Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 764
Filtrar
1.
Signal Transduct Target Ther ; 9(1): 231, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39245675

RESUMO

The combination of ASC22, an anti-PD-L1 antibody potentially enhancing HIV-specific immunity and chidamide, a HIV latency reversal agent, may serve as a strategy for antiretroviral therapy-free virological control for HIV. People living with HIV, having achieved virological suppression, were enrolled to receive ASC22 and chidamide treatment in addition to their antiretroviral therapy. Participants were monitored over 24 weeks to measure changes in viral dynamics and the function of HIV-specific CD8+ T cells (NCT05129189). 15 participants completed the study. At week 8, CA HIV RNA levels showed a significant increase from baseline, and the values returned to baseline after discontinuing ASC22 and chidamide. The total HIV DNA was only transiently increased at week 4 (P = 0.014). In contrast, integrated HIV DNA did not significantly differ from baseline. Increases in the proportions of effector memory CD4+ and CD8+ T cells (TEM) were observed from baseline to week 24 (P = 0.034 and P = 0.002, respectively). The combination treatment did not succeed in enhancing the function of HIV Gag/Pol- specific CD8+ T cells. Nevertheless, at week 8, a negative correlation was identified between the proportions of HIV Gag-specific TEM cells and alterations in integrated DNA in the T cell function improved group (P = 0.042 and P = 0.034, respectively). Nine adverse events were solicited, all of which were graded 1 and resolved spontaneously. The combined treatment of ASC22 and chidamide was demonstrated to be well-tolerated and effective in activating latent HIV reservoirs. Further investigations are warranted in the context of analytic treatment interruption.


Assuntos
Aminopiridinas , Benzamidas , Linfócitos T CD8-Positivos , Infecções por HIV , HIV-1 , Inibidores de Histona Desacetilases , Humanos , Masculino , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , Infecções por HIV/imunologia , Infecções por HIV/genética , Aminopiridinas/farmacologia , Feminino , Adulto , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Benzamidas/farmacologia , Benzamidas/uso terapêutico , Benzamidas/administração & dosagem , Pessoa de Meia-Idade , HIV-1/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Antígeno B7-H1/imunologia , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/genética , Latência Viral/efeitos dos fármacos , Carga Viral/efeitos dos fármacos
2.
Medicine (Baltimore) ; 103(27): e38768, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38968496

RESUMO

Antiretroviral therapy, also known as antiretroviral therapy (ART), has been at the forefront of the ongoing battle against human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDs). ART is effective, but it has drawbacks such as side effects, medication resistance, and difficulty getting access to treatment, which highlights the urgent need for novel treatment approaches. This review explores the complex field of HIV/AIDS treatment, covering both established alternative treatment modalities and orthodox antiretroviral therapy. Numerous reliable databases were reviewed, including PubMed, Web of Science, Scopus, and Google Scholar. The results of a thorough literature search revealed numerous therapeutic options, including stem cell transplantation, immunotherapy, gene therapy, latency reversal agents, and pharmaceutical vaccinations. While gene therapy has promise for altering cellular resistance to infection and targeting HIV-positive cells, immunotherapy treatments seek to strengthen the immune system's ability to combat HIV. Latency reversal agents offer a promising method of breaking the viral latency and making infected cells vulnerable to immune system destruction or antiretroviral drugs. Furthermore, there is potential for improving immune responses against HIV using medical vaccinations. This review stresses the vital significance of ongoing research and innovation in the hunt for a successful HIV/AIDS treatment through a thorough examination of recent developments and lingering challenges. The assessment notes that even though there has been tremendous progress in treating the illness, there is still more work to be done in addressing current barriers and investigating various treatment options in order to achieve the ultimate objective of putting an end to the HIV/AIDS pandemic.


Assuntos
Infecções por HIV , Humanos , Infecções por HIV/tratamento farmacológico , Imunoterapia/métodos , Síndrome da Imunodeficiência Adquirida/tratamento farmacológico , Terapia Genética , Latência Viral/efeitos dos fármacos , Antirretrovirais/uso terapêutico , Fármacos Anti-HIV/uso terapêutico , Transplante de Células-Tronco
3.
Viruses ; 16(7)2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39066325

RESUMO

The latent reservoir remains a major roadblock to curing human immunodeficiency virus (HIV) infection. Currently available antiretroviral therapy (ART) can suppress active HIV replication, reduce viral loads to undetectable levels, and halt disease progression. However, antiretroviral drugs are unable to target cells that are latently infected with HIV, which can seed viral rebound if ART is stopped. Consequently, a major focus of the field is to study the latent viral reservoir and develop safe and effective methods to eliminate it. Here, we provide an overview of the major mechanisms governing the establishment and maintenance of HIV latency, the key challenges posed by latent reservoirs, small animal models utilized to study HIV latency, and contemporary cure approaches. We also discuss ongoing efforts to apply these approaches in combination, with the goal of achieving a safe, effective, and scalable cure for HIV that can be extended to the tens of millions of people with HIV worldwide.


