Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.670
Filtrar
1.
Scand J Immunol ; 99(6): e13364, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38720521

RESUMO

Mucosal-associated invariant T-cells (MAIT) are unconventional T-cells with cytotoxic and pro-inflammatory properties. Previous research has reported contradictory findings on their role in cancerogenesis with data being even scarcer in haematological malignancies. Here, we report the results of a systematic analysis of MAIT cells in treatment-naïve patients with a broad range of haematological malignancies. We analysed peripheral blood of 204 patients and 50 healthy subjects. The pool of haematological patients had a statistically significant lower both the absolute value (median values, 0.01 × 109/L vs. 0.05 × 109/L) of MAIT cells and their percentage (median values 0.94% vs. 2.56%) among T-cells compared to the control group. Separate analysis showed that the decrease in the absolute number of MAIT cells is significant in patients with acute myeloid leukaemia, myeloproliferative neoplasms, plasma cell myeloma, B-cell non-Hodgkin lymphomas, otherwise not specified, diffuse large B-cell lymphoma, follicular lymphoma, mantle cell lymphoma, marginal zone lymphoma compared to the control population. Furthermore, in haematological malignancies, MAIT cells overexpress PD-1 (average values, 51.7% vs. 6.7%), HLA-DR (average values, 40.2% vs. 7%), CD38 (average values, 25.9% vs. 4.9%) and CD69 (average values, 40.2% vs. 9.2%). Similar results were obtained when comparing patients with individual malignancies to the control population. Our data show that the depletion of circulating MAIT cells is a common observation in a broad spectrum of haematological malignancies. In addition to their reduced numbers, MAIT cells acquire an activated/exhausted phenotype.


Assuntos
Neoplasias Hematológicas , Células T Invariantes Associadas à Mucosa , Receptor de Morte Celular Programada 1 , Humanos , Células T Invariantes Associadas à Mucosa/imunologia , Neoplasias Hematológicas/imunologia , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Adulto , Receptor de Morte Celular Programada 1/imunologia , Receptor de Morte Celular Programada 1/metabolismo , Antígenos CD/metabolismo , Idoso de 80 Anos ou mais , Antígenos de Diferenciação de Linfócitos T/metabolismo , Contagem de Linfócitos , ADP-Ribosil Ciclase 1/metabolismo , ADP-Ribosil Ciclase 1/imunologia , Imunofenotipagem , Adulto Jovem , Glicoproteínas de Membrana/imunologia , Lectinas Tipo C
2.
Open Biol ; 14(5): 230315, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38806144

RESUMO

Candida glabrata is an important pathogen causing invasive infection associated with a high mortality rate. One mechanism that causes the failure of Candida eradication is an increase in regulatory T cells (Treg), which play a major role in immune suppression and promoting Candida pathogenicity. To date, how C. glabrata induces a Treg response remains unclear. Dendritic cells (DCs) recognition of fungi provides the fundamental signal determining the fate of the T-cell response. This study investigated the interplay between C. glabrata and DCs and its effect on Treg induction. We found that C. glabrata ß-glucan was a major component that interacted with DCs and consequently mediated the Treg response. Blocking the binding of C. glabrata ß-glucan to dectin-1 and complement receptor 3 (CR3) showed that CR3 activation in DCs was crucial for the induction of Treg. Furthermore, a ligand-receptor binding assay showed the preferential binding of C. glabrata ß-glucan to CR3. Our data suggest that C. glabrata ß-glucan potentially mediates the Treg response, probably through CR3-dependent activation in DCs. This study contributes new insights into immune modulation by C. glabrata that may lead to a better design of novel immunotherapeutic strategies for invasive C. glabrata infection.


Assuntos
Candida glabrata , Células Dendríticas , Antígeno de Macrófago 1 , Linfócitos T Reguladores , beta-Glucanas , Candida glabrata/metabolismo , Candida glabrata/patogenicidade , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Células Dendríticas/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , beta-Glucanas/metabolismo , beta-Glucanas/farmacologia , Animais , Antígeno de Macrófago 1/metabolismo , Camundongos , Lectinas Tipo C/metabolismo , Candidíase/imunologia , Candidíase/microbiologia , Candidíase/metabolismo , Camundongos Endogâmicos C57BL
3.
Sci Rep ; 14(1): 10346, 2024 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710903

RESUMO

Mammals are generally resistant to Mycobacterium avium complex (MAC) infections. We report here on a primary immunodeficiency disorder causing increased susceptibility to MAC infections in a canine breed. Adult Miniature Schnauzers developing progressive systemic MAC infections were related to a common founder, and pedigree analysis was consistent with an autosomal recessive trait. A genome-wide association study and homozygosity mapping using 8 infected, 9 non-infected relatives, and 160 control Miniature Schnauzers detected an associated region on chromosome 9. Whole genome sequencing of 2 MAC-infected dogs identified a codon deletion in the CARD9 gene (c.493_495del; p.Lys165del). Genotyping of Miniature Schnauzers revealed the presence of this mutant CARD9 allele worldwide, and all tested MAC-infected dogs were homozygous mutants. Peripheral blood mononuclear cells from a dog homozygous for the CARD9 variant exhibited a dysfunctional CARD9 protein with impaired TNF-α production upon stimulation with the fungal polysaccharide ß-glucan that activates the CARD9-coupled C-type lectin receptor, Dectin-1. While CARD9-deficient knockout mice are susceptible to experimental challenges by fungi and mycobacteria, Miniature Schnauzer dogs with systemic MAC susceptibility represent the first spontaneous animal model of CARD9 deficiency, which will help to further elucidate host defense mechanisms against mycobacteria and fungi and assess potential therapies for animals and humans.


