Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 754
Filtrar
1.
J Phys Chem B ; 128(41): 9935-9946, 2024 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-39368102

RESUMO

Macrophage inducible Ca2+-dependent lectin (Mincle) receptor recognizes Mycobacterium tuberculosis glycolipids to trigger an immune response. This host membrane receptor is thus a key player in the modulation of the immune response to infection by M. tuberculosis and has emerged as a promising target for the development of new vaccines against tuberculosis. The recent development of the Martini 3 force field for coarse-grained (CG) molecular modeling allows the study of interactions of soluble proteins with small ligands which was not typically modeled well with the previous Martini 2 model. Here, we present a refined approach detailing a protocol for modeling interactions between a glycolipid and its receptor at a CG level using the Martini 3 force field. Using this approach, we studied Mincle and identified critical parameters governing ligand recognition, such as loop flexibility and the regulation of hydrophobic groove formation by calcium ions. In addition, we assessed ligand affinity using free energy perturbation calculations. Our results offer mechanistic insight into the interactions between Mincle and glycolipids, providing a basis for the rational design of molecules targeting this type of membrane receptors.


Assuntos
Glicolipídeos , Lectinas Tipo C , Glicolipídeos/química , Glicolipídeos/metabolismo , Lectinas Tipo C/química , Lectinas Tipo C/metabolismo , Cálcio/metabolismo , Cálcio/química , Simulação de Dinâmica Molecular , Termodinâmica , Humanos , Ligantes , Mycobacterium tuberculosis/química , Receptores Imunológicos
2.
Parasit Vectors ; 17(1): 375, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39232769

RESUMO

BACKGROUND: C-type lectins (CTLs) are a large family of proteins with sugar-binding activity. CTLs contain an evolutionarily conserved C-type lectin domain (CTLD) that binds microbial carbohydrates in a calcium-dependent manner, thereby playing a key role in both microbial pathogenesis and innate immune responses. Aedes albopictus is an important vector for transmitting dengue virus (DENV) worldwide. Currently, the molecular characteristics and functions of CTLs in Ae. albopictus are largely unknown. METHODS: Transcripts encoding CTL proteins in the Ae. albopictus genome assembly were analyzed via sequence blast. Phylogenetic analysis and molecular characterization were performed to identify the functional domains of the CTLs. Quantitative analysis was performed to determine the gene expression features of CTLs during mosquito development and in different tissues of female adults after blood feeding. In addition, the functional role of CTLs in response to DENV infection was investigated in Ae. albopictus mosquito cells. RESULTS: We identified 39 transcripts encoding CTL proteins in the Ae. albopictus transcriptome. Aedes albopictus CTLs are classified into three groups based on the number of CTLDs and the domain architecture. These included 29 CTL-Ss (single-CTLDs), 1 immulectins (dual-CTLD) and 9 CTL-Xs (CTLDs with other domains). Phylogenetic analysis and structural modeling indicated that CTLs in Ae. albopictus are highly conserved with the homologous CTLs in Aedes aegypti. The expression profile assay revealed differential expression patterns of CTLs in both developmental stages and in adult female tissues. Knockdown and overexpression of three CTLs (CTL-S12, S17 and S19) confirmed that they can promote dengue virus infection in Ae. albopictus cells. CONCLUSIONS: The CTL genes in Ae. albopictus mosquito and other mosquito species are evolutionarily conserved and exhibit different developmental and tissue expression features. The functional assay indicated that three CTLs in Ae. albopictus mosquitoes are involved in promoting dengue virus infection. Our study revealed that CTLs play important roles in both the physiological processes and viral infection in mosquito vectors.