Assuntos
Infecções por HIV , HIV-1 , Latência Viral , Latência Viral/efeitos dos fármacos , Humanos , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , Animais , HIV-1/fisiologia , HIV-1/efeitos dos fármacos , Carga Viral/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Fármacos Anti-HIV/uso terapêutico , Fármacos Anti-HIV/farmacologia , Modelos Animais de Doenças , Linfócitos T CD4-Positivos/virologia
4.
Infect Dis Clin North Am ; 38(3): 487-497, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38969530

RESUMO

Therapies to eradicate human immunodeficiency virus (HIV) infection, sparing lifelong antiviral therapy, are a still-distant goal. But significant advances have been made to reverse HIV latency while antiretroviral therapy (ART) is maintained to allow targeting of the persistent viral reservoir, to test interventions that could clear cells emerging from latent infection, and to improve HIV cure research assays and infrastructure. Steady progress gives hope that future therapies to clear HIV infection may relieve individuals and society of the burden of HIV.


Assuntos
Infecções por HIV , Latência Viral , Humanos , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , Latência Viral/efeitos dos fármacos , Fármacos Anti-HIV/uso terapêutico , HIV-1/efeitos dos fármacos , Antirretrovirais/uso terapêutico
5.
Viruses ; 16(6)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38932169

RESUMO

Repression of human cytomegalovirus (HCMV) immediate-early (IE) gene expression is a key regulatory step in the establishment and maintenance of latent reservoirs. Viral IE transcription and protein accumulation can be elevated during latency by treatment with histone deacetylase inhibitors such as valproic acid (VPA), rendering infected cells visible to adaptive immune responses. However, the latency-associated viral protein UL138 inhibits the ability of VPA to enhance IE gene expression during infection of incompletely differentiated myeloid cells that support latency. UL138 also limits the accumulation of IFNß transcripts by inhibiting the cGAS-STING-TBK1 DNA-sensing pathway. Here, we show that, in the absence of UL138, the cGAS-STING-TBK1 pathway promotes both IFNß accumulation and VPA-responsive IE gene expression in incompletely differentiated myeloid cells. Inactivation of this pathway by either genetic or pharmacological inhibition phenocopied UL138 expression and reduced VPA-responsive IE transcript and protein accumulation. This work reveals a link between cytoplasmic pathogen sensing and epigenetic control of viral lytic phase transcription and suggests that manipulation of pattern recognition receptor signaling pathways could aid in the refinement of MIEP regulatory strategies to target latent viral reservoirs.


Assuntos
Citomegalovirus , Proteínas de Membrana , Células Mieloides , Nucleotidiltransferases , Proteínas Serina-Treonina Quinases , Transdução de Sinais , Ácido Valproico , Humanos , Ácido Valproico/farmacologia , Células Mieloides/virologia , Células Mieloides/metabolismo , Células Mieloides/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Citomegalovirus/fisiologia , Citomegalovirus/efeitos dos fármacos , Citomegalovirus/genética , Nucleotidiltransferases/metabolismo , Nucleotidiltransferases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Infecções por Citomegalovirus/virologia , Infecções por Citomegalovirus/metabolismo , Infecções por Citomegalovirus/genética , Latência Viral/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Regulação Viral da Expressão Gênica/efeitos dos fármacos , Genes Precoces , Interferon beta/metabolismo , Interferon beta/genética
6.
Antimicrob Agents Chemother ; 68(7): e0020124, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38829049

RESUMO

Limited cellular levels of the HIV transcriptional activator Tat are one contributor to proviral latency that might be targeted in HIV cure strategies. We recently demonstrated that lipid nanoparticles containing HIV tat mRNA induce HIV expression in primary CD4 T cells. Here, we sought to further characterize tat mRNA in the context of several benchmark latency reversal agents (LRAs), including inhibitor of apoptosis protein antagonists (IAPi), bromodomain and extra-Terminal motif inhibitors (BETi), and histone deacetylase inhibitors (HDACi). tat mRNA reversed latency across several different cell line models of HIV latency, an effect dependent on the TAR hairpin loop. Synergistic enhancement of tat mRNA activity was observed with IAPi, HDACi, and BETi, albeit to variable degrees. In primary CD4 T cells from durably suppressed people with HIV, tat mRNA profoundly increased the frequencies of elongated, multiply-spliced, and polyadenylated HIV transcripts, while having a lesser impact on TAR transcript frequencies. tat mRNAs alone resulted in variable HIV p24 protein induction across donors. However, tat mRNA in combination with IAPi, BETi, or HDACi markedly enhanced HIV RNA and protein expression without overt cytotoxicity or cellular activation. Notably, combination regimens approached or in some cases exceeded the latency reversal activity of maximal mitogenic T cell stimulation. Higher levels of tat mRNA-driven HIV p24 induction were observed in donors with larger mitogen-inducible HIV reservoirs, and expression increased with prolonged exposure time. Combination LRA strategies employing both small molecule inhibitors and Tat delivered to CD4 T cells are a promising approach to effectively target the HIV reservoir.


Assuntos
Infecções por HIV , HIV-1 , Inibidores de Histona Desacetilases , Nanopartículas , Latência Viral , Produtos do Gene tat do Vírus da Imunodeficiência Humana , Humanos , Fármacos Anti-HIV/farmacologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/virologia , Linfócitos T CD4-Positivos/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Antígenos HIV/genética , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , HIV-1/efeitos dos fármacos , HIV-1/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética , Latência Viral/efeitos dos fármacos
7.
mBio ; 15(7): e0079524, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38874417

