Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.054
Filtrar
1.
FASEB J ; 38(17): e70020, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39222301

RESUMO

The human retinal pigment epithelium (RPE) cell line ARPE-19 is widely used as an alternative to primary RPE despite losing many features of primary RPE. We aimed to determine whether a combination of RPE-specific laminin (LN) and nicotinamide (NAM) could improve ARPE-19 redifferentiation to resemble mature RPE and improve the assessment of RPE-specific gene therapy strategies. ARPE-19 cells were propagated on tissue culture plastic supplemented with NAM and human recombinant LN521-coating. RPE maturation was performed by immunocytochemistry and gene expression by qPCR. Viral transduction experiments with adeno-associated virus (AAV)1 or AAV2, carrying a VMD2-driven GFP, were assessed at 2- and 4-weeks post-plating in the different culturing conditions with a low multiplicity of infection. The combination of LN521 coating with NAM supplementation promoted cytoskeletal and tight junction protein reorganization. The expression of maturation markers bestrophin-1 and RPE 65 was promoted concomitantly with a reduction of several epithelial-mesenchymal transition markers, such as TNF-α, TGF-ß, CDH2, and vimentin. Redifferentiated ARPE-19 transduced at low multiplicity of infection of both AAV1- and AAV2-VMD2-GFP. Expression of GFP was detected at 2 weeks and increased at 4 weeks post-plating. AAV1 exhibited a greater expression efficacy compared to AAV2 in maturated ARPE-19 cells already after 2 weeks with increased efficiency after 4 weeks. Our study demonstrates an improved maturation protocol for ARPE-19 cells in vitro, mimicking an in vivo phenotype with the expression of signature genes and improved morphology. Viral-mediated RPE-specific gene expression demonstrates that the combination cultures mimic in vivo AAV tropism essential to test new gene therapies for RPE-centered diseases.


Assuntos
Dependovirus , Terapia Genética , Epitélio Pigmentado da Retina , Humanos , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/citologia , Terapia Genética/métodos , Linhagem Celular , Dependovirus/genética , Diferenciação Celular , Laminina/metabolismo , Laminina/genética , Transição Epitelial-Mesenquimal , Bestrofinas/genética , Bestrofinas/metabolismo
2.
PLoS Biol ; 22(9): e3002783, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39226305

RESUMO

Cell shape remodeling is a principal driver of epithelial tissue morphogenesis. While progress continues to be made in our understanding of the pathways that control the apical (top) geometry of epithelial cells, we know comparatively little about those that control cell basal (bottom) geometry. To examine this, we used the Drosophila ommatidium, which is the basic visual unit of the compound eye. The ommatidium is shaped as a hexagonal prism, and generating this 3D structure requires ommatidial cells to adopt specific apical and basal polygonal geometries. Using this model system, we find that generating cell type-specific basal geometries starts with patterning of the basal extracellular matrix, whereby Laminin accumulates at discrete locations across the basal surface of the retina. We find the Dystroglycan receptor complex (DGC) is required for this patterning by promoting localized Laminin accumulation at the basal surface of cells. Moreover, our results reveal that localized accumulation of Laminin and the DGC are required for directing Integrin adhesion. This induces cell basal geometry remodeling by anchoring the basal surface of cells to the extracellular matrix at specific, Laminin-rich locations. We propose that patterning of a basal extracellular matrix by generating discrete Laminin domains can direct Integrin adhesion to induce cell shape remodeling in epithelial morphogenesis.


Assuntos
Forma Celular , Proteínas de Drosophila , Drosophila melanogaster , Distroglicanas , Matriz Extracelular , Integrinas , Laminina , Retina , Animais , Distroglicanas/metabolismo , Laminina/metabolismo , Integrinas/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Matriz Extracelular/metabolismo , Retina/metabolismo , Retina/crescimento & desenvolvimento , Retina/citologia , Retina/embriologia , Drosophila melanogaster/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/genética , Morfogênese , Adesão Celular , Drosophila/metabolismo , Drosophila/crescimento & desenvolvimento
3.
Sci Adv ; 10(36): eadk2252, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39231227

RESUMO

Primordial germ cells (PGCs) are the precursors of gametes and the sole mechanism by which animals transmit genetic information across generations. In the mouse embryo, the transcriptional and epigenetic regulation of PGC specification has been extensively characterized. However, the initial event that triggers the soma-germline segregation remains poorly understood. Here, we uncover a critical role for the basement membrane in regulating germline entry. We show that PGCs arise in a region of the mouse embryo that lacks contact with the basement membrane, and the addition of exogenous extracellular matrix (ECM) inhibits both PGC and PGC-like cell (PGCLC) specification in mouse embryos and stem cell models, respectively. Mechanistically, we demonstrate that the engagement of ß1 integrin with laminin blocks PGCLC specification by preventing the Wnt signaling-dependent down-regulation of the PGC transcriptional repressor, Otx2. In this way, the physical segregation of cells away from the basement membrane acts as a morphogenetic fate switch that controls the soma-germline bifurcation.