Assuntos
Aedes , Vírus da Dengue , Lectinas Tipo C , Mosquitos Vetores , Filogenia , Aedes/genética , Aedes/virologia , Animais , Vírus da Dengue/genética , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Lectinas Tipo C/química , Feminino , Mosquitos Vetores/virologia , Mosquitos Vetores/genética , Dengue/transmissão , Dengue/virologia , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Proteínas de Insetos/química , Transcriptoma , Imunidade Inata , Perfilação da Expressão Gênica
3.
Fish Shellfish Immunol ; 153: 109820, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39117127

RESUMO

The mannose receptor (MR) plays a key role in the innate immune system as a pattern recognition receptor. Here, a novel type of mannose receptor, named PvMR2, was identified from Penaeus vannamei (P. vannamei). The PvMR2 coding sequence (CDS) obtained was 988 base pairs in length, encoding a protein consisting of 328 amino acids. This protein includes a signal peptide and two classical C-type lectin domains (CTLD). Quantitative real-time PCR showed that PvMR2 was distributed in all detected tissues, with the highest levels in the intestines and stomach. Following a bacterial challenge with Vibrio anguillarum (V. anguillarum), PvMR2 showed significant up-regulation in both the intestines and stomach of shrimp. To validate the function of PvMR2, recombinant proteins were extracted and purified using a His-tag. The resulting rPvMR2 demonstrated binding capability with lipopolysaccharides (LPS) and peptidoglycan (PGN) in a dose-dependent manner, affirming its binding affinity. The purified rPvMR2 demonstrated calcium-independent binding activity towards both Gram-positive bacteria (V. anguilliarum and Vibrio parahaemolyticus) and Gram-negative bacteria (Escherichia coli and Aeromonas Veronii). Antibacterial assays confirmed that rPvMR2 inhibits bacterial growth. Intestinal adhesion and adhesion inhibition experiments confirmed that the rPvMR2 can be used to reduce the adhesion capacity of harmful bacteria in the gut. Phagocytosis experiments have shown that rPvMR2 promotes phagocytosis in hemocytes and protects the host from external infection. Treatment with recombinant PvMR2 significantly bolstered bacterial clearance within the hemolymph and markedly augmented shrimp survival post-infection with V. anguillarum. These results suggest that PvMR2 has agglutination, growth inhibition, adhesion inhibition, clearance promotion, and phagocytosis effects on harmful bacteria, and plays a crucial role in the antimicrobial immune response of P. vannamei.


Assuntos
Sequência de Aminoácidos , Proteínas de Artrópodes , Imunidade Inata , Lectinas Tipo C , Receptor de Manose , Lectinas de Ligação a Manose , Penaeidae , Filogenia , Receptores de Superfície Celular , Vibrio , Animais , Penaeidae/imunologia , Penaeidae/genética , Lectinas Tipo C/genética , Lectinas Tipo C/imunologia , Lectinas Tipo C/química , Lectinas de Ligação a Manose/genética , Lectinas de Ligação a Manose/imunologia , Lectinas de Ligação a Manose/química , Lectinas de Ligação a Manose/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/imunologia , Receptores de Superfície Celular/metabolismo , Receptores de Superfície Celular/química , Vibrio/fisiologia , Imunidade Inata/genética , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/imunologia , Proteínas de Artrópodes/química , Alinhamento de Sequência , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/imunologia , Sequência de Bases , Fagocitose
4.
Fish Shellfish Immunol ; 153: 109833, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39147178

RESUMO

C-type lectins (CTLs) are a kind of Ca2+-dependent immunoreactive factors, which participated in pathogens recognition and defense. The present study identified a new CTL from hard clam Meretrix meretrix (designated as MmCTL4). The full-length of MmCTL4 cDNA was 608 bp, encoding a presumed signal peptide of 19 bp and a carbohydrate recognition domain (CRD) of 131 bp. The tertiary structure of recombinant MmCTL4 protein (rMmCTL4) was the typical long double-ring structure with three conserved disulfide bonds, and the motifs in Ca2+-binding sites of MmCTL4 were QPN and WSD. The SYBR Green real-time PCR analysis indicated that MmCTL4 was widely expressed in the hemocytes, hepatopancreas and mantle of healthy clams. After Vibrio splendidus stimulation, the temporal expression profile of MmCTL4 mRNA in hemocytes and hepatopancreas increased by 7.8-fold at 6 hpi and 3.9-fold at 12 hpi, respectively. The cDNA fragments encoding MmCTL4 were recombined into pET-32a (+) vectors, and transformed into Escherichia coli BL21 (DE3). The rMmCTL4 with the presence of Ca2+ performed obvious hemagglutination activity, and could agglutinate E. coli, Bacillus subtilis, and Staphylococcus aureus, while it only weakly agglutinate Vibrio parahaemolyticus and fungi P. pastoris. The agglutination activity of rMmCTL4 were significantly inhibited by D-mannose, D-xylose, D-lactose, maltose and lipopolysaccharides. These results indicated that MmCTL4, as a class of typical pattern recognition receptors (PRRs), could protect the host against pathogen invasion in the innate immunity of clams.