Assuntos
Proteínas Adaptadoras de Sinalização CARD , Doenças do Cão , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Complexo Mycobacterium avium , Infecção por Mycobacterium avium-intracellulare , Animais , Proteínas Adaptadoras de Sinalização CARD/genética , Cães , Infecção por Mycobacterium avium-intracellulare/veterinária , Infecção por Mycobacterium avium-intracellulare/genética , Infecção por Mycobacterium avium-intracellulare/microbiologia , Complexo Mycobacterium avium/genética , Doenças do Cão/genética , Doenças do Cão/microbiologia , Deleção de Sequência , Linhagem , Feminino , Masculino , Sequenciamento Completo do Genoma , Homozigoto , Lectinas Tipo C/genética
4.
Nat Commun ; 15(1): 3926, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724513

RESUMO

Patients with decreased levels of CD18 (ß2 integrins) suffer from life-threatening bacterial and fungal infections. CD11b, the α subunit of integrin CR3 (CD11b/CD18, αMß2), is essential for mice to fight against systemic Candida albicans infections. Live elongating C. albicans activates CR3 in immune cells. However, the hyphal ligands that activate CR3 are not well defined. Here, we discovered that the C. albicans Als family proteins are recognized by the I domain of CD11b in macrophages. This recognition synergizes with the ß-glucan-bound lectin-like domain to activate CR3, thereby promoting Syk signaling and inflammasome activation. Dectin-2 activation serves as the "outside-in signaling" for CR3 activation at the entry site of incompletely sealed phagosomes, where a thick cuff of F-actin forms to strengthen the local interaction. In vitro, CD18 partially contributes to IL-1ß release from dendritic cells induced by purified hyphal Als3. In vivo, Als3 is vital for C. albicans clearance in mouse kidneys. These findings uncover a novel family of ligands for the CR3 I domain that promotes fungal clearance.


Assuntos
Antígenos CD18 , Candidíase , Proteínas Fúngicas , Lectinas Tipo C , Macrófagos , Animais , Camundongos , beta-Glucanas/metabolismo , beta-Glucanas/imunologia , Candida albicans/imunologia , Candidíase/imunologia , Candidíase/microbiologia , Antígeno CD11b/metabolismo , Antígeno CD11b/imunologia , Antígenos CD18/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/imunologia , Lectinas Tipo C/metabolismo , Lectinas Tipo C/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Transdução de Sinais
5.
Int J Mol Sci ; 25(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38731839

RESUMO

CLEC4G, a glycan-binding receptor, has previously been demonstrated to inhibit Aß generation, yet its brain localization and functions in Alzheimer's disease (AD) are not clear. We explored the localization, function, and regulatory network of CLEC4G via experiments and analysis of RNA-seq databases. CLEC4G transcripts and proteins were identified in brain tissues, with the highest expression observed in neurons. Notably, AD was associated with reduced levels of CLEC4G transcripts. Bioinformatic analyses revealed interactions between CLEC4G and relevant genes such as BACE1, NPC1, PILRA, TYROBP, MGAT1, and MGAT3, all displaying a negative correlation trend. We further identified the upstream transcriptional regulators NR2F6 and XRCC4 for CLEC4G and confirmed a decrease in CLEC4G expression in APP/PS1 transgenic mice. This study highlights the role of CLEC4G in protecting against AD progression and the significance of CLEC4G for AD research and management.


Assuntos
Doença de Alzheimer , Lectinas Tipo C , Camundongos Transgênicos , Neurônios , Doença de Alzheimer/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Animais , Neurônios/metabolismo , Camundongos , Humanos , Lectinas Tipo C/metabolismo , Lectinas Tipo C/genética , Encéfalo/metabolismo , Encéfalo/patologia , Regulação da Expressão Gênica , Modelos Animais de Doenças
6.
Int J Mol Sci ; 25(9)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38732232

RESUMO

C-type lectins in organisms play an important role in the process of innate immunity. In this study, a C-type lectin belonging to the DC-SIGN class of Micropterus salmoides was identified. MsDC-SIGN is classified as a type II transmembrane protein. The extracellular segment of MsDC-SIGN possesses a coiled-coil region and a carbohydrate recognition domain (CRD). The key amino acid motifs of the extracellular CRD of MsDC-SIGN in Ca2+-binding site 2 were EPN (Glu-Pro-Asn) and WYD (Trp-Tyr-Asp). MsDC-SIGN-CRD can bind to four pathogen-associated molecular patterns (PAMPs), including lipopolysaccharide (LPS), glucan, peptidoglycan (PGN), and mannan. Moreover, it can also bind to Gram-positive, Gram-negative bacteria, and fungi. Its CRD can agglutinate microbes and displays D-mannose and D-galactose binding specificity. MsDC-SIGN was distributed in seven tissues of the largemouth bass, among which the highest expression was observed in the liver, followed by the spleen and intestine. Additionally, MsDC-SIGN was present on the membrane of M. salmoides leukocytes, thereby augmenting the phagocytic activity against bacteria. In a subsequent investigation, the expression patterns of the MsDC-SIGN gene and key genes associated with the TLR signaling pathway (TLR4, NF-κB, and IL10) exhibited an up-regulated expression response to the stimulation of Aeromonas hydrophila. Furthermore, through RNA interference of MsDC-SIGN, the expression level of the DC-SIGN signaling pathway-related gene (RAF1) and key genes associated with the TLR signaling pathway (TLR4, NF-κB, and IL10) was decreased. Therefore, MsDC-SIGN plays a pivotal role in the immune defense against A. hydrophila by modulating the TLR signaling pathway.