RESUMO

Epstein-Barr virus (EBV) is a ubiquitous human tumor virus that establishes lifelong, persistent infections in B cells. The presence of EBV in cancer cells presents an opportunity to target these cells by reactivating the virus from latency. In this study, we developed a novel approach for EBV reactivation termed clustered regularly interspaced short palindromic repeats (CRISPR)/dCas9-mediated EBV reactivation (CMER) strategy. Using modified CRISPR-associated protein 9 (dCas9) fused with VP64, we designed 10 single guide RNAs (sgRNAs) to target and activate the EBV immediate-early gene promoter. In Akata Burkitt lymphoma cells, 9 out of 10 CMER sgRNAs effectively reactivated EBV. Among these, CMER sgRNA-5 triggered robust reactivation across various cell types, including lymphoma, gastric cancer, and nasopharyngeal carcinoma cells. Importantly, the combination of CMER and ganciclovir selectively eliminated EBV-positive cells, regardless of their cell origin. These findings indicate that targeted virus reactivation by CMER, combined with nucleoside analog therapy, holds promise for EBV-associated cancer treatment. IMPORTANCE: This study explores a novel strategy called clustered regularly interspaced short palindromic repeats (CRISPR)/dCas9-mediated Epstein-Barr virus (EBV) reactivation (CMER) to reactivate the Epstein-Barr virus in cancer cells. EBV is associated with various cancers, and reactivating EBV from latency offers a potential therapeutic strategy. We utilized an enzymatically inactive CRISPR-associated protein 9 (dCas9) fused with VP64 and designed 10 single guide RNAs to target the EBV immediate-early gene promoter. Nine of these sgRNAs effectively reactivated EBV in Burkitt lymphoma cells, with CMER sgRNA-5 demonstrating strong reactivation across different cancer cell types. Combining CMER with ganciclovir selectively eliminated EBV-positive cells, showing promise for EBV-associated cancer treatment.


Assuntos
Sistemas CRISPR-Cas , Infecções por Vírus Epstein-Barr , Ganciclovir , Herpesvirus Humano 4 , Ativação Viral , Humanos , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/efeitos dos fármacos , Herpesvirus Humano 4/fisiologia , Ativação Viral/efeitos dos fármacos , Ativação Viral/genética , Infecções por Vírus Epstein-Barr/virologia , Infecções por Vírus Epstein-Barr/genética , Linhagem Celular Tumoral , Ganciclovir/farmacologia , Latência Viral/genética , Latência Viral/efeitos dos fármacos , Antivirais/farmacologia , Linfoma de Burkitt/genética , Linfoma de Burkitt/virologia , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Proteína 9 Associada à CRISPR/genética
8.
Eur J Pharm Biopharm ; 201: 114353, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38885911

RESUMO

The latent reservoir of human immunodeficiency virus (HIV) is a major obstacle in the treatment of acquired immune deficiency syndrome (AIDS). The "shock and kill" strategy has emerged as a promising approach for clearing HIV latent reservoirs. However, current latency-reversing agents (LRAs) have limitations in effectively and safely activating the latent virus and reducing the HIV latent reservoirs in clinical practice. Previously, EK-16A was extracted from Euphorbia kansui, which had the effect of interfering with the HIV-1 latent reservoir and inhibiting HIV-1 entry. Nevertheless, there is no suitable and efficient EK-16A oral formulation for in vivo delivery and clinical use. In this study, an oral EK-16A self-nanoemulsifying drug delivery system (EK-16A-SNEDDS) was proposed to "shock" the HIV-1 latent reservoir. This system aims to enhance the bioavailability and delivery of EK-16A to various organs. The composition of EK-16A-SNEDDS was optimized through self-emulsifying grading and ternary phase diagram tests. Cell models, pharmacokinetic experiments, and pharmacodynamics in HIV-1 latent cell transplant animal models suggested that EK-16A-SNEDDS could be absorbed by the gastrointestinal tract and enter the blood circulation after oral administration, thereby reaching various organs to activate latent HIV-1. The prepared EK-16A-SNEDDS demonstrated safety and efficacy, exhibited high clinical experimental potential, and may be a promising oral preparation for eliminating HIV-1 latent reservoirs.


Assuntos
Emulsões , HIV-1 , Latência Viral , HIV-1/efeitos dos fármacos , Latência Viral/efeitos dos fármacos , Animais , Administração Oral , Humanos , Ativação Viral/efeitos dos fármacos , Euphorbia/química , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , Extratos Vegetais/administração & dosagem , Extratos Vegetais/farmacologia , Disponibilidade Biológica , Sistemas de Liberação de Fármacos por Nanopartículas , Fármacos Anti-HIV/administração & dosagem , Fármacos Anti-HIV/farmacologia , Fármacos Anti-HIV/farmacocinética , Masculino , Sistemas de Liberação de Medicamentos/métodos , Camundongos
9.
Antiviral Res ; 228: 105947, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38925368