Assuntos
Células Germinativas , Células-Tronco Pluripotentes , Animais , Camundongos , Células Germinativas/metabolismo , Células Germinativas/citologia , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/citologia , Transdução de Sinais , Integrinas/metabolismo , Integrinas/genética , Membrana Basal/metabolismo , Via de Sinalização Wnt , Diferenciação Celular , Matriz Extracelular/metabolismo , Laminina/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Integrina beta1/metabolismo , Integrina beta1/genética , Fatores de Transcrição Otx/metabolismo , Fatores de Transcrição Otx/genética , Embrião de Mamíferos/metabolismo , Embrião de Mamíferos/citologia
4.
Int J Mol Sci ; 25(16)2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39201392

RESUMO

Laminins are essential components of the basement membranes, expressed in a tissue- and cell-specific manner under physiological conditions. During inflammatory circumstances, such as atherosclerosis, alterations in laminin composition within vessels have been observed. Our study aimed to assess the influence of tumor necrosis factor-alpha (TNF), a proinflammatory cytokine abundantly found in atherosclerotic lesions, on endothelial laminin gene expression and the effects of laminin-332 (LN332) on endothelial cells' behavior. We also evaluated the expression of LN332-encoding genes in human carotid atherosclerotic plaques. Our findings demonstrate that TNF induces upregulation of LAMB3 and LAMC2, which, along with LAMA3, encode the LN332 isoform. Endothelial cells cultured on recombinant LN332 exhibit decreased claudin-5 expression and display a loosely connected phenotype, with an elevated expression of chemokines and leukocyte adhesion molecules, enhancing their attractiveness and adhesion to leukocytes in vitro. Furthermore, LAMB3 and LAMC2 are upregulated in human carotid plaques and show a positive correlation with TNF expression. In summary, TNF stimulates the expression of LN332-encoding genes in human endothelial cells and LN332 promotes an endothelial phenotype characterized by compromised junctional integrity and increased leukocyte interaction. These findings highlight the importance of basement membrane proteins for endothelial integrity and the potential role of LN332 in atherosclerosis.


Assuntos
Aterosclerose , Moléculas de Adesão Celular , Calinina , Laminina , Fator de Necrose Tumoral alfa , Humanos , Fator de Necrose Tumoral alfa/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/genética , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Laminina/metabolismo , Laminina/genética , Células Endoteliais/metabolismo , Fenótipo , Placa Aterosclerótica/genética , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologia , Adesão Celular/genética , Células Endoteliais da Veia Umbilical Humana/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Células Cultivadas
5.
PLoS Negl Trop Dis ; 18(8): e0012069, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39213442

RESUMO

Enolase is a 47 kDa enzyme that functions within the glycolysis and gluconeogenesis pathways involved in the reversible conversion of D-2-phosphoglycerate (2PGA) to phosphoenolpyruvate (PEP). However, in the context of host-pathogen interactions, enolase from different species of parasites, fungi and bacteria have been shown to contribute to adhesion processes by binding to proteins of the host extracellular matrix (ECM), such as fibronectin (FN) or laminin (LM). In addition, enolase is a plasminogen (PLG)-binding protein and induces its activation to plasmin, the main protease of the host fibrinolytic system. These secondary 'moonlighting' functions of enolase are suggested to facilitate pathogen migration through host tissues. This study aims to uncover the moonlighting role of enolase from the parasite Fasciola hepatica, shedding light on its relevance to host-parasite interactions in fasciolosis, a global zoonotic disease of increasing concern. A purified recombinant form of F. hepatica enolase (rFhENO), functioning as an active homodimeric glycolytic enzyme of ~94 kDa, was successfully obtained, fulfilling its canonical role. Immunoblotting studies on adult worm extracts showed that the enzyme is present in the tegument and the excretory/secretory products of the parasite, which supports its key role at the host-parasite interface. Confocal immunolocalisation studies of the protein in newly excysted juveniles and adult worms also localised its expression within the parasite tegument. Finally, we showed by ELISA that rFhENO can act as a parasitic adhesin by binding host LM, but not FN. rFhENO also binds PLG and enhances its conversion to plasmin in the presence of the tissue-type and urokinase-type PLG activators (t-PA and u-PA). This moonlighting adhesion-like function of the glycolytic protein enolase could contribute to the mechanisms by which F. hepatica efficiently invades and migrates within its host and encourages further research efforts that are designed to impede this function by vaccination or drug design.