Assuntos
Aeromonas hydrophila , Bass , Moléculas de Adesão Celular , Lectinas Tipo C , Receptores de Superfície Celular , Transdução de Sinais , Animais , Lectinas Tipo C/metabolismo , Lectinas Tipo C/genética , Lectinas Tipo C/imunologia , Receptores de Superfície Celular/metabolismo , Receptores de Superfície Celular/genética , Moléculas de Adesão Celular/metabolismo , Moléculas de Adesão Celular/genética , Aeromonas hydrophila/imunologia , Bass/imunologia , Bass/metabolismo , Bass/microbiologia , Bass/genética , Receptores Toll-Like/metabolismo , Receptores Toll-Like/genética , Doenças dos Peixes/imunologia , Doenças dos Peixes/microbiologia , Doenças dos Peixes/metabolismo , Imunidade Inata , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/metabolismo , Infecções por Bactérias Gram-Negativas/microbiologia , Proteínas de Peixes/metabolismo , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Moléculas com Motivos Associados a Patógenos/metabolismo , Moléculas com Motivos Associados a Patógenos/imunologia
7.
J Biomed Sci ; 31(1): 53, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38764023

RESUMO

BACKGROUND: The C-type lectin family 18 (CLEC18) with lipid and glycan binding capabilities is important to metabolic regulation and innate immune responses against viral infection. However, human CLEC18 comprises three paralogous genes with highly similar sequences, making it challenging to distinguish genetic variations, expression patterns, and biological functions of individual CLEC18 paralogs. Additionally, the evolutionary relationship between human CLEC18 and its counterparts in other species remains unclear. METHODS: To identify the sequence variation and evolutionary divergence of human CLEC18 paralogs, we conducted a comprehensive analysis using various resources, including human and non-human primate reference genome assemblies, human pangenome assemblies, and long-read-based whole-genome and -transcriptome sequencing datasets. RESULTS: We uncovered paralogous sequence variants (PSVs) and polymorphic variants (PVs) of human CLEC18 proteins, and identified distinct signatures specific to each CLEC18 paralog. Furthermore, we unveiled a novel segmental duplication for human CLEC18A gene. By comparing CLEC18 across human and non-human primates, our research showed that the CLEC18 paralogy probably occurred in the common ancestor of human and closely related non-human primates, and the lipid-binding CAP/SCP/TAPS domain of CLEC18 is more diverse than its glycan-binding CTLD. Moreover, we found that certain amino acids alterations at variant positions are exclusive to human CLEC18 paralogs. CONCLUSIONS: Our findings offer a comprehensive profiling of the intricate variations and evolutionary characteristics of human CLEC18.


Assuntos
Evolução Molecular , Variação Genética , Lectinas Tipo C , Humanos , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Animais , Primatas/genética
8.
Mol Med ; 30(1): 70, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789926

RESUMO

BACKGROUND: The development of pulmonary fibrosis involves a cascade of events, in which inflammation mediated by immune cells plays a pivotal role. Chemotherapeutic drugs have been shown to have dual effects on fibrosis, with bleomycin exacerbating pulmonary fibrosis and bortezomib alleviating tissue fibrotic processes. Understanding the intricate interplay between chemotherapeutic drugs, immune responses, and pulmonary fibrosis is likely to serve as the foundation for crafting tailored therapeutic strategies. METHODS: A model of bleomycin-induced pulmonary fibrosis was established, followed by treatment with bortezomib. Tissue samples were collected for analysis of immune cell subsets and functional assessment by flow cytometry and in vitro cell experiments. Additionally, multi-omics analysis was conducted to further elucidate the expression of chemokines and chemokine receptors, as well as the characteristics of cell populations. RESULTS: Here, we observed that the expression of CXCL16 and CXCR6 was elevated in the lung tissue of a pulmonary fibrosis model. In the context of pulmonary fibrosis or TGF-ß1 stimulation in vitro, macrophages exhibited an M2-polarized phenotype and secreted more CXCL16 than those of the control group. Moreover, flow cytometry revealed increased expression levels of CD69 and CXCR6 in pulmonary CD4 T cells during fibrosis progression. The administration of bortezomib alleviated bleomycin-induced pulmonary fibrosis, accompanied by reduced ratio of M2-polarized macrophages and decreased accumulation of CD4 T cells expressing CXCR6. CONCLUSIONS: Our findings provide insights into the key immune players involved in bleomycin-induced pulmonary fibrosis and offer preclinical evidence supporting the repurposing strategy and combination approaches to reduce lung fibrosis.