RESUMO

Combinational antiretroviral therapy (cART) suppresses human immunodeficiency virus type 1 (HIV-1) viral replication and pathogenesis in acquired immunodeficiency syndrome (AIDS) patients. However, HIV-1 remains in the latent stage of infection by suppressing viral transcription, which hinders an HIV-1 cure. One approach for an HIV-1 cure is the "shock and kill" strategy. The strategy focuses on reactivating latent HIV-1, inducing the viral cytopathic effect and facilitating the immune clearance for the elimination of latent HIV-1 reservoirs. Here, we reported that the H3K4 trimethylation (H3K4me3)-specific demethylase KDM5A/B play a role in suppressing HIV-1 Tat/LTR-mediated viral transcription in HIV-1 latent cells. Furthermore, we evaluated the potential of KDM5-specific inhibitor JQKD82 as an HIV-1 "shock and kill" agent. Our results showed that JQKD82 increases the H3K4me3 level at HIV-1 5' LTR promoter regions, HIV-1 reactivation, and the cytopathic effects in an HIV-1-latent T cell model. In addition, we identified that the combination of JQKD82 and AZD5582, a non-canonical NF-κB activator, generates a synergistic impact on inducing HIV-1 lytic reactivation and cell death in the T cell. The latency-reversing potency of the JQKD82 and AZD5582 pair was also confirmed in peripheral blood mononuclear cells (PBMCs) isolated from HIV-1 aviremic patients and in an HIV-1 latent monocyte. In latently infected microglia (HC69) of the brain, either deletion or inhibition of KDM5A/B results in a reversal of the HIV-1 latency. Overall, we concluded that KDM5A/B function as a host repressor of the HIV-1 lytic reactivation and thus promote the latency and the survival of HIV-1 infected reservoirs.


Assuntos
Infecções por HIV , HIV-1 , Ativação Viral , Latência Viral , HIV-1/fisiologia , HIV-1/efeitos dos fármacos , HIV-1/genética , Humanos , Latência Viral/efeitos dos fármacos , Infecções por HIV/virologia , Infecções por HIV/tratamento farmacológico , Ativação Viral/efeitos dos fármacos , Proteína 2 de Ligação ao Retinoblastoma/metabolismo , Proteína 2 de Ligação ao Retinoblastoma/genética , Infecção Latente/virologia , Replicação Viral/efeitos dos fármacos , Repetição Terminal Longa de HIV/genética , Sobrevivência Celular , Linhagem Celular , Histonas/metabolismo , Proteínas Nucleares , Proteínas Repressoras , Histona Desmetilases com o Domínio Jumonji
10.
Antiviral Res ; 227: 105906, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38735576

RESUMO

Epstein-Barr virus (EBV), the first virus found to induce cancer in humans, has been frequently detected in various types of B cell lymphomas. During its latent phase, EBV expresses a limited set of proteins crucial for its persistence. Induction of the lytic phase of EBV has shown promise in the treatment of EBV-associated malignancies. The present study assessed the ability of phomaherbarine A, a novel compound derived from the endophytic fungus Phoma herbarum DBE-M1, to stimulate lytic replication of EBV in B95-8 cells. Phomaherbarine A was found to efficiently initiate the expression of both early and late EBV lytic genes in B95-8 cells, with this initiation being further heightened by the addition of phorbol myristate acetate and sodium butyrate. Moreover, phomaherbarine A demonstrated notable cytotoxicity against the EBV-associated B cell lymphoma cell lines B95-8 and Raji. Mechanistically, phomaherbarine A induces apoptosis in these cells through the activation of caspase-3/7. When combined with ganciclovir, phomaherbarine A does not interfere with the reduction of viral replication by ganciclovir and sustains its apoptosis induction. In conclusion, these findings indicate that phomaherbarine A may be a promising candidate for therapeutic intervention in patients with EBV-associated B cell lymphomas.


Assuntos
Apoptose , Linfócitos B , Herpesvirus Humano 4 , Ativação Viral , Humanos , Herpesvirus Humano 4/efeitos dos fármacos , Herpesvirus Humano 4/fisiologia , Ativação Viral/efeitos dos fármacos , Linfócitos B/efeitos dos fármacos , Linfócitos B/virologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Replicação Viral/efeitos dos fármacos , Infecções por Vírus Epstein-Barr/virologia , Infecções por Vírus Epstein-Barr/tratamento farmacológico , Antivirais/farmacologia , Ascomicetos/efeitos dos fármacos , Linfoma de Células B/virologia , Linfoma de Células B/tratamento farmacológico , Latência Viral/efeitos dos fármacos
11.
ACS Infect Dis ; 10(6): 2250-2261, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38771724

RESUMO

Toward human immunodeficiency virus type-1 (HIV-1) cure, cells latently infected with HIV-1 must be eliminated from people living with HIV-1. We previously developed a protein kinase C (PKC) activator, diacylglycerol (DAG)-lactone derivative 3, with high HIV-1 latency-reversing activity, based on YSE028 (2) as a lead compound and found that the activity was correlated with binding affinity for PKC and stability against esterase-mediated hydrolysis. Here, we synthesized new DAG-lactone derivatives not only containing a tertiary ester group or an isoxazole surrogate but also several symmetric alkylidene moieties to improve HIV-1 latency reversing activity. Compound 9a, with a dimethyl group at the α-position of the ester group, exerted twice higher HIV-1 latency reversing activity than compound 3, and compound 26, with the isoxazole moiety, was significantly active. In addition, DAG-lactone derivatives with moderate hydrophobicity and potent biostability showed high biological activity.