Assuntos
Sequência de Aminoácidos , Bivalves , Imunidade Inata , Lectinas Tipo C , Filogenia , Alinhamento de Sequência , Animais , Lectinas Tipo C/genética , Lectinas Tipo C/imunologia , Lectinas Tipo C/química , Bivalves/imunologia , Bivalves/genética , Imunidade Inata/genética , Alinhamento de Sequência/veterinária , Sequência de Bases , Regulação da Expressão Gênica/imunologia , Perfilação da Expressão Gênica/veterinária , Vibrio/fisiologia
5.
Protein J ; 43(4): 718-725, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39068630

RESUMO

Lectins are sugar interacting proteins which bind specific glycans reversibly and have ubiquitous presence in all forms of life. They have diverse biological functions such as cell signaling, molecular recognition, etc. C-type lectins (CTL) are a group of proteins from the lectin family which have been studied extensively in animals and are reported to be involved in immune functions, carcinogenesis, cell signaling, etc. The carbohydrate recognition domain (CRD) in CTL has a highly variable protein sequence and proteins carrying this domain are also referred to as C-type lectin domain containing proteins (CTLD). Because of this low sequence homology, identification of CTLD from hypothetical proteins in the sequenced genomes using homology based programs has limitations. Machine learning (ML) tools use characteristic features to identify homologous sequences and it has been used to develop a tool for identification of CTLD. Initially 500 sequences of well annotated CTLD and 500 sequences of non CTLD were used in developing the machine learning model. The classifier program Linear SVC from sci kit library of python was used and characteristic features in CTLD sequences like dipeptide and tripeptide composition were used as training attributes in various classifiers. A precision, recall and multiple correlation coefficient (MCC) value of 0.92, 0.91 and 0.82 respectively were obtained when tested on external test set. On fine tuning of the parameters like kernel, C value, gamma, degree and increasing number of non CTLD sequences there was improvement in precision, recall and MCC and the corresponding values were 0.99, 0.99 and 0.96. New CTLD have also been identified in the hypothetical segment of human genome using the trained model. The tool is available on our local server for interested users.


Assuntos
Lectinas Tipo C , Aprendizado de Máquina , Lectinas Tipo C/química , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Humanos , Domínios Proteicos
6.
Nanoscale ; 16(29): 13962-13978, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38984502

RESUMO

Multivalent lectin-glycan interactions (MLGIs) are pivotal for viral infections and immune regulation. Their structural and biophysical data are thus highly valuable, not only for understanding their basic mechanisms but also for designing potent glycoconjugate therapeutics against target MLGIs. However, such information for some important MGLIs remains poorly understood, greatly limiting research progress. We have recently developed densely glycosylated nanoparticles, e.g., ∼4 nm quantum dots (QDs) or ∼5 nm gold nanoparticles (GNPs), as mechanistic probes for MLGIs. Using two important model lectin viral receptors, DC-SIGN and DC-SIGNR, we have shown that these probes can not only offer sensitive fluorescence assays for quantifying MLGI affinities, but also reveal key structural information (e.g., binding site orientation and binding mode) useful for MLGI targeting. However, the small sizes of the previous scaffolds may not be optimal for maximising MLGI affinity and targeting specificity. Herein, using α-manno-α-1,2-biose (DiMan) functionalised GNP (GNP-DiMan) probes, we have systematically studied how GNP scaffold size (e.g., 5, 13, and 27 nm) and glycan density (e.g., 100, 75, 50 and 25%) determine their MLGI affinities, thermodynamics, and antiviral properties. We have developed a new GNP fluorescence quenching assay format to minimise the possible interference of GNP's strong inner filter effect in MLGI affinity quantification, revealing that increasing the GNP size is highly beneficial for enhancing MLGI affinity. We have further determined the MLGI thermodynamics by combining temperature-dependent affinity and Van't Hoff analyses, revealing that GNP-DiMan-DC-SIGN/R binding is enthalpy driven with favourable binding Gibbs free energy changes (ΔG°) being enhanced with increasing GNP size. Finally, we show that increasing the GNP size significantly enhances their antiviral potency. Notably, the DiMan coated 27 nm GNP potently and robustly blocks both DC-SIGN and DC-SIGNR mediated pseudo-Ebola virus cellular entry with an EC50 of ∼23 and ∼49 pM, respectively, making it the most potent glycoconjugate inhibitor against DC-SIGN/R-mediated Ebola cellular infections. Our results have established GNP-glycans as a new tool for quantifying MLGI biophysical parameters and revealed that increasing the GNP scaffold size significantly enhances their MLGI affinities and antiviral potencies.