Assuntos
Bleomicina , Bortezomib , Linfócitos T CD4-Positivos , Quimiocina CXCL16 , Modelos Animais de Doenças , Fibrose Pulmonar , Receptores CXCR6 , Bleomicina/efeitos adversos , Bortezomib/farmacologia , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/tratamento farmacológico , Animais , Camundongos , Receptores CXCR6/metabolismo , Quimiocina CXCL16/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/imunologia , Macrófagos/metabolismo , Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Quimiotaxia/efeitos dos fármacos , Antígenos de Diferenciação de Linfócitos T/metabolismo , Antígenos CD , Lectinas Tipo C
9.
Int J Mol Sci ; 25(10)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38791381

RESUMO

Osteosarcoma is a type of bone cancer that primarily affects children and young adults. The overall 5-year survival rate for localized osteosarcoma is 70-75%, but it is only 20-30% for patients with relapsed or metastatic tumors. To investigate potential glycan-targeting structures for immunotherapy, we stained primary osteosarcomas with recombinant C-type lectin CD301 (MGL, CLEC10A) and observed moderate to strong staining on 26% of the tumors. NK92 cells expressing a CD301-CAR recognized and eliminated osteosarcoma cells in vitro. Cytotoxic activity assays correlated with degranulation and cytokine release assays. Combination with an inhibitory antibody against the immune checkpoint TIGIT (T-cell immunoreceptor with lg and ITIM domains) showed promising additional effects. Overall, this study showed, for the first time, the expression of CD301 ligands in osteosarcoma tissue and demonstrated their use as potential target structures for lectin-based immunotherapy.


Assuntos
Neoplasias Ósseas , Imunoterapia , Lectinas Tipo C , Osteossarcoma , Polissacarídeos , Receptores de Antígenos Quiméricos , Osteossarcoma/terapia , Osteossarcoma/imunologia , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Humanos , Neoplasias Ósseas/imunologia , Neoplasias Ósseas/terapia , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Imunoterapia/métodos , Lectinas Tipo C/metabolismo , Polissacarídeos/metabolismo , Polissacarídeos/química , Receptores de Antígenos Quiméricos/metabolismo , Receptores de Antígenos Quiméricos/imunologia , Linhagem Celular Tumoral , Feminino , Masculino , Criança , Adolescente , Receptores Imunológicos/metabolismo
10.
PLoS One ; 19(5): e0303945, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38776335

RESUMO

Killer cell lectin-like receptor G1 (KLRG1) has traditionally been regarded as an inhibitory receptor of T cell exhaustion in chronic infection and inflammation. However, its exact role in hepatitis B virus (HBV) infection remains elusive. CD8+ T cells from 190 patients with chronic hepatitis B were analyzed ex vivo for checkpoint and apoptosis markers, transcription factors, cytokines and subtypes in 190 patients with chronic hepatitis B. KLRG1+ and KLRG1- CD8+ T cells were sorted for transcriptome analysis. The impact of the KLRG1-E-cadherin pathway on the suppression of HBV replication mediated by virus-specific T cells was validated in vitro. As expected, HBV-specific CD8+ T cells expressed higher levels of KLRG1 and showed an exhausted molecular phenotype and function. However, despite being enriched for the inhibitory molecules, thymocyte selection-associated high mobility group box protein (TOX), eomesodermin (EOMES), and Helios, CD8+ T cells expressing KLRG1 produced significant levels of tumour necrosis factor (TNF)-α, interferon (IFN)-γ, perforin, and granzyme B, demonstrating not exhausted but active function. Consistent with the in vitro phenotypic assay results, RNA sequencing (RNA-seq) data showed that signature effector T cell and exhausted T cell genes were enriched in KLRG1+ CD8+ T cells. Furthermore, in vitro testing confirmed that KLRG1-E-cadherin binding inhibits the antiviral efficacy of HBV-specific CD8+ T cells. Based on these findings, we concluded that KLRG1+ CD8+ T cells are not only a terminally exhausted subgroup but also exhibit functional diversity, despite inhibitory signs in HBV infection.


Assuntos
Linfócitos T CD8-Positivos , Vírus da Hepatite B , Hepatite B Crônica , Lectinas Tipo C , Receptores Imunológicos , Humanos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Lectinas Tipo C/metabolismo , Lectinas Tipo C/genética , Receptores Imunológicos/metabolismo , Hepatite B Crônica/imunologia , Hepatite B Crônica/virologia , Feminino , Masculino , Vírus da Hepatite B/imunologia , Adulto , Pessoa de Meia-Idade , Replicação Viral , Caderinas/metabolismo , Caderinas/genética , Perforina/metabolismo , Perforina/genética
11.
Sci Rep ; 14(1): 11898, 2024 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789479

RESUMO

We have previously reported the transcriptomic and lipidomic profile of the first-generation, hygromycin-resistant (HygR) version of the BCGΔBCG1419c vaccine candidate, under biofilm conditions. We recently constructed and characterized the efficacy, safety, whole genome sequence, and proteomic profile of a second-generation version of BCGΔBCG1419c, a strain lacking the BCG1419c gene and devoid of antibiotic markers. Here, we compared the antibiotic-less BCGΔBCG1419c with BCG. We assessed their colonial and ultrastructural morphology, biofilm, c-di-GMP production in vitro, as well as their transcriptomic and lipidomic profiles, including their capacity to activate macrophages via Mincle and Myd88. Our results show that BCGΔBCG1419c colonial and ultrastructural morphology, c-di-GMP, and biofilm production differed from parental BCG, whereas we found no significant changes in its lipidomic profile either in biofilm or planktonic growth conditions. Transcriptomic profiling suggests changes in BCGΔBCG1419c cell wall and showed reduced transcription of some members of the DosR, MtrA, and ArgR regulons. Finally, induction of TNF-α, IL-6 or G-CSF by bone-marrow derived macrophages infected with either BCGΔBCG1419c or BCG required Mincle and Myd88. Our results confirm that some differences already found to occur in HygR BCGΔBCG1419c compared with BCG are maintained in the antibiotic-less version of this vaccine candidate except changes in production of PDIM. Comparison with previous characterizations conducted by OMICs show that some differences observed in BCGΔBCG1419c compared with BCG are maintained whereas others are dependent on the growth condition employed to culture them.