Assuntos
Fármacos Anti-HIV , HIV-1 , Lactonas , Latência Viral , Humanos , HIV-1/efeitos dos fármacos , HIV-1/fisiologia , Latência Viral/efeitos dos fármacos , Lactonas/farmacologia , Lactonas/química , Lactonas/síntese química , Fármacos Anti-HIV/farmacologia , Fármacos Anti-HIV/química , Fármacos Anti-HIV/síntese química , Diglicerídeos/química , Diglicerídeos/farmacologia , Diglicerídeos/síntese química , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , Proteína Quinase C/metabolismo , Proteína Quinase C/antagonistas & inibidores
12.
Viruses ; 16(4)2024 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-38675857

RESUMO

The persistence of the latent viral reservoir is the main hurdle to curing HIV-1 infection. SIV infection of non-human primates (NHPs), namely Indian-origin rhesus macaques, is the most relevant and widely used animal model to evaluate therapies that seek to eradicate HIV-1. The utility of a model ultimately rests on how accurately it can recapitulate human disease, and while reservoirs in the NHP model behave quantitatively very similar to those of long-term suppressed persons with HIV-1 (PWH) in the most salient aspects, recent studies have uncovered key nuances at the clonotypic level that differentiate the two in qualitative terms. In this review, we will highlight differences relating to proviral intactness, clonotypic structure, and decay rate during ART between HIV-1 and SIV reservoirs and discuss the relevance of these distinctions in the interpretation of HIV-1 cure strategies. While these, to some degree, may reflect a unique biology of the virus or host, distinctions among the proviral landscape in SIV are likely to be shaped significantly by the condensed timeframe of NHP studies. ART is generally initiated earlier in the disease course, and animals are virologically suppressed for shorter periods before receiving interventions. Because these are experimental variables dictated by the investigator, we offer guidance on study design for cure-related studies performed in the NHP model. Finally, we highlight the case of GS-9620 (Vesatolimod), an antiviral TLR7 agonist tested in multiple independent pre-clinical studies in which virological outcomes may have been influenced by study-related variables.


Assuntos
Infecções por HIV , HIV-1 , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Latência Viral , Animais , Humanos , Modelos Animais de Doenças , Reservatórios de Doenças/virologia , Infecções por HIV/virologia , Infecções por HIV/tratamento farmacológico , HIV-1/genética , HIV-1/efeitos dos fármacos , HIV-1/fisiologia , Macaca mulatta , Provírus/genética , Provírus/fisiologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico , Vírus da Imunodeficiência Símia/genética , Vírus da Imunodeficiência Símia/fisiologia , Carga Viral , Latência Viral/efeitos dos fármacos
13.
Acta Pharmacol Sin ; 45(8): 1632-1643, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38627462

RESUMO

Despite the effectiveness of antiretroviral therapy (ART) in prolonging the lifespan of individuals infected with HIV-1, it does not offer a cure for acquired immunodeficiency syndrome (AIDS). The "block and lock" approach aims to maintain the provirus in a state of extended transcriptional arrest. By employing the "block and lock" strategy, researchers endeavor to impede disease progression by preventing viral rebound for an extended duration following patient stops receiving ART. The crux of this strategy lies in the utilization of latency-promoting agents (LPAs) that are suitable for impeding HIV-1 provirus transcription. However, previously documented LPAs exhibited limited efficacy in primary cells or samples obtained from patients, underscoring the significance of identifying novel LPAs that yield substantial outcomes. In this study, we performed high-throughput screening of FDA-approved compound library in the J-Lat A2 cell line to discover more efficacious LPAs. We discovered ripretinib being an LPA candidate, which was validated and observed to hinder proviral activation in cell models harboring latent infections, as well as CD4+ T cells derived from infected patients. We demonstrated that ripretinib effectively impeded proviral activation through inhibition of the PI3K-AKT-mTOR signaling pathway in the HIV-1 latent cells, thereby suppressing the opening states of cellular chromatin. The results of this research offer a promising drug candidate for the implementation of the "block and lock" strategy in the pursuit of an HIV-1 cure.


Assuntos
HIV-1 , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Serina-Treonina Quinases TOR , Humanos , HIV-1/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transcrição Gênica/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Latência Viral/efeitos dos fármacos , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/virologia , Linfócitos T CD4-Positivos/metabolismo , Linhagem Celular , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , Fármacos Anti-HIV/farmacologia , Fármacos Anti-HIV/uso terapêutico , Retinoides/farmacologia , Retinoides/uso terapêutico
14.
Nat Commun ; 14(1): 8397, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38110433

RESUMO

The development of latency reversing agents that potently reactivate HIV without inducing global T cell activation would benefit the field of HIV reservoir research and could pave the way to a functional cure. Here, we explore the reactivation capacity of a lipid nanoparticle containing Tat mRNA (Tat-LNP) in CD4 T cells from people living with HIV undergoing antiretroviral therapy (ART). When combined with panobinostat, Tat-LNP induces latency reversal in a significantly higher proportion of latently infected cells compared to PMA/ionomycin (≈ 4-fold higher). We demonstrate that Tat-LNP does not alter the transcriptome of CD4 T cells, enabling the characterization of latently infected cells in their near-native state. Upon latency reversal, we identify transcriptomic differences between infected cells carrying an inducible provirus and non-infected cells (e.g. LINC02964, GZMA, CCL5). We confirm the transcriptomic differences at the protein level and provide evidence that the long non-coding RNA LINC02964 plays a role in active HIV infection. Furthermore, p24+ cells exhibit heightened PI3K/Akt signaling, along with downregulation of protein translation, suggesting that HIV-infected cells display distinct signatures facilitating their long-term persistence. Tat-LNP represents a valuable research tool for in vitro reservoir studies as it greatly facilitates the in-depth characterization of HIV reservoir cells' transcriptome and proteome profiles.