Assuntos
Antivirais , Ouro , Nanopartículas Metálicas , Polissacarídeos , Termodinâmica , Ouro/química , Nanopartículas Metálicas/química , Humanos , Antivirais/química , Antivirais/farmacologia , Polissacarídeos/química , Lectinas Tipo C/metabolismo , Lectinas Tipo C/química , Moléculas de Adesão Celular/metabolismo , Moléculas de Adesão Celular/química , Receptores de Superfície Celular/metabolismo , Receptores de Superfície Celular/química , Lectinas/química , Lectinas/metabolismo
7.
Int J Biol Macromol ; 275(Pt 2): 133705, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38972646

RESUMO

We identified a novel C-type lectin (CTL) from Macrobrachium nipponense, designated as Mn-clip-Lec. It consists of 1315 bp with an open reading frame of 1098 bp, encoding a polypeptide of 365 amino acids. Mn-clip-Lec contains 6 exons and 5 introns. Mn-clip-Lec possessed a CLIP domain at the N-terminal and two carbohydrate recognition domains at the C-terminal. Interaction between Mn-clip-Lec and MnLec was found by Yeast two-hybrid analysis. The expressions of Mn-clip-Lec, MnLec, prophenoloxidase (proPO)-activating system-associated genes (MnPPAF, MnPPAE, and MnPO), and antimicrobial peptides (AMPs) (MnALF and MnCRU) were up-regulated after the challenge with Staphylococcus aureus. RNA interference (RNAi)-mediated suppression of the Mn-clip-Lec and MnLec genes in S. aureus-challenged prawns reduced the transcripts of MnPPAF, MnPPAE, MnPO, MnALF and MnCRU. Knockdown of Mn-clip-Lec and MnLec resulted in decrease in PO activity in M. nipponense infected with S. aureus. The recombinant Mn-clip-Lec (rMn-clip-Lec) protein bound all tested bacteria and agglutinated S. aureus. A sugar-binding assay revealed that rMn-clip-Lec could bind to LPS or PGN. rMn-clip-Lec accelerated the clearance of S. aureus in vivo. Our findings suggest that Mn-clip-Lec and its interacting MnLec play important roles in the induction of the proPO system and AMPs expression in M. nipponense during bacterial infection.


Assuntos
Sequência de Aminoácidos , Lectinas Tipo C , Palaemonidae , Staphylococcus aureus , Animais , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Lectinas Tipo C/química , Palaemonidae/genética , Palaemonidae/imunologia , Staphylococcus aureus/efeitos dos fármacos , Domínios Proteicos , Antibacterianos/farmacologia , Antibacterianos/química , Filogenia , Sequência de Bases , Clonagem Molecular
8.
Fish Shellfish Immunol ; 151: 109721, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38917950