Assuntos
Matriz Extracelular , Fasciola hepatica , Interações Hospedeiro-Parasita , Fosfopiruvato Hidratase , Fosfopiruvato Hidratase/metabolismo , Fosfopiruvato Hidratase/genética , Fasciola hepatica/enzimologia , Fasciola hepatica/metabolismo , Animais , Matriz Extracelular/metabolismo , Fibrinólise , Plasminogênio/metabolismo , Glicólise , Fasciolíase/parasitologia , Fasciolíase/metabolismo , Laminina/metabolismo
6.
Front Immunol ; 15: 1401751, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39119341

RESUMO

Introduction: Enteric glial cells are important players in the control of motility, intestinal barrier integrity and inflammation. During inflammation, they switch into a reactive phenotype enabling them to release inflammatory mediators, thereby shaping the inflammatory environment. While a plethora of well-established in vivo models exist, cell culture models necessary to decipher the mechanistic pathways of enteric glial reactivity are less well standardized. In particular, the composition of extracellular matrices (ECM) can massively affect the experimental outcome. Considering the growing number of studies involving primary enteric glial cells, a better understanding of their homeostatic and inflammatory in vitro culture conditions is needed. Methods: We examined the impact of different ECMs on enteric glial culture purity, network morphology and immune responsiveness. Therefore, we used immunofluorescence and brightfield microscopy, as well as 3' bulk mRNA sequencing. Additionally, we compared cultured cells with in vivo enteric glial transcriptomes isolated from Sox10iCreERT2Rpl22HA/+ mice. Results: We identified Matrigel and laminin as superior over other coatings, including poly-L-ornithine, different lysines, collagens, and fibronectin, gaining the highest enteric glial purity and most extended glial networks expressing connexin-43 hemichannels allowing intercellular communication. Transcriptional analysis revealed strong similarities between enteric glia on Matrigel and laminin with enrichment of gene sets supporting neuronal differentiation, while cells on poly-L-ornithine showed enrichment related to cell proliferation. Comparing cultured and in vivo enteric glial transcriptomes revealed a 50% overlap independent of the used coating substrates. Inflammatory activation of enteric glia by IL-1ß treatment showed distinct coating-dependent gene expression signatures, with an enrichment of genes related to myeloid and epithelial cell differentiation on Matrigel and laminin coatings, while poly-L-ornithine induced more gene sets related to lymphocyte differentiation. Discussion: Together, changes in morphology, differentiation and immune activation of primary enteric glial cells proved a strong effect of the ECM. We identified Matrigel and laminin as pre-eminent substrates for murine enteric glial cultures. These new insights will help to standardize and improve enteric glial culture quality and reproducibility between in vitro studies in the future, allowing a better comparison of their functional role in enteric neuroinflammation.


Assuntos
Matriz Extracelular , Homeostase , Laminina , Neuroglia , Animais , Matriz Extracelular/metabolismo , Neuroglia/metabolismo , Neuroglia/imunologia , Camundongos , Laminina/metabolismo , Sistema Nervoso Entérico/metabolismo , Sistema Nervoso Entérico/imunologia , Células Cultivadas , Combinação de Medicamentos , Colágeno/metabolismo , Camundongos Endogâmicos C57BL , Proteoglicanas/metabolismo
7.
Invest Ophthalmol Vis Sci ; 65(10): 12, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39106056

RESUMO

Purpose: The role of specific extracellular matrix (ECM) molecules in lens cell development and regeneration is poorly understood, as appropriate cellular models are lacking. Here, a laminin-based lens cell in vitro induction system was developed to study the role of laminin in human lens epithelial stem/progenitor cell (LES/PC) development. Methods: The human embryonic stem cell-based lens induction system followed a three-stage protocol. The expression profile of laminins during lens induction was screened, and laminin-511 (LN511) was tested as a candidate substitute. LN511 induction system cellular and molecular features, including induction efficiency, transcription factor expression related to different lens development stages, ECM alterations, and Hippo/YAP signaling, were evaluated. Results: LAMA5, LAMB1, and LAMC1 were highly expressed around the time of LES/PC derivation. We chose LN511 (product of LAMA5, LAMB1, and LAMC1) and found that it considerably enhanced lens cell induction efficiency, compared to that in Matrigel-coated culture, as more and larger lentoid bodies were detected. Notably, LES/PC induction efficiency improved by promoting lens specification-related transcription factor expression and cell proliferation. Transcriptome analysis revealed that compared to those with Matrigel, ECM accumulation and cell adhesion were downregulated in the LN511 system. Hippo/YAP signaling was hypoactive during LES/P-like cell generation, and small molecule inhibitors of YAP/TAZ activity upregulated LES/PC marker expression and promoted the efficiency of LES/P-like cell derivation. Conclusions: The laminin isoform LN511 is a reliable substitute for the LES/P-like cell induction system, and LN511-YAP acted as efficient modulators of LES/PC derivation; this contributes to knowledge of the role of the ECM in human lens development.