Assuntos
Produtos do Gene tat , HIV-1 , Nanopartículas , RNA Viral , Latência Viral , Latência Viral/efeitos dos fármacos , Latência Viral/genética , Produtos do Gene tat/genética , Produtos do Gene tat/metabolismo , RNA Viral/administração & dosagem , RNA Viral/genética , RNA Viral/metabolismo , Nanopartículas/administração & dosagem , Nanopartículas/química , Infecções por HIV/tratamento farmacológico , Infecções por HIV/genética , Infecções por HIV/virologia , Panobinostat/farmacologia , Terapia Antirretroviral de Alta Atividade , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/virologia , Antígenos CD4/genética , Antígenos CD4/metabolismo , HIV-1/efeitos dos fármacos , HIV-1/genética , Provírus/efeitos dos fármacos , Provírus/genética , Análise da Expressão Gênica de Célula Única , Proteína do Núcleo p24 do HIV/genética , Proteína do Núcleo p24 do HIV/metabolismo , RNA Longo não Codificante/metabolismo , Células Cultivadas , Humanos , Ionomicina/farmacologia
15.
J Virol ; 97(5): e0027023, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37042759

RESUMO

Understanding the facilitator of HIV-1 infection and subsequent latency establishment may aid the discovery of potential therapeutic targets. Here, we report the elevation of plasma transforming growth factor ß (TGF-ß) during acute HIV-1 infection among men who have sex with men (MSM). Using a serum-free in vitro system, we further delineated the role of TGF-ß signaling in mediating HIV-1 infection of activated and resting memory CD4+ T cells. TGF-ß could upregulate both the frequency and expression of the HIV-1 coreceptor CCR5, thereby augmenting CCR5-tropic viral infection of resting and activated memory CD4+ T cells via Smad3 activation. The production of live HIV-1JR-FL upon infection and reactivation was increased in TGF-ß-treated resting memory CD4+ T cells without increasing CD4 expression or inducing T cell activation. The expression of CCR7, a central memory T cell marker that serves as a chemokine receptor to facilitate T cell trafficking into lymphoid organs, was also elevated on TGF-ß-treated resting and activated memory CD4+ T cells. Moreover, the expression of CXCR3, a chemokine receptor recently reported to facilitate CCR5-tropic HIV-1 infection, was increased on resting and activated memory CD4+ T cells upon TGF-ß treatment. These findings were coherent with the observation that ex vivo CCR5 and CXCR3 expression on total resting and resting memory CD4+ T cells in combination antiretroviral therapy (cART)-naive and cART-treated patients were higher than in healthy individuals. Overall, the study demonstrated that TGF-ß upregulation induced by acute HIV-1 infection might promote latency reservoir establishment by increasing infected resting memory CD4+ T cells and lymphoid organ homing of infected central memory CD4+ T cells. Therefore, TGF-ß blockade may serve as a potential supplementary regimen for HIV-1 functional cure by reducing viral latency. IMPORTANCE Incomplete eradication of HIV-1 latency reservoirs remains the major hurdle in achieving a complete HIV/AIDS cure. Dissecting the facilitator of latency reservoir establishment may aid the discovery of druggable targets for HIV-1 cure. This study showed that the T cell immunomodulatory cytokine TGF-ß was upregulated during the acute phase of infection. Using an in vitro serum-free system, we specifically delineated that TGF-ß promoted HIV-1 infection of both resting and activated memory CD4+ T cells via the induction of host CCR5 coreceptor. Moreover, TGF-ß-upregulated CCR7 or CXCR3 might promote HIV-1 latent infection by facilitating lymphoid homing or IP-10-mediated viral entry and DNA integration, respectively. Infected resting and central memory CD4+ T cells are important latency reservoirs. Increased infection of these cells mediated by TGF-ß will promote latency reservoir establishment during early infection. This study, therefore, highlighted the potential use of TGF-ß blockade as a supplementary regimen with cART in acute patients to reduce viral latency.


Assuntos
Linfócitos T CD4-Positivos , Infecções por HIV , HIV-1 , Homossexualidade Masculina , Transdução de Sinais , Humanos , Masculino , Linfócitos T CD4-Positivos/virologia , Infecções por HIV/tratamento farmacológico , Soropositividade para HIV , HIV-1/fisiologia , Receptores CCR7/metabolismo , Minorias Sexuais e de Gênero , Fator de Crescimento Transformador beta , Latência Viral/efeitos dos fármacos , Replicação Viral , Transdução de Sinais/efeitos dos fármacos
16.
Nature ; 614(7947): 309-317, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36599977

RESUMO

Human immunodeficiency virus 1 (HIV-1) reservoir cells persist lifelong despite antiretroviral treatment1,2 but may be vulnerable to host immune responses that could be exploited in strategies to cure HIV-1. Here we used a single-cell, next-generation sequencing approach for the direct ex vivo phenotypic profiling of individual HIV-1-infected memory CD4+ T cells from peripheral blood and lymph nodes of people living with HIV-1 and receiving antiretroviral treatment for approximately 10 years. We demonstrate that in peripheral blood, cells harbouring genome-intact proviruses and large clones of virally infected cells frequently express ensemble signatures of surface markers conferring increased resistance to immune-mediated killing by cytotoxic T and natural killer cells, paired with elevated levels of expression of immune checkpoint markers likely to limit proviral gene transcription; this phenotypic profile might reduce HIV-1 reservoir cell exposure to and killing by cellular host immune responses. Viral reservoir cells harbouring intact HIV-1 from lymph nodes exhibited a phenotypic signature primarily characterized by upregulation of surface markers promoting cell survival, including CD44, CD28, CD127 and the IL-21 receptor. Together, these results suggest compartmentalized phenotypic signatures of immune selection in HIV-1 reservoir cells, implying that only small subsets of infected cells with optimal adaptation to their anatomical immune microenvironment are able to survive during long-term antiretroviral treatment. The identification of phenotypic markers distinguishing viral reservoir cells may inform future approaches for strategies to cure and eradicate HIV-1.