RESUMO

C-type lectins (CTLs) are an important class of pattern recognition receptors (PRRs) that exhibit structural and functional diversity in invertebrates. Repetitive DNA sequences are ubiquitous in eukaryotic genomes, representing distinct modes of genome evolution and promoting new gene generation. Our study revealed a new CTL that is composed of two long tandem repeats, abundant threonine, and one carbohydrate recognition domain (CRD) in Exopalaemon carinicauda and has been designated EcTR-CTL. The full-length cDNA of EcTR-CTL was 1242 bp long and had an open reading frame (ORF) of 999 bp that encoded a protein of 332 amino acids. The genome structure of EcTR-CTL contains 4 exons and 3 introns. The length of each repeat unit in EcTR-CTL was 198 bp, which is different from the short tandem repeats reported previously in prawns and crayfish. EcTR-CTL was abundantly expressed in the intestine and hemocytes. After Vibrio parahaemolyticus and white spot syndrome virus (WSSV) challenge, the expression level of EcTR-CTL in the intestine was upregulated. Knockdown of EcTR-CTL downregulated the expression of anti-lipopolysaccharide factor, crustin, and lysozyme during Vibrio infection. The recombinant CRD of EcTR-CTL (rCRD) could bind to bacteria, lipopolysaccharides, and peptidoglycans. Additionally, rCRD can directly bind to WSSV. These findings indicate that 1) CTLs with tandem repeats may be ubiquitous in crustaceans, 2) EcTR-CTL may act as a PRR to participate in the innate immune defense against bacteria via nonself-recognition and antimicrobial peptide regulation, and 3) EcTR-CTL may play a positive or negative role in the process of WSSV infection by capturing virions.


Assuntos
Sequência de Aminoácidos , Proteínas de Artrópodes , Imunidade Inata , Lectinas Tipo C , Palaemonidae , Filogenia , Vibrio parahaemolyticus , Vírus da Síndrome da Mancha Branca 1 , Animais , Palaemonidae/imunologia , Palaemonidae/genética , Vibrio parahaemolyticus/fisiologia , Vírus da Síndrome da Mancha Branca 1/fisiologia , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/imunologia , Proteínas de Artrópodes/química , Imunidade Inata/genética , Lectinas Tipo C/genética , Lectinas Tipo C/imunologia , Lectinas Tipo C/química , Regulação da Expressão Gênica/imunologia , Perfilação da Expressão Gênica , Alinhamento de Sequência , Sequência de Bases , Sequências de Repetição em Tandem/genética
9.
Fish Shellfish Immunol ; 149: 109594, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38697376

RESUMO

Non-specific cytotoxic cells (NCCs) are vital immune cells involved in teleost's non-specific immunity. As a receptor molecule on the NCCs' surface, the non-specific cytotoxic cell receptor protein 1 (NCCRP-1) is known to play a crucial role in mediating their activity. Nevertheless, there have been limited studies on the signal molecule that transmits signals via NCCRP-1. In this study, a yeast two-hybrid (Y2H) library of tilapia liver and head kidney was constructed and subsequently screened with the bait vector NCCRP-1 of Oreochromis niloticus (On-NCCRP-1) to obtain a C-type lectin (On-CTL) with an interacting protein sequence. Consequently, the full-length sequence of On-CTL was cloned and analyzed. The expression analysis revealed that On-CTL is highly expressed in the liver and is widely distributed in other tissues. Furthermore, On-CTL expression was significantly up-regulated in the brain, intestine, and head kidney following a challenge with Streptococcus agalactiae. A point-to-point Y2H method was also used to confirm the binding between On-NCCRP-1 and On-CTL. The recombinant On-CTL (rOn-CTL) protein was purified. In vitro experiments demonstrated that rOn-CTL can up-regulate the expression of killer effector molecules in NCCs via its interaction with On-NCCRP-1. Moreover, activation of NCCs by rOn-CTL resulted in a remarkable enhancement in their ability to eliminate fathead minnow cells, indicating that rOn-CTL effectively modulates the killing activity of NCCs through the NCC receptor molecule On-NCCRP-1. These findings significantly contribute to our comprehension of the regulatory mechanisms governing NCC activity, paving the way for future research in this field.


Assuntos
Ciclídeos , Doenças dos Peixes , Proteínas de Peixes , Lectinas Tipo C , Streptococcus agalactiae , Animais , Ciclídeos/imunologia , Ciclídeos/genética , Lectinas Tipo C/genética , Lectinas Tipo C/imunologia , Lectinas Tipo C/química , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Doenças dos Peixes/imunologia , Streptococcus agalactiae/fisiologia , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/veterinária , Regulação da Expressão Gênica/imunologia , Sequência de Aminoácidos , Imunidade Inata/genética , Alinhamento de Sequência/veterinária , Filogenia , Perfilação da Expressão Gênica/veterinária
10.
Carbohydr Res ; 541: 109166, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38815341

