways, and DEPs important in cardiac function, further highlighting the complexity of cardiac laminopathies. Pathways disrupted by LMNA mutations were validated with redox, autophagy, and apoptosis functional assays in both HEK 293 cells and in induced pluripotent stem cell derived cardiomyocytes (iPSC-CMs) for LMNA N195 K. These proteomic profiles expand our repertoire for mutation-specific downstream cellular effects that may become useful as druggable targets for personalized medicine approach for cardiac laminopathies.


Assuntos
Lamina Tipo A , Mutação , Proteômica , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Humanos , Proteômica/métodos , Células HEK293 , Cardiomiopatias/genética , Cardiomiopatias/metabolismo , Proteoma/genética , Proteoma/metabolismo , Ontologia Genética
17.
Rev Paul Pediatr ; 42: e2022189, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38808865

RESUMO

OBJECTIVE: To report the case of a girl presenting a severe phenotype of mandibuloacral dysplasia type A (MADA) characterized by prominent osteolytic changes and ectodermal defects, associated with a rare homozygous LMNA missense mutation (c.1579C>T). CASE DESCRIPTION: A 6-year-old girl was evaluated during hospitalization exhibiting the following dysmorphic signs: subtotal alopecia, dysmorphic facies with prominent eyes, marked micrognathia and retrognathia, small beaked nose, teeth crowding and thin lips, generalized lipodystrophy, narrow and sloping shoulders, generalized joint stiffness and bone reabsorption in the terminal phalanges. In dermatological examination, atrophic skin, loss of cutaneous elasticity, hyperkeratosis, dermal calcinosis, and hyperpigmented and hypochromic patches were observed. Radiology exams performed showed bilateral absence of the mandibular condyles, clavicle resorption with local amorphous bone mass confluence with the scapulae, shoulder joints with subluxation and severe bone dysplasia, hip dysplasia, osteopenia and subcutaneous calcifications. COMMENTS: MADA is a rare autosomal recessive disease caused by mutations in LMNA gene. It is characterized by craniofacial deformities, skeletal anomalies, skin alterations, lipodystrophy in certain regions of the body and premature ageing. Typical MADA is caused by the p.R527H mutation in the LMNA gene. However, molecular analysis performed from oral epithelial cells obtained from the patient showed the rare mutation c.1579C>T, p. R527C in the exon 9 of LMNA. This is the sixth family identified with this mutation described in the literature.


Assuntos
Lamina Tipo A , Mutação de Sentido Incorreto , Fenótipo , Humanos , Feminino , Lamina Tipo A/genética , Criança , Mandíbula/anormalidades , Mandíbula/diagnóstico por imagem , Lipodistrofia , Acro-Osteólise
18.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732148

RESUMO

Mutations in the LMNA gene-encoding A-type lamins can cause Limb-Girdle muscular dystrophy Type 1B (LGMD1B). This disease presents with weakness and wasting of the proximal skeletal muscles and has a variable age of onset and disease severity. This variability has been attributed to genetic background differences among individuals; however, such variants have not been well characterized. To identify such variants, we investigated a multigeneration family in which affected individuals are diagnosed with LGMD1B. The primary genetic cause of LGMD1B in this family is a dominant mutation that activates a cryptic splice site, leading to a five-nucleotide deletion in the mature mRNA. This results in a frame shift and a premature stop in translation. Skeletal muscle biopsies from the family members showed dystrophic features of variable severity, with the muscle fibers of some family members possessing cores, regions of sarcomeric disruption, and a paucity of mitochondria, not commonly associated with LGMD1B. Using whole genome sequencing (WGS), we identified 21 DNA sequence variants that segregate with the family members possessing more profound dystrophic features and muscle cores. These include a relatively common variant in coiled-coil domain containing protein 78 (CCDC78). This variant was given priority because another mutation in CCDC78 causes autosomal dominant centronuclear myopathy-4, which causes cores in addition to centrally positioned nuclei. Therefore, we analyzed muscle biopsies from family members and discovered that those with both the LMNA mutation and the CCDC78 variant contain muscle cores that accumulated both CCDC78 and RyR1. Muscle cores containing mislocalized CCDC78 and RyR1 were absent in the less profoundly affected family members possessing only the LMNA mutation. Taken together, our findings suggest that a relatively common variant in CCDC78 can impart profound muscle pathology in combination with a LMNA mutation and accounts for variability in skeletal muscle disease phenotypes.