Assuntos
Linfócitos T CD4-Positivos , Infecções por HIV , HIV-1 , Fenótipo , Latência Viral , Humanos , Antirretrovirais/farmacologia , Antirretrovirais/uso terapêutico , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/virologia , Infecções por HIV/imunologia , Infecções por HIV/virologia , HIV-1/efeitos dos fármacos , HIV-1/genética , HIV-1/imunologia , HIV-1/isolamento & purificação , Provírus/efeitos dos fármacos , Provírus/genética , Provírus/isolamento & purificação , Carga Viral , Latência Viral/efeitos dos fármacos , Memória Imunológica , Linfonodos/citologia , Linfonodos/imunologia , Sobrevivência Celular , Antígenos CD28 , Receptores de Interleucina-21
17.
Nature ; 614(7947): 318-325, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36599978

RESUMO

Rare CD4 T cells that contain HIV under antiretroviral therapy represent an important barrier to HIV cure1-3, but the infeasibility of isolating and characterizing these cells in their natural state has led to uncertainty about whether they possess distinctive attributes that HIV cure-directed therapies might exploit. Here we address this challenge using a microfluidic technology that isolates the transcriptomes of HIV-infected cells based solely on the detection of HIV DNA. HIV-DNA+ memory CD4 T cells in the blood from people receiving antiretroviral therapy showed inhibition of six transcriptomic pathways, including death receptor signalling, necroptosis signalling and antiproliferative Gα12/13 signalling. Moreover, two groups of genes identified by network co-expression analysis were significantly associated with HIV-DNA+ cells. These genes (n = 145) accounted for just 0.81% of the measured transcriptome and included negative regulators of HIV transcription that were higher in HIV-DNA+ cells, positive regulators of HIV transcription that were lower in HIV-DNA+ cells, and other genes involved in RNA processing, negative regulation of mRNA translation, and regulation of cell state and fate. These findings reveal that HIV-infected memory CD4 T cells under antiretroviral therapy are a distinctive population with host gene expression patterns that favour HIV silencing, cell survival and cell proliferation, with important implications for the development of HIV cure strategies.


Assuntos
Linfócitos T CD4-Positivos , Regulação Viral da Expressão Gênica , Infecções por HIV , HIV-1 , Latência Viral , Humanos , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/virologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , DNA Viral/isolamento & purificação , Regulação Viral da Expressão Gênica/efeitos dos fármacos , Infecções por HIV/tratamento farmacológico , Infecções por HIV/genética , Infecções por HIV/imunologia , Infecções por HIV/virologia , HIV-1/efeitos dos fármacos , HIV-1/genética , HIV-1/isolamento & purificação , HIV-1/patogenicidade , Memória Imunológica , Microfluídica , Necroptose/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Latência Viral/efeitos dos fármacos , Antirretrovirais/farmacologia , Antirretrovirais/uso terapêutico
18.
J Virol ; 97(2): e0163022, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36719238

RESUMO

Low level HIV transcription during modern antiretroviral therapy (ART) in persons with HIV is linked to residual inflammation and associated diseases, like cardiovascular disease and cancer. The "block and lock" approach to hold HIV in a state of deep latency may help decrease residual inflammation in a person with HIV on ART and thus improve health. A camptothecin analog topotecan (TPT) was previously implicated as an inhibitor of active HIV replication. Using an in vitro primary T cell model of HIV latency, we demonstrated that (i) TPT reduces HIV transcriptional activity in latently infected cells; (ii) downregulation of HIV RNA by TPT cannot be reversed by latency reversing agents; (iii) several primary and secondary mechanism of action of TPT may be involved in control of HIV replication; (iv) regulation of HIV RNA by TPT is dependent on splicing complexity; (v) increase in proportion of unspliced HIV transcripts was facilitated by intron retention and upregulation of splicing factors, specifically SRSF6, by TPT. Although high TPT dosing (10 µM) was needed to achieve the observed effects, viability of primary CD4+ T cells was not greatly affected. Because toxicity can be observed with TPT in persons with cancer, TPT is unlikely to be used as an anti-HIV agent in clinic, but our study provides proof that camptothetin has "block and lock" activity. Other camptothetin analogs, which are less toxic than TPT, should be designed and tested as HIV "block and lock" agents. IMPORTANCE HIV survives in a state of very low activity, called latency, for long periods in persons with HIV on antiretroviral therapy. This low activity of HIV is linked to residual inflammation and associated diseases, such as heart disease and cancer. New strategies are being explored to further silence the HIV provirus and suppress residual inflammation. This study provides strong evidence that the camptothetin analog, Topotecan, can reduce residual activity of HIV in an experimental model of HIV latency. While Topotecan itself is likely not suitable for use in the clinic due to its toxicity, other camptothetin analogs should be designed and investigated as "block and lock" agents.