Assuntos
Vacina BCG , Biofilmes , GMP Cíclico , Lipidômica , Macrófagos , Mycobacterium bovis , Fator 88 de Diferenciação Mieloide , Transcriptoma , Animais , Fator 88 de Diferenciação Mieloide/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Camundongos , Macrófagos/metabolismo , Macrófagos/imunologia , Vacina BCG/imunologia , GMP Cíclico/metabolismo , GMP Cíclico/análogos & derivados , Mycobacterium bovis/genética , Mycobacterium bovis/imunologia , Biofilmes/crescimento & desenvolvimento , Citocinas/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Perfilação da Expressão Gênica , Lectinas Tipo C
12.
Fish Shellfish Immunol ; 149: 109594, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38697376

RESUMO

Non-specific cytotoxic cells (NCCs) are vital immune cells involved in teleost's non-specific immunity. As a receptor molecule on the NCCs' surface, the non-specific cytotoxic cell receptor protein 1 (NCCRP-1) is known to play a crucial role in mediating their activity. Nevertheless, there have been limited studies on the signal molecule that transmits signals via NCCRP-1. In this study, a yeast two-hybrid (Y2H) library of tilapia liver and head kidney was constructed and subsequently screened with the bait vector NCCRP-1 of Oreochromis niloticus (On-NCCRP-1) to obtain a C-type lectin (On-CTL) with an interacting protein sequence. Consequently, the full-length sequence of On-CTL was cloned and analyzed. The expression analysis revealed that On-CTL is highly expressed in the liver and is widely distributed in other tissues. Furthermore, On-CTL expression was significantly up-regulated in the brain, intestine, and head kidney following a challenge with Streptococcus agalactiae. A point-to-point Y2H method was also used to confirm the binding between On-NCCRP-1 and On-CTL. The recombinant On-CTL (rOn-CTL) protein was purified. In vitro experiments demonstrated that rOn-CTL can up-regulate the expression of killer effector molecules in NCCs via its interaction with On-NCCRP-1. Moreover, activation of NCCs by rOn-CTL resulted in a remarkable enhancement in their ability to eliminate fathead minnow cells, indicating that rOn-CTL effectively modulates the killing activity of NCCs through the NCC receptor molecule On-NCCRP-1. These findings significantly contribute to our comprehension of the regulatory mechanisms governing NCC activity, paving the way for future research in this field.


Assuntos
Ciclídeos , Doenças dos Peixes , Proteínas de Peixes , Lectinas Tipo C , Streptococcus agalactiae , Animais , Ciclídeos/imunologia , Ciclídeos/genética , Lectinas Tipo C/genética , Lectinas Tipo C/imunologia , Lectinas Tipo C/química , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Doenças dos Peixes/imunologia , Streptococcus agalactiae/fisiologia , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/veterinária , Regulação da Expressão Gênica/imunologia , Sequência de Aminoácidos , Imunidade Inata/genética , Alinhamento de Sequência/veterinária , Filogenia , Perfilação da Expressão Gênica/veterinária
13.
J Immunol Res ; 2024: 5582151, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38690552

RESUMO

Unlike T cells in other tissues, uterine T cells must balance strong immune defense against pathogens with tolerance to semiallogeneic fetus. Our previous study fully elucidated the characteristics of γδT cells in nonpregnant uterus and the mechanism modulated by estrogen. However, comprehensive knowledge of the immunological properties of αßT (including CD4+T cells and CD8+T) cells in nonpregnancy uterus has not been acquired. In this study, we fully compared the immunological properties of αßT cells between uterus and blood using mouse and human sample. It showed that most of CD4+T cells and CD8+T cells in murine uterus and human endometrium were tissue resident memory T cells which highly expressed tissue residence markers CD69 and/or CD103. In addition, both CD4+T cells and CD8+T cells in uterus highly expressed inhibitory molecular PD-1 and cytokine IFN-γ. Uterine CD4+T cells highly expressed IL-17 and modulated by transcription factor pSTAT3. Moreover, we compared the similarities and differences between human and murine uterine T cell phenotype. Together, uterine CD4+T cells and CD8+ cells exhibited a unique mixed signature of T cell dysfunction, activation, and effector function which enabled them to balance strong immune defense against pathogens with tolerance to fetus. Our study fully elucidated the unique immunologic properties of uterine CD4+T and CD8+T cells and provided a base for further investigation of functions.


Assuntos
Antígenos CD , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Útero , Feminino , Linfócitos T CD8-Positivos/imunologia , Animais , Humanos , Camundongos , Linfócitos T CD4-Positivos/imunologia , Útero/imunologia , Antígenos CD/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Receptor de Morte Celular Programada 1/genética , Cadeias alfa de Integrinas/metabolismo , Células T de Memória/imunologia , Fator de Transcrição STAT3/metabolismo , Interferon gama/metabolismo , Lectinas Tipo C/metabolismo , Antígenos de Diferenciação de Linfócitos T/metabolismo , Interleucina-17/metabolismo , Ativação Linfocitária/imunologia , Memória Imunológica
14.
Front Immunol ; 15: 1385696, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38770013