Assuntos
Lamina Tipo A , Proteínas Associadas aos Microtúbulos , Proteínas Musculares , Músculo Esquelético , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Lamina Tipo A/genética , Proteínas Musculares/genética , Músculo Esquelético/patologia , Músculo Esquelético/metabolismo , Distrofia Muscular do Cíngulo dos Membros/genética , Distrofia Muscular do Cíngulo dos Membros/patologia , Mutação , Linhagem , Proteínas Associadas aos Microtúbulos/genética
19.
Arch Endocrinol Metab ; 68: e230204, 2024 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-38739524

RESUMO

Lipodystrophies are characterized by complete or selective loss of adipose tissue and can be acquired or inherited. Familial partial lipodystrophy (FPLD) is a hereditary lipodystrophy commonly caused by mutations in the LMNA gene. Herein, we report two cases of FPLD associated with podocytopathies. Patient 1 was diagnosed with FPLD associated with the heterozygous p.Arg482Trp variant in LMNA and had normal glucose tolerance and hyperinsulinemia. During follow-up, she developed nephroticrange proteinuria. Renal biopsy was consistent with minimal change disease. Patient 2 was diagnosed with FPLD associated with a de novo heterozygous p.Arg349Trp variant in LMNA. Microalbuminuria progressed to macroalbuminuria within 6 years and tonephrotic range proteinuria in the last year. He remained without diabetes and with hyperinsulinemia. Renal biopsy revealed focal segmental glomerulosclerosis not otherwise specified. This report provides further evidence of variable features of lipodystrophy associated with LMNA variants and the importance of long-term follow-up with evaluation of kidney dysfunction.


Assuntos
Lamina Tipo A , Lipodistrofia Parcial Familiar , Humanos , Lamina Tipo A/genética , Lipodistrofia Parcial Familiar/genética , Lipodistrofia Parcial Familiar/complicações , Feminino , Masculino , Adulto , Podócitos/patologia , Mutação
20.
Sci Adv ; 10(19): eadh0798, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38718107

RESUMO

Mutations in the LMNA gene encoding lamins A/C cause an array of tissue-selective diseases, with the heart being the most commonly affected organ. Despite progress in understanding the perturbations emanating from LMNA mutations, an integrative understanding of the pathogenesis underlying cardiac dysfunction remains elusive. Using a novel conditional deletion model capable of translatome profiling, we observed that cardiomyocyte-specific Lmna deletion in adult mice led to rapid cardiomyopathy with pathological remodeling. Before cardiac dysfunction, Lmna-deleted cardiomyocytes displayed nuclear abnormalities, Golgi dilation/fragmentation, and CREB3-mediated stress activation. Translatome profiling identified MED25 activation, a transcriptional cofactor that regulates Golgi stress. Autophagy is disrupted in the hearts of these mice, which can be recapitulated by disrupting the Golgi. Systemic administration of modulators of autophagy or ER stress significantly delayed cardiac dysfunction and prolonged survival. These studies support a hypothesis wherein stress responses emanating from the perinuclear space contribute to the LMNA cardiomyopathy development.


Assuntos
Cardiomiopatias , Lamina Tipo A , Miócitos Cardíacos , Membrana Nuclear , Animais , Lamina Tipo A/metabolismo , Lamina Tipo A/genética , Camundongos , Membrana Nuclear/metabolismo , Cardiomiopatias/metabolismo , Cardiomiopatias/etiologia , Cardiomiopatias/patologia , Cardiomiopatias/genética , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Autofagia , Estresse Fisiológico , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático , Complexo de Golgi/metabolismo , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...