Assuntos
Diferenciação Celular , Proliferação de Células , Células Epiteliais , Laminina , Cristalino , Humanos , Laminina/metabolismo , Cristalino/citologia , Cristalino/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Cultivadas , Transdução de Sinais , Células-Tronco/metabolismo , Células-Tronco/citologia , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Matriz Extracelular/metabolismo
8.
Sci Rep ; 14(1): 19592, 2024 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-39179716

RESUMO

Bone marrow-derived mesenchymal stem cells (BMSCs) exhibit multi-lineage differentiation potential and robust proliferative capacity. The late stage of differentiation signifies the functional maturation and characterization of specific cell lineages, which is crucial for studying lineage-specific differentiation mechanisms. However, the molecular processes governing late-stage BMSC differentiation remain poorly understood. This study aimed to elucidate the key biological processes involved in late-stage BMSC differentiation. Publicly available transcriptomic data from human BMSCs were analyzed after approximately 14 days of osteogenic, adipogenic, and chondrogenic differentiation. Thirty-one differentially expressed genes (DEGs) associated with differentiation were identified. Pathway enrichment analysis indicated that the DEGs were involved in extracellular matrix (ECM)-receptor interactions, focal adhesion, and glycolipid biosynthesis, a ganglion series process. Subsequently, the target genes were validated using publicly available single-cell RNA-seq data from mouse BMSCs. Lamc1 exhibited predominant distribution in adipocytes and osteoblasts, primarily during the G2/M phase. Tln2 and Hexb were expressed in chondroblasts, osteoblasts, and adipocytes, while St3gal5 was abundantly distributed in stem cells. Cell communication analysis identified two receptors that interact with LAMCI. q-PCR results confirmed the upregulation of Lamc1, Tln2, Hexb, and St3gal5 during osteogenic differentiation and their downregulation during adipogenic differentiation. Knockdown of Lamc1 inhibited adipogenic and osteogenic differentiation. In conclusion, this study identified four genes, Lamc1, Tln2, Hexb, and St3gal5, that may play important roles in the late-stage differentiation of BMSCs. It elucidated their interactions and the pathways they influence, providing a foundation for further research on BMSC differentiation.


Assuntos
Adipogenia , Diferenciação Celular , Laminina , Células-Tronco Mesenquimais , Osteogênese , Animais , Humanos , Camundongos , Adipócitos/citologia , Adipócitos/metabolismo , Adipogenia/genética , Células Cultivadas , Perfilação da Expressão Gênica , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteogênese/genética , Laminina/genética , Laminina/metabolismo
9.
Front Endocrinol (Lausanne) ; 15: 1430543, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39129915

RESUMO

Diabetic wounds are more complex than normal chronic wounds because of factors such as hypoxia, reduced local angiogenesis, and prolonged inflammation phase. Fibrous proteins, including collagen, fibrin, laminin, fibronectin, elastin etc., possess excellent inherent properties that make them highly advantageous in the area of wound healing. Accumulating evidence suggests that they contribute to the healing process of diabetic wounds by facilitating the repair and remodel of extracellular matrix, stimulating the development of vascular and granulation tissue, and so on. However, there is currently a lack of a comprehensive review of the application of these proteins in diabetes wounds. An overview of fibrous protein characteristics and the alterations linked to diabetic wounds is given in this article's initial section. Next is a summary of the advanced applications of fibrous proteins in the last five years, including acellular dermal matrix, hydrogel, foam, scaffold, and electrospun nanofibrous membrane. These dressings have the ability to actively promote healing in addition to just covering wounds compared to traditional wound dressings like gauze or bandage. Research on fibrous proteins and their role in diabetic wound healing may result in novel therapeutic modalities that lower the incidence of diabetic wounds and thereby enhance the health of diabetic patients.


Assuntos
Diabetes Mellitus , Cicatrização , Cicatrização/fisiologia , Humanos , Diabetes Mellitus/metabolismo , Animais , Colágeno/metabolismo , Fibronectinas/metabolismo , Fibrina/metabolismo , Elastina/metabolismo , Laminina/metabolismo , Complicações do Diabetes/metabolismo , Complicações do Diabetes/terapia
10.
Sci Rep ; 14(1): 16096, 2024 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-38997331

RESUMO

Peripheral nerve injury is a prevalent clinical problem that often leads to lifelong disability and reduced quality of life. Although peripheral nerves can regenerate, recovery after severe injury is slow and incomplete. The current gold standard treatment, autologous nerve transplantation, has limitations including donor site morbidity and poor functional outcomes, highlighting the need for improved repair strategies. We developed a reproducible in vitro hollow channel collagen gel construct to investigate peripheral nerve regeneration (PNR) by exploring the influence of key extracellular matrix (ECM) proteins on axonal growth and regeneration. Channels were coated with ECM proteins: collagen IV, laminin, or fibronectin and seeded with dorsal root ganglia (DRG) collected from E16 rat embryos to compare the ability of the ECM proteins to enhance axonal growth. Robust axonal extension and Schwann cell (SC) infiltration were observed in fibronectin-coated channels, suggesting its superiority over other ECM proteins. Differential effects of ECM proteins on axons and SCs indicated direct growth stimulation beyond SC-mediated guidance. In vitro laceration injury modeling further confirmed fibronectin's superior pro-regenerative effects, showcasing its potential in enhancing axonal regrowth post-injury. Advancing in vitro modeling that closely replicates native microenvironments will accelerate progress in overcoming the limitations of current nerve repair approaches.