Assuntos
Infecções por HIV , Splicing de RNA , Topotecan , Latência Viral , Humanos , Infecções por HIV/tratamento farmacológico , Fosfoproteínas , Fatores de Processamento de Serina-Arginina , Topotecan/farmacologia , Latência Viral/efeitos dos fármacos
19.
Phytochemistry ; 203: 113395, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36027969

RESUMO

Developing highly effective HIV latency-reversing agent is an inportmant approach for the treatment of AIDS via the "shock and kill" of latent HIV. In this study, two unreported modified daphnane-type diterpenes (chamaedaphnelide A and epi-chamaedaphnelide A) and one unreported tigliane-type diterpene (chamaedaphnelide B), along with four known daphnane-type diterpenes and one known tigliane-type diterpene were obtained from the leaves of Wikstroemia chamaedaphne. Chamaedaphnelide A and epi-chamaedaphnelide A represents the first A ring cleavage daphnane-type backbone. Chamaedaphnelide A, epi-chamaedaphnelide A, chamaedaphnelide B, and 6α,7α-epoxy-5ß-hydroxy-12-deoxyphorbol-13-decanoate showed HIV latency-reversing activity, especially chamaedaphnelide B and 6α,7α-epoxy-5ß-hydroxy-12-deoxyphorbol-13-decanoate displayed equally potential to positive drugs prostratin with reversing latent HIV on more than 100-fold compared to unstimulated cells. Furthermore, the activation of STAT1 was involved in the HIV latency-reversing activity of these diterpenes, firstly demonstrating that daphnane- and tigliane-type diterpenes can rapidly activate STAT1 activity. Indeed, these results also supported that activating STAT1 activity is a pathway for reversing latent HIV.


Assuntos
Fármacos Anti-HIV , Diterpenos , HIV , Latência Viral , Fármacos Anti-HIV/farmacologia , Diterpenos/farmacologia , HIV/efeitos dos fármacos , HIV/fisiologia , Infecções por HIV/tratamento farmacológico , Humanos , Folhas de Planta , Fator de Transcrição STAT1/efeitos dos fármacos , Fator de Transcrição STAT1/metabolismo , Latência Viral/efeitos dos fármacos , Wikstroemia
20.
J Virol ; 96(15): e0037222, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35867565

RESUMO

Elimination of human immunodeficiency virus (HIV) reservoirs is a critical endpoint to eradicate HIV. One therapeutic intervention against latent HIV is "shock and kill." This strategy is based on the transcriptional activation of latent HIV with a latency-reversing agent (LRA) with the consequent killing of the reactivated cell by either the cytopathic effect of HIV or the immune system. We have previously found that the small molecule 3-hydroxy-1,2,3-benzotriazin-4(3H)-one (HODHBt) acts as an LRA by increasing signal transducer and activator of transcription (STAT) factor activation mediated by interleukin-15 (IL-15) in cells isolated from aviremic participants. The IL-15 superagonist N-803 is currently under clinical investigation to eliminate latent reservoirs. IL-15 and N-803 share similar mechanisms of action by promoting the activation of STATs and have shown some promise in preclinical models directed toward HIV eradication. In this work, we evaluated the ability of HODHBt to enhance IL-15 signaling in natural killer (NK) cells and the biological consequences associated with increased STAT activation in NK cell effector and memory-like functions. We showed that HODHBt increased IL-15-mediated STAT phosphorylation in NK cells, resulting in increases in the secretion of CXCL-10 and interferon gamma (IFN-γ) and the expression of cytotoxic proteins, including granzyme B, granzyme A, perforin, granulysin, FASL, and TRAIL. This increased cytotoxic profile results in increased cytotoxicity against HIV-infected cells and different tumor cell lines. HODHBt also improved the generation of cytokine-induced memory-like NK cells. Overall, our data demonstrate that enhancing the magnitude of IL-15 signaling with HODHBt favors NK cell cytotoxicity and memory-like generation, and thus, targeting this pathway could be further explored for HIV cure interventions. IMPORTANCE Several clinical trials targeting the HIV latent reservoir with LRAs have been completed. In spite of a lack of clinical benefit, they have been crucial to elucidate hurdles that "shock and kill" strategies have to overcome to promote an effective reduction of the latent reservoir to lead to a cure. These hurdles include low reactivation potential mediated by LRAs, the negative influence of some LRAs on the activity of natural killer and effector CD8 T cells, an increased resistance to apoptosis of latently infected cells, and an exhausted immune system due to chronic inflammation. To that end, finding therapeutic strategies that can overcome some of these challenges could improve the outcome of shock and kill strategies aimed at HIV eradication. Here, we show that the LRA HODHBt also improves IL-15-mediated NK cell effector and memory-like functions. As such, pharmacological enhancement of IL-15-mediated STAT activation can open new therapeutic avenues toward an HIV cure.


Assuntos
HIV-1 , Memória Imunológica , Interleucina-15 , Células Matadoras Naturais , Fatores de Transcrição STAT , Triazinas , Latência Viral , Humanos , Linhagem Celular Tumoral , Quimiocina CXCL10 , Testes Imunológicos de Citotoxicidade , Infecções por HIV/tratamento farmacológico , Infecções por HIV/imunologia , Infecções por HIV/virologia , HIV-1/efeitos dos fármacos , HIV-1/crescimento & desenvolvimento , HIV-1/imunologia , Memória Imunológica/efeitos dos fármacos , Interferon gama , Interleucina-15/imunologia , Interleucina-15/metabolismo , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Fatores de Transcrição STAT/metabolismo , Ativação Transcricional/efeitos dos fármacos , Triazinas/farmacologia , Ativação Viral/efeitos dos fármacos , Latência Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...