RESUMO

Triacedimannose (TADM) is a synthetic trivalent acetylated glycocluster comprising ß-1,2-linked mannobioses that in humans induces TNF in vitro and in vivo. The purpose of this study was to analyze whether uptake of acetylated glycoclusters of such ß-1,2-linked mannobioses by human macrophages is dependent on the mannose receptor (CD206) or if it is mediated by transmembrane activation. In mannose receptor blocking assays, monocyte-derived polarized macrophages were incubated with carbohydrate test-compounds and their binding to the mannose receptor was demonstrated as inhibition of FITC-Dextran binding. For 1H NMR spectroscopy, macrophages were incubated with TADM. The cells were collected at 6 and 24 h of incubation, centrifuged and washed twice with PBS. We found dose-dependent blocking of the mannose receptor in macrophage carbohydrate constructs containing free hydroxyl groups, but not by the trivalent acetylated glycocluster molecules. NMR spectroscopic analyses demonstrated that TADM was found in washed cellular pellets after 6-h co-culture, while after 24-h co-culture TADM was no more detectable, suggesting cleavage of the acetyl groups in vitro. The Type 1 immune response enhancing effects of TADM and other, stereochemically and structurally similar, trivalent acetylated glycoclusters may be due to transmembrane uptake of macrophages independent of the mannose receptor.


Assuntos
Lectinas Tipo C , Macrófagos , Receptor de Manose , Lectinas de Ligação a Manose , Receptores de Superfície Celular , Lectinas Tipo C/metabolismo , Lectinas Tipo C/química , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Receptores de Superfície Celular/metabolismo , Lectinas de Ligação a Manose/metabolismo , Lectinas de Ligação a Manose/química , Humanos , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/química , Acetilação
11.
J Med Chem ; 67(16): 13813-13828, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-38771131

RESUMO

Due to the shallow and hydrophilic binding sites of carbohydrate-binding proteins, the design of glycomimetics is often complicated by high desolvation costs as well as competition with solvent. Therefore, a careful optimization of interaction vectors and ligand properties is required in the design and optimization of glycomimetics. Here, we employ thermodynamics-guided design to optimize mannose-based glycomimetics targeting the human C-type lectin receptor dendritic cell-specific intercellular adhesion molecule 3 grabbing nonintegrin (DC-SIGN), a pathogenic host factor in viral infections. By exploring ligand rigidification and hydrogen bond engineering, a monovalent glycomimetic with an unprecedented affinity for DC-SIGN in the low µM range was discovered. A matched molecular pair analysis based on microcalorimetric data revealed a stereospecific hydrogen bond interaction with Glu358/Ser360 as the origin of this cooperative and enthalpically dominated interaction. This detailed insight into the binding mechanism paves the way for an improvement of monovalent glycomimetics targeting DC-SIGN.


Assuntos
Moléculas de Adesão Celular , Ligação de Hidrogênio , Lectinas Tipo C , Receptores de Superfície Celular , Termodinâmica , Lectinas Tipo C/metabolismo , Lectinas Tipo C/química , Moléculas de Adesão Celular/química , Moléculas de Adesão Celular/metabolismo , Receptores de Superfície Celular/metabolismo , Receptores de Superfície Celular/química , Humanos , Desenho de Fármacos , Manose/química , Manose/metabolismo , Ligantes , Modelos Moleculares , Sítios de Ligação
12.
Fish Shellfish Immunol ; 150: 109638, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38754650

RESUMO

C-type lectins (CTLs) are glycan-binding pattern recognition receptors (PRRs) that can bind to carbohydrates on pathogen surfaces, triggering immune responses in shrimp innate immunity. In this study, a unique Ca2+-inhibited CTL named FcLec was identified and characterized in Chinese shrimp Fenneropenaeus chinensis. The full-length cDNA sequence of FcLec was 976 bp (GenBank accession number KU361826), with a 615 bp open reading frame (ORF) encoding 204 amino acids. FcLec possesses a C-type lectin-like domain (CTLD) containing four conserved cysteines (Cys105, Cys174, Cys192, and Cys200) and two sugar-binding site structures (QPD and LNP). The tertiary structure of FcLec deduced revealed three α-helices and eight ß-pleated sheets. The mRNA expression levels of FcLec in hemocytes and the hepatopancreas were markedly elevated after stimulation with Vibrio anguillarum and white spot syndrome virus (WSSV). The recombinant FcLec protein exhibited Ca2+-independent hemagglutination and bacterial agglutination, but these activities were observed only in the presence of EDTA to chelate metal ions. These findings suggest that FcLec plays important and functionally distinct roles in the shrimp's innate immune response to bacteria and viruses, enriching the current understanding of the relationship between CTL activity and Ca2+ in invertebrates.