Assuntos
Proteínas da Matriz Extracelular , Gânglios Espinais , Regeneração Nervosa , Traumatismos dos Nervos Periféricos , Animais , Regeneração Nervosa/fisiologia , Ratos , Traumatismos dos Nervos Periféricos/terapia , Traumatismos dos Nervos Periféricos/metabolismo , Gânglios Espinais/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Axônios/fisiologia , Axônios/metabolismo , Colágeno/metabolismo , Células de Schwann/metabolismo , Células de Schwann/fisiologia , Fibronectinas/metabolismo , Ratos Sprague-Dawley , Alicerces Teciduais/química , Nervos Periféricos/fisiologia , Laminina/metabolismo
11.
Zhonghua Fu Chan Ke Za Zhi ; 59(6): 454-464, 2024 Jun 25.
Artigo em Chinês | MEDLINE | ID: mdl-38951081

RESUMO

Objective: To investigate the effect of DNA methylation of laminin α3 (LAMA3) on the prognosis of platinum-resistant epithelial ovarian cancer (EOC) and its possible mechanism. Methods: (1) The relationship between DNA methylation of LAMA3 and platinum resistance in EOC was evaluated by bioinformatics. (2) A total of 67 EOC patients treated at Guangxi Medical University Cancer Hospital from January 2000 to December 2012 were selected to detect the levels of LAMA3 DNA methylation in EOC tissues using pyrophosphate sequencing technology to explore its diagnostic efficacy for platinum resistance and prognosis in EOC patients. Furthermore, its impact on chemotherapy efficacy and prognosis of platinum resistant EOC patients were also analyzed. Results: (1) Ten proteins highly interacting with LAMA3 were screened from the Gene Interaction Retrieval Platform (STRING) database, including laminin ß (LAMB) 3, laminin γ (LAMC) 3, integrin α (ITGA) 6, intestine protein ß4 (ITGB4), ITGA3, LAMC1,LAMB2, dystrophin associated glycoprotein 1 (DAG1), LAMB1 and cytochrome P450c17α (COL17A1) protein; kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis showed that LAMA3 and its related interacting proteins participate in the regulation of malignant tumor occurrence and development through signaling pathways such as apoptosis, cell cycle, DNA damage response, epithelial mesenchymal transition (EMT), androgen receptor (AR), estrogen receptor (ER), phosphatidylinositol 3 kinase (PI3K)/protein kinase B (Akt), RAS/mitogen activated protein kinase (MAPK), receptor tyrosine kinase (RTK), tuberous sclerosis protein complex (TSC)/mammalian target of rapamycin (mTOR), and their expression levels were related to the sensitivity of chemotherapy drugs such as cisplatin in EOC. (2) Our clinical data analysis found that the LAMA3 DNA methylation level in EOC tissue of the platinum-sensitive group (35 cases) was 71% (25/35), which was higher than 69% (22/32) in the platinum-resistant group (32 cases), with statistically insignificant difference (χ2=0.057, P=0.811). The area under the curve (AUC) of LAMA3 DNA methylation level for assessing platinum resistance in EOC was 0.601, and the AUC for predicting EOC patient prognosis was 0.686. The chemotherapy efficacy of EOC patients with high methylation of LAMA3 DNA was worse than that of patients with low methylation, 50% (12/24) vs 15/15, with statistically significant difference (χ2=10.833, P=0.001). The level of LAMA3 DNA methylation had a significant impact on the progression free survival and overall survival of EOC patients (both P<0.05). Conclusion: The level of LAMA3 DNA methylation has certain diagnostic and predictive value for platinum resistance and prognosis in EOC patients, which may be closely related to the regulatory mechanism, platinum resistance and prognosis of EOC.


Assuntos
Carcinoma Epitelial do Ovário , Biologia Computacional , Metilação de DNA , Resistencia a Medicamentos Antineoplásicos , Laminina , Neoplasias Ovarianas , Humanos , Feminino , Laminina/metabolismo , Laminina/genética , Biologia Computacional/métodos , Carcinoma Epitelial do Ovário/genética , Carcinoma Epitelial do Ovário/tratamento farmacológico , Carcinoma Epitelial do Ovário/patologia , Carcinoma Epitelial do Ovário/metabolismo , Prognóstico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/tratamento farmacológico , Regulação Neoplásica da Expressão Gênica , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Platina/uso terapêutico , Transdução de Sinais
12.
Arab J Gastroenterol ; 25(3): 306-314, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39039002