RESUMO

Background: Recent studies have demonstrated a strong association between acute kidney injury (AKI) and chronic kidney disease (CKD), while the unresolved inflammation is believed to be a driving force for this chronic transition process. As a transmembrane pattern recognition receptor, Mincle (macrophage-inducible C-type lectin, Clec4e) was identified to participate in the early immune response after AKI. However, the impact of Mincle on the chronic transition of AKI remains largely unclear. Methods: We performed single-cell RNA sequencing (scRNA-seq) with the unilateral ischemia-reperfusion (UIR) murine model of AKI at days 1, 3, 14 and 28 after injury. Potential effects and mechanism of Mincle on renal inflammation and fibrosis were further validated in vivo utilizing Mincle knockout mice. Results: The dynamic expression of Mincle in macrophages and neutrophils throughout the transition from AKI to CKD was observed. For both cell types, Mincle expression was significantly up-regulated on day 1 following AKI, with a second rise observed on day 14. Notably, we identified distinct subclusters of Minclehigh neutrophils and Minclehigh macrophages that exhibited time-dependent influx with dual peaks characterized with remarkable pro-inflammatory and pro-fibrotic functions. Moreover, we identified that Minclehigh neutrophils represented an "aged" mature neutrophil subset derived from the "fresh" mature neutrophil cluster in kidney. Additionally, we observed a synergistic mechanism whereby Mincle-expressing macrophages and neutrophils sustained renal inflammation by tumor necrosis factor (TNF) production. Mincle-deficient mice exhibited reduced renal injury and fibrosis following AKI. Conclusion: The present findings have unveiled combined persistence of Minclehigh neutrophils and macrophages during AKI-to-CKD transition, contributing to unresolved inflammation followed by fibrosis via TNF-α as a central pro-inflammatory cytokine. Targeting Mincle may offer a novel therapeutic strategy for preventing the transition from AKI to CKD.


Assuntos
Injúria Renal Aguda , Modelos Animais de Doenças , Lectinas Tipo C , Macrófagos , Proteínas de Membrana , Camundongos Knockout , Neutrófilos , Insuficiência Renal Crônica , Animais , Lectinas Tipo C/metabolismo , Lectinas Tipo C/genética , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/imunologia , Injúria Renal Aguda/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Neutrófilos/imunologia , Neutrófilos/metabolismo , Camundongos , Insuficiência Renal Crônica/imunologia , Insuficiência Renal Crônica/etiologia , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/patologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Masculino , Inflamação/imunologia , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão/imunologia , Traumatismo por Reperfusão/metabolismo , Fibrose , Progressão da Doença
15.
Int J Mol Sci ; 25(10)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38791534

RESUMO

C-type lectins play a crucial role as pathogen-recognition receptors for the dengue virus, which is responsible for causing both dengue fever (DF) and dengue hemorrhagic fever (DHF). DHF is a serious illness caused by the dengue virus, which exists in four different serotypes: DEN-1, DEN-2, DEN-3, and DEN-4. We conducted a genetic association study, during a significant DEN-2 outbreak in southern Taiwan, to explore how variations in the neck-region length of L-SIGN (also known as CD209L, CD299, or CLEC4M) impact the severity of dengue infection. PCR genotyping was utilized to identify polymorphisms in variable-number tandem repeats. We constructed L-SIGN variants containing either 7- or 9-tandem repeats and transfected these constructs into K562 and U937 cells, and cytokine and chemokine levels were evaluated using enzyme-linked immunosorbent assays (ELISAs) following DEN-2 virus infection. The L-SIGN allele 9 was observed to correlate with a heightened risk of developing DHF. Subsequent results revealed that the 9-tandem repeat was linked to elevated viral load alongside predominant T-helper 2 (Th2) cell responses (IL-4 and IL-10) in K562 and U937 cells. Transfecting K562 cells in vitro with L-SIGN variants containing 7- and 9-tandem repeats confirmed that the 9-tandem repeat transfectants facilitated a higher dengue viral load accompanied by increased cytokine production (MCP-1, IL-6, and IL-8). Considering the higher prevalence of DHF and an increased frequency of the L-SIGN neck's 9-tandem repeat in the Taiwanese population, individuals with the 9-tandem repeat may necessitate more stringent protection against mosquito bites during dengue outbreaks in Taiwan.


Assuntos
Vírus da Dengue , Lectinas Tipo C , Receptores de Superfície Celular , Dengue Grave , Replicação Viral , Humanos , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Dengue Grave/imunologia , Dengue Grave/virologia , Dengue Grave/genética , Vírus da Dengue/genética , Vírus da Dengue/imunologia , Replicação Viral/genética , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Masculino , Células K562 , Feminino , Células U937 , Taiwan/epidemiologia , Repetições Minissatélites/genética , Adulto , Citocinas/metabolismo , Citocinas/genética , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Pessoa de Meia-Idade , Carga Viral
16.
Front Immunol ; 15: 1372927, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38742105

RESUMO

The parasitic helminth Schistosoma mansoni is a potent inducer of type 2 immune responses by stimulating dendritic cells (DCs) to prime T helper 2 (Th2) responses. We previously found that S. mansoni soluble egg antigens (SEA) promote the synthesis of Prostaglandin E2 (PGE2) by DCs through ERK-dependent signaling via Dectin-1 and Dectin-2 that subsequently induces OX40L expression, licensing them for Th2 priming, yet the ligands present in SEA involved in driving this response and whether specific targeting of PGE2 synthesis by DCs could affect Th2 polarization are unknown. We here show that the ability of SEA to bind Dectin-2 and drive ERK phosphorylation, PGE2 synthesis, OX40L expression, and Th2 polarization is impaired upon cleavage of high-mannose glycans by Endoglycosidase H treatment. This identifies high-mannose glycans present on glycoproteins in SEA as important drivers of this signaling axis. Moreover, we find that OX40L expression and Th2 induction are abrogated when microsomal prostaglandin E synthase-1 (mPGES) is selectively inhibited, but not when a general COX-1/2 inhibitor is used. This shows that the de novo synthesis of PGE2 is vital for the Th2 priming function of SEA-stimulated DCs as well as points to the potential existence of other COX-dependent lipid mediators that antagonize PGE2-driven Th2 polarization. Lastly, specific PGE2 inhibition following immunization with S. mansoni eggs dampened the egg-specific Th cell response. In summary, our findings provide new insights in the molecular mechanisms underpinning Th2 induction by S. mansoni and identify druggable targets for potential control of helminth driven-Th2 responses.