Assuntos
Sequência de Aminoácidos , Proteínas de Artrópodes , Imunidade Inata , Lectinas Tipo C , Penaeidae , Filogenia , Alinhamento de Sequência , Vibrio , Vírus da Síndrome da Mancha Branca 1 , Animais , Penaeidae/imunologia , Penaeidae/genética , Lectinas Tipo C/genética , Lectinas Tipo C/imunologia , Lectinas Tipo C/química , Imunidade Inata/genética , Vibrio/fisiologia , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/imunologia , Proteínas de Artrópodes/química , Alinhamento de Sequência/veterinária , Vírus da Síndrome da Mancha Branca 1/fisiologia , Sequência de Bases , Cálcio/metabolismo , Regulação da Expressão Gênica/imunologia , Perfilação da Expressão Gênica/veterinária
13.
J Mol Biol ; 436(11): 168577, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38642883

RESUMO

The Red Queen Hypothesis (RQH), derived from Lewis Carroll's "Through the Looking-Glass", postulates that organisms must continually adapt in response to each other to maintain relative fitness. Within the context of host-pathogen interactions, the RQH implies an evolutionary arms race, wherein viruses evolve to exploit hosts and hosts evolve to resist viral invasion. This study delves into the dynamics of the RQH in the context of virus-cell interactions, specifically focusing on virus receptors and cell receptors. We observed multiple virus-host systems and noted patterns of co-evolution. As viruses evolved receptor-binding proteins to effectively engage with cell receptors, cells countered by altering their receptor genes. This ongoing mutual adaptation cycle has influenced the molecular intricacies of receptor-ligand interactions. Our data supports the RQH as a driving force behind the diversification and specialization of both viral and host cell receptors. Understanding this co-evolutionary dance offers insights into the unpredictability of emerging viral diseases and potential therapeutic interventions. Future research is crucial to dissect the nuanced molecular changes and the broader ecological consequences of this ever-evolving battle. Here, we combine phylogenetic inferences, structural modeling, and molecular dynamics analyses to describe the epidemiological characteristics of major Brazilian DENV strains that circulated from 1990 to 2022 from a combined perspective, thus providing us with a more detailed picture on the dynamics of such interactions over time.


Assuntos
Moléculas de Adesão Celular , Vírus da Dengue , Evolução Molecular , Interações Hospedeiro-Patógeno , Receptores de Superfície Celular , Proteínas do Envelope Viral , Envelope Viral , Humanos , Brasil , Moléculas de Adesão Celular/metabolismo , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/química , Dengue/virologia , Vírus da Dengue/genética , Vírus da Dengue/metabolismo , Interações Hospedeiro-Patógeno/genética , Lectinas Tipo C/metabolismo , Lectinas Tipo C/genética , Lectinas Tipo C/química , Simulação de Dinâmica Molecular , Filogenia , Ligação Proteica , Receptores de Superfície Celular/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/química , Receptores Virais/metabolismo , Receptores Virais/química , Receptores Virais/genética , Envelope Viral/metabolismo , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Proteínas do Envelope Viral/química
14.
Fish Shellfish Immunol ; 149: 109532, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38579977

RESUMO

C-type lectins (CTLs) execute critical functions in multiple immune responses of crustaceans as a member of pattern recognition receptors (PRRs) family. In this study, a novel CTL was identified from the exoskeleton of the oriental river prawn Macrobrachium nipponense (MnLec3). The full-length cDNA of MnLec3 was 1150 bp with an open reading frame of 723 bp, encoding 240 amino acids. MnLec3 protein contained a signal peptide and one single carbohydrate-recognition domain (CRD). MnLec3 transcripts were widely distributed at the exoskeleton all over the body. Significant up-regulation of MnLec3 in exoskeleton after Aeromonas hydrophila challenged suggested the involvement of MnLec3 as well as the possible function of the exoskeleton in immune response. In vitro tests