RESUMO

BACKGROUND AND STUDY AIMS: Laminin is an extracellular matrix molecule that is the major component of the basement membrane and plays a key role in regulating various processes. However, the association between the laminin gene family and the prognosis of pancreatic carcinoma has not been systematically investigated. PATIENTS AND METHODS: The role of the laminin gene family in pancreatic cancer was evaluated using data from the TCGA database. The effects of different expressions of members of the laminin gene family on pancreatic cancer survival were compared, and their primary cellular roles were examined. The effects of different expressions of positive family genes on proliferation, metastasis, and invasion, as well as EMT and ferroptosis in pancreatic cancer, were also examined. RESULTS: Based on univariate and multifactorial analysis of pancreatic cancer patients, LAMA3 was identified as an independent prognostic factor for overall survival in pancreatic cancer. LAMA3 was found to be enriched in the actin cytoskeleton, P53 signaling pathway, adhesion molecule junctions, pentose phosphate pathway, and regulatory differences in the cell cycle and focal adhesion. Additionally, high expression of LAMA3 was found to promote cancer proliferation, invasion, and metastasis, facilitate the EMT process, and inhibit ferroptosis. CONCLUSIONS: Our results identified LAMA3 was associated with the prognosis of patients with pancreatic cancer and may serve as a prognostic biomarker for pancreatic cancer.


Assuntos
Transição Epitelial-Mesenquimal , Laminina , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/mortalidade , Neoplasias Pancreáticas/metabolismo , Laminina/genética , Laminina/metabolismo , Prognóstico , Transição Epitelial-Mesenquimal/genética , Feminino , Masculino , Pessoa de Meia-Idade , Ferroptose/genética , Proliferação de Células/genética , Invasividade Neoplásica/genética , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica , Taxa de Sobrevida
13.
Curr Biol ; 34(14): 3133-3151.e10, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-38964319

RESUMO

The sense of touch is conferred by the conjoint function of somatosensory neurons and skin cells. These cells meet across a gap filled by a basal lamina, an ancient structure found in metazoans. Using Caenorhabditis elegans, we investigate the composition and ultrastructure of the extracellular matrix at the epidermis and touch receptor neuron (TRN) interface. We show that membrane-matrix complexes containing laminin, nidogen, and the MEC-4 mechano-electrical transduction channel reside at this interface and are central to proper touch sensation. Interestingly, the dimensions and spacing of these complexes correspond with the discontinuous beam-like extracellular matrix structures observed in serial-section transmission electron micrographs. These complexes fail to coalesce in touch-insensitive extracellular matrix mutants and in dissociated neurons. Loss of nidogen reduces the density of mechanoreceptor complexes and the amplitude of the touch-evoked currents they carry. Thus, neuron-epithelium cell interfaces are instrumental in mechanosensory complex assembly and function. Unlike the basal lamina ensheathing the pharynx and body wall muscle, nidogen recruitment to the puncta along TRNs is not dependent upon laminin binding. MEC-4, but not laminin or nidogen, is destabilized by point mutations in the C-terminal Kunitz domain of the extracellular matrix component, MEC-1. These findings imply that somatosensory neurons secrete proteins that actively repurpose the basal lamina to generate special-purpose mechanosensory complexes responsible for vibrotactile sensing.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Mecanorreceptores , Mecanotransdução Celular , Animais , Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Mecanorreceptores/metabolismo , Mecanorreceptores/fisiologia , Mecanotransdução Celular/fisiologia , Tato/fisiologia , Membrana Basal/metabolismo , Membrana Basal/fisiologia , Matriz Extracelular/metabolismo , Laminina/metabolismo , Glicoproteínas de Membrana , Proteínas de Membrana
14.
J Cereb Blood Flow Metab ; 44(9): 1677-1690, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39053486

RESUMO

Although most laminin isoforms are neuroprotective in stroke, mural cell-derived laminin-α5 plays a detrimental role in an ischemia-reperfusion model. To determine whether this deleterious effect is an intrinsic feature of mural cell-derived laminin-α5 or unique to ischemic stroke, we performed loss-of-function studies using middle-aged mice with laminin-α5 deficiency in mural cells (α5-PKO) in an intracerebral hemorrhage (ICH) model. Control and α5-PKO mice exhibited comparable changes in all parameters examined, including hematoma size, neuronal death, neurological function, blood-brain barrier integrity, and reactive gliosis. These findings highlight a minimal role of mural cell-derived laminin-α5 in ICH. Together with the detrimental role of mural cell-derived laminin-α5 in ischemic stroke, these negative results in ICH model suggest that mural cell-derived laminin-α5 may exert distinct functions in different diseases.


Assuntos
Barreira Hematoencefálica , Hemorragia Cerebral , Laminina , Animais , Laminina/metabolismo , Hemorragia Cerebral/metabolismo , Hemorragia Cerebral/patologia , Camundongos , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Camundongos Knockout , Masculino , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
15.
Nat Commun ; 15(1): 6321, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39060269

RESUMO

Spinal cord injury (SCI) leads to fibrotic scar formation at the lesion site, yet the heterogeneity of fibrotic scar remains elusive. Here we show the heterogeneity in distribution, origin, and function of fibroblasts within fibrotic scars after SCI in mice and female monkeys. Utilizing lineage tracing and single-cell RNA sequencing (scRNA-seq), we found that perivascular fibroblasts (PFs), and meningeal fibroblasts (MFs), rather than pericytes/vascular smooth cells (vSMCs), primarily contribute to fibrotic scar in both transection and crush SCI. Crabp2 + /Emb+ fibroblasts (CE-F) derived from meninges primarily localize in the central region of fibrotic scars, demonstrating enhanced cholesterol synthesis and secretion of type I collagen and fibronectin. In contrast, perivascular/pial Lama1 + /Lama2+ fibroblasts (LA-F) are predominantly found at the periphery of the lesion, expressing laminin and type IV collagen and functionally involved in angiogenesis and lipid transport. These findings may provide a comprehensive understanding for remodeling heterogeneous fibrotic scars after SCI.


Assuntos
Cicatriz , Fibroblastos , Fibrose , Laminina , Traumatismos da Medula Espinal , Animais , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patologia , Cicatriz/patologia , Cicatriz/metabolismo , Camundongos , Feminino , Laminina/metabolismo , Meninges/patologia , Meninges/metabolismo , Fibronectinas/metabolismo , Modelos Animais de Doenças , Colágeno Tipo I/metabolismo , Camundongos Endogâmicos C57BL , Pericitos/metabolismo , Pericitos/patologia , Colágeno Tipo IV/metabolismo , Colesterol/metabolismo
16.
Anat Histol Embryol ; 53(4): e13088, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38979752

RESUMO

Intermediate filaments (IFs) are key molecular factors of the cell and have been reported to play an important role in maintaining the structural integrity and functionality of the abomasum. This study was designed to determine the regional distribution, cellular localization and expression of several IFs, including CK8, CK18, CK19, vimentin, desmin, peripherin and nestin, as well as the connective tissue component laminin, in the bovine, ovine and caprine abomasa. Immunohistochemical analyses demonstrated varying levels of expression of CK8, CK18, CK19, vimentin, desmin, nestin, peripherin and laminin in the bovine, ovine and caprine abomasa. CK8 immunoreactions were particularly evident in the luminal and glandular epithelia of the glands found in the abomasal cardia, fundus and pylorus in all three species. In the bovine abomasum, CK18 immunoreactions were stronger in the parietal cells, compared to the chief cells. In the abomasum of all three species, the smooth muscle as well as the smooth muscle cells of the vascular media in the cardiac, fundic and pyloric regions showed strong immunoreactivity. In all three species, the cardiac, fundic and pyloric regions of the abomasum showed strong peripherin and nestin immunoreactions in the luminal and glandular epithelial cells, stromal and smooth muscle cells, nervous plexuses and blood vessels. The expression patterns of IFs and laminin in the ruminant abomasum suggest that these proteins play a structural role in the cytoskeleton and are effective in maintaining abomasal tissue integrity and stability.


Assuntos
Abomaso , Cabras , Imuno-Histoquímica , Filamentos Intermediários , Laminina , Nestina , Animais , Abomaso/metabolismo , Bovinos , Filamentos Intermediários/metabolismo , Nestina/metabolismo , Ovinos , Laminina/metabolismo , Imuno-Histoquímica/veterinária , Vimentina/metabolismo , Desmina/metabolismo , Periferinas/metabolismo
17.
Bull Exp Biol Med ; 177(1): 115-123, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38963596

RESUMO

The cardiac perivascular niche is a cellular microenvironment of a blood vessel. The principles of niche regulation are still poorly understood. We studied the effect of TGFß1 on cells forming the cardiac perivascular niche using 3D cell culture (cardiospheres). Cardiospheres contained progenitor (c-Kit), endothelial (CD31), and mural (αSMA) cells, basement membrane proteins (laminin) and extracellular matrix proteins (collagen I, fibronectin). TGFß1 treatment decreased the length of CD31+ microvasculature, VE cadherin protein level, and proportion of NG2+ cells, and increased proportion of αSMA+ cells and transgelin/SM22α protein level. We supposed that this effect is related to the stabilizing function of TGFß1 on vascular cells: decreased endothelial cell proliferation, as shown for HUVEC, and activation of mural cell differentiation.


Assuntos
Diferenciação Celular , Proliferação de Células , Fator de Crescimento Transformador beta1 , Fator de Crescimento Transformador beta1/farmacologia , Fator de Crescimento Transformador beta1/metabolismo , Diferenciação Celular/efeitos dos fármacos , Humanos , Proliferação de Células/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Animais , Proteínas dos Microfilamentos/metabolismo , Proteínas dos Microfilamentos/genética , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Caderinas/metabolismo , Laminina/metabolismo , Laminina/farmacologia , Proteínas Musculares/metabolismo , Células Cultivadas , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/citologia , Fibronectinas/metabolismo , Fibronectinas/farmacologia , Antígenos CD/metabolismo , Miocárdio/metabolismo , Miocárdio/citologia , Nicho de Células-Tronco/efeitos dos fármacos , Nicho de Células-Tronco/fisiologia , Colágeno Tipo I/metabolismo , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo , Esferoides Celulares/citologia , Técnicas de Cultura de Células em Três Dimensões/métodos
18.
J Biol Chem ; 300(7): 107429, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38825010

RESUMO

Polymerizing laminins are multi-domain basement membrane (BM) glycoproteins that self-assemble into cell-anchored planar lattices to establish the initial BM scaffold. Nidogens, collagen-IV and proteoglycans then bind to the scaffold at different domain loci to create a mature BM. The LN domains of adjacent laminins bind to each other to form a polymer node, while the LG domains attach to cytoskeletal-anchoring integrins and dystroglycan, as well as to sulfatides and heparan sulfates. The polymer node, the repeating unit of the polymer scaffold, is organized into a near-symmetrical triskelion. The structure, recently solved by cryo-electron microscopy in combination with AlphaFold2 modeling and biochemical studies, reveals how the LN surface residues interact with each other and how mutations cause failures of self-assembly in an emerging group of diseases, the LN-lamininopathies, that include LAMA2-related dystrophy and Pierson syndrome.


Assuntos
Membrana Basal , Laminina , Humanos , Laminina/metabolismo , Laminina/química , Laminina/genética , Animais , Membrana Basal/metabolismo , Distrofias Musculares/metabolismo , Distrofias Musculares/genética , Deformidades Congênitas dos Membros/metabolismo , Deformidades Congênitas dos Membros/genética , Mutação , Síndrome Nefrótica , Distúrbios Pupilares , Síndromes Miastênicas Congênitas
19.
Development ; 151(13)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38940292

RESUMO

During heart development, the embryonic ventricle becomes enveloped by the epicardium, which adheres to the outer apical surface of the heart. This is concomitant with onset of ventricular trabeculation, where a subset of cardiomyocytes lose apicobasal polarity and delaminate basally from the ventricular wall. Llgl1 regulates the formation of apical cell junctions and apicobasal polarity, and we investigated its role in ventricular wall maturation. We found that llgl1 mutant zebrafish embryos exhibit aberrant apical extrusion of ventricular cardiomyocytes. While investigating apical cardiomyocyte extrusion, we identified a basal-to-apical shift in laminin deposition from the internal to the external ventricular wall. We find that epicardial cells express several laminin subunits as they adhere to the ventricle, and that the epicardium is required for laminin deposition on the ventricular surface. In llgl1 mutants, timely establishment of the epicardial layer is disrupted due to delayed emergence of epicardial cells, resulting in delayed apical deposition of laminin on the ventricular surface. Together, our analyses reveal an unexpected role for Llgl1 in correct timing of epicardial development, supporting integrity of the ventricular myocardial wall.


Assuntos
Proteínas de Ciclo Celular , Ventrículos do Coração , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Polaridade Celular , Ventrículos do Coração/metabolismo , Ventrículos do Coração/embriologia , Laminina/metabolismo , Laminina/genética , Mutação/genética , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/citologia , Pericárdio/metabolismo , Pericárdio/embriologia , Pericárdio/citologia , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Ciclo Celular/metabolismo
20.
Biochem Biophys Res Commun ; 724: 150234, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-38865812

RESUMO

Vasculature-on-chip (VoC) models have become a prominent tool in the study of microvasculature functions because of their cost-effective and ethical production process. These models typically use a hydrogel in which the three-dimensional (3D) microvascular structure is embedded. Thus, VoCs are directly impacted by the physical and chemical cues of the supporting hydrogel. Endothelial cell (EC) response in VoCs is critical, especially in organ-specific vasculature models, in which ECs exhibit specific traits and behaviors that vary between organs. Many studies customize the stimuli ECs perceive in different ways; however, customizing the hydrogel composition accordingly to the target organ's extracellular matrix (ECM), which we believe has great potential, has been rarely investigated. We explored this approach to organ-specific VoCs by fabricating microvessels (MVs) with either human umbilical vein ECs or human brain microvascular ECs in a 3D cylindrical VoC using a collagen hydrogel alone or one supplemented with laminin and hyaluronan, components found in the brain ECM. We characterized the physical properties of these hydrogels and analyzed the barrier properties of the MVs. Barrier function and tight junction (ZO-1) expression improved with the addition of laminin and hyaluronan in the composite hydrogel.


Assuntos
Colágeno , Células Endoteliais da Veia Umbilical Humana , Ácido Hialurônico , Hidrogéis , Laminina , Microvasos , Junções Íntimas , Humanos , Hidrogéis/química , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Laminina/química , Laminina/metabolismo , Colágeno/química , Colágeno/metabolismo , Microvasos/metabolismo , Microvasos/efeitos dos fármacos , Junções Íntimas/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Dispositivos Lab-On-A-Chip , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...