Assuntos
Antígenos de Helmintos , Células Dendríticas , Dinoprostona , Lectinas Tipo C , Manose , Polissacarídeos , Schistosoma mansoni , Células Th2 , Animais , Schistosoma mansoni/imunologia , Dinoprostona/metabolismo , Células Th2/imunologia , Células Th2/metabolismo , Lectinas Tipo C/metabolismo , Lectinas Tipo C/imunologia , Manose/metabolismo , Manose/imunologia , Camundongos , Polissacarídeos/imunologia , Polissacarídeos/metabolismo , Antígenos de Helmintos/imunologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Esquistossomose mansoni/imunologia , Esquistossomose mansoni/metabolismo , Esquistossomose mansoni/parasitologia , Óvulo/imunologia , Óvulo/metabolismo , Camundongos Endogâmicos C57BL , Ligante OX40/metabolismo
17.
Pestic Biochem Physiol ; 201: 105852, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38685211

RESUMO

C-type lectins (CTLs) play essential roles in humoral and cellular immune responses of invertebrates. Previous studies have demonstrated the involvement of CTLs in the humoral immunity of Tribolium castaneum, a worldwide pest in stored products. However, the function of CTLs in cellular immunity remains unclear. Here, we identified a CTL gene located on chromosome X and designated it as CTL2 (TcCTL2) from T. castaneum. It encodes a protein of 305 amino acids with a secretion signal peptide and a carbohydrate-recognition domain. TcCTL2 was mainly expressed in the early pupae and primarily distributed in the hemocytes in the late larvae. It was significantly upregulated after larvae were infected with Escherichia coli or Staphylococcus aureus, while knockdown of TcCTL2 exacerbates larval mortality and bacterial colonization after infection. The purified recombinant TcCTL2 (rTcCTL2) can bind to pathogen-associated molecular patterns and microbes and promote hemocyte-mediated encapsulation, melanization and phagocytosis in vitro. rTcCTL2 also induced bacterial agglutination in a Ca2+-dependent manner. Knockdown of TcCTL2 drastically suppressed encapsulation, melanization, and phagocytosis. Furthermore, silencing of TcCTL2 followed by bacterial infection significantly decreased the expression of transcription factors in Toll and IMD pathways, antimicrobial peptides, and prophenoloxidases and phenoloxidase activity. These results unveiled that TcCTL2 mediates both humoral and cellular immunity to promote bacterial clearance and protect T. castaneum from infectious microbes, which will deepen the understanding of the interaction between CTLs and innate immunity in T. castaneum and permit the optimization of pest control strategies by a combination of RNAi technology and bacterial infection.


Assuntos
Imunidade Celular , Imunidade Humoral , Proteínas de Insetos , Lectinas Tipo C , Staphylococcus aureus , Tribolium , Animais , Lectinas Tipo C/metabolismo , Lectinas Tipo C/genética , Staphylococcus aureus/imunologia , Tribolium/imunologia , Tribolium/genética , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Hemócitos/imunologia , Hemócitos/metabolismo , Escherichia coli , Fagocitose , Larva/imunologia , Larva/microbiologia
18.
Cell Commun Signal ; 22(1): 237, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38649988

RESUMO

BACKGROUND: A water-soluble ingredient of mature leaves of the tropical mahogany 'Neem' (Azadirachta indica), was identified as glycoprotein, thus being named as 'Neem Leaf Glycoprotein' (NLGP). This non-toxic leaf-component regressed cancerous murine tumors (melanoma, carcinoma, sarcoma) recurrently in different experimental circumstances by boosting prime antitumor immune attributes. Such antitumor immunomodulation, aid cytotoxic T cell (Tc)-based annihilation of tumor cells. This study focused on identifying and characterizing the signaling gateway that initiate this systemic immunomodulation. In search of this gateway, antigen-presenting cells (APCs) were explored, which activate and induce the cytotoxic thrust in Tc cells. METHODS: Six glycoprotein-binding C-type lectins found on APCs, namely, MBR, Dectin-1, Dectin-2, DC-SIGN, DEC205 and DNGR-1 were screened on bone marrow-derived dendritic cells from C57BL/6 J mice. Fluorescence microscopy, RT-PCR, flow cytometry and ELISA revealed Dectin-1 as the NLGP-binding receptor, followed by verifications through RNAi. Following detection of ß-Glucans in NLGP, their interactions with Dectin-1 were explored in silico. Roles of second messengers and transcription factors in the downstream signal were studied by co-immunoprecipitation, western blotting, and chromatin-immunoprecipitation. Intracellularization of FITC-coupled NLGP was observed by processing confocal micrographs of DCs. RESULTS: Considering extents of hindrance in NLGP-driven transcription rates of the cytokines IL-10 and IL-12p35 by receptor-neutralization, Dectin-1 receptors on dendritic cells were found to bind NLGP through the ligand's peripheral ß-Glucan chains. The resulting signal phosphorylates PKCδ, forming a trimolecular complex of CARD9, Bcl10 and MALT1, which in turn activates the canonical NFκB-pathway of transcription-regulation. Consequently, the NFκB-heterodimer p65:p50 enhances Il12a transcription and the p50:p50 homodimer represses Il10 transcription, bringing about a cytokine-based systemic-bias towards type-1 immune environment. Further, NLGP gets engulfed within dendritic cells, possibly through endocytic activities of Dectin-1. CONCLUSION: NLGP's binding to Dectin-1 receptors on murine dendritic cells, followed by the intracellular signal, lead to NFκB-mediated contrasting regulation of cytokine-transcriptions, initiating a pro-inflammatory immunopolarization, which amplifies further by the responding immune cells including Tc cells, alongside their enhanced cytotoxicity. These insights into the initiation of mammalian systemic immunomodulation by NLGP at cellular and molecular levels, may help uncovering its mode of action as a novel immunomodulator against human cancers, following clinical trials.


Assuntos
Azadirachta , Proteínas Adaptadoras de Sinalização CARD , Células Dendríticas , Lectinas Tipo C , Camundongos Endogâmicos C57BL , NF-kappa B , Folhas de Planta , Transdução de Sinais , Animais , Lectinas Tipo C/metabolismo , Lectinas Tipo C/genética , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Azadirachta/química , Camundongos , Proteínas Adaptadoras de Sinalização CARD/metabolismo , NF-kappa B/metabolismo , Ligação Proteica
19.
Mol Med Rep ; 29(6)2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38639174

RESUMO

Macrophage­inducible C­type lectin receptor (Mincle) is predominantly found on antigen­presenting cells. It can recognize specific ligands when stimulated by certain pathogens such as fungi and Mycobacterium tuberculosis. This recognition triggers the activation of the nuclear factor­κB pathway, leading to the production of inflammatory factors and contributing to the innate immune response of the host. Moreover, Mincle identifies lipid damage­related molecules discharged by injured cells, such as Sin3­associated protein 130, which triggers aseptic inflammation and ultimately hastens the advancement of renal damage, autoimmune disorders and malignancies by fostering tissue inflammation. Presently, research on the functioning of the Mincle receptor in different inflammatory and fibrosis­associated conditions has emerged as a popular topic. Nevertheless, there remains a lack of research on the impact of Mincle in promoting long­lasting inflammatory reactions and fibrosis. Additional investigation is required into the function of Mincle receptors in chronological inflammatory reactions and fibrosis of organ systems, including the progression from inflammation to fibrosis. Hence, the present study showed an overview of the primary roles and potential mechanism of Mincle in inflammation, fibrosis, as well as the progression of inflammation to fibrosis. The aim of the present study was to clarify the potential mechanism of Mincle in inflammation and fibrosis and to offer perspectives for the development of drugs that target Mincle.


Assuntos
Inflamação , Mycobacterium tuberculosis , Animais , Camundongos , Inflamação/metabolismo , Imunidade Inata , Mycobacterium tuberculosis/metabolismo , NF-kappa B , Fibrose , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Camundongos Endogâmicos C57BL
20.
Int J Mol Sci ; 25(8)2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38673902

RESUMO

Lectin-like transcript-1 (LLT1) expression is detected in different cancer types and is involved in immune evasion. The present study investigates the clinical relevance of tumoral and stromal LLT1 expression in oral squamous cell carcinoma (OSCC), and relationships with the immune infiltrate into the tumor immune microenvironment (TIME). Immunohistochemical analysis of LLT1 expression was performed in 124 OSCC specimens, together with PD-L1 expression and the infiltration of CD20+, CD4+, and CD8+ lymphocytes and CD68+ and CD163+-macrophages. Associations with clinicopathological variables, prognosis, and immune cell densities were further assessed. A total of 41 (33%) OSCC samples showed positive LLT1 staining in tumor cells and 55 (44%) positive LLT1 in tumor-infiltrating lymphocytes (TILs). Patients harboring tumor-intrinsic LLT1 expression exhibited poorer survival, suggesting an immunosuppressive role. Conversely, positive LLT1 expression in TILs was significantly associated with better disease-specific survival, and also an immune-active tumor microenvironment highly infiltrated by CD8+ T cells and M1/M2 macrophages. Furthermore, the combination of tumoral and stromal LLT1 was found to distinguish three prognostic categories (favorable, intermediate, and adverse; p = 0.029, Log-rank test). Together, these data demonstrate the prognostic relevance of tumoral and stromal LLT1 expression in OSCC, and its potential application to improve prognosis prediction and patient stratification.


Assuntos
Lectinas Tipo C , Receptores de Superfície Celular , Carcinoma de Células Escamosas de Cabeça e Pescoço , Microambiente Tumoral , Adulto , Feminino , Humanos , Masculino , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética , Biomarcadores Tumorais/metabolismo , Carcinoma de Células Escamosas/imunologia , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/genética , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Macrófagos/metabolismo , Macrófagos/imunologia , Neoplasias Bucais/patologia , Neoplasias Bucais/imunologia , Neoplasias Bucais/metabolismo , Neoplasias Bucais/genética , Neoplasias Bucais/mortalidade , Prognóstico , Carcinoma de Células Escamosas de Cabeça e Pescoço/imunologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/mortalidade , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/imunologia , Receptores de Superfície Celular/metabolismo , Lectinas Tipo C/genética , Lectinas Tipo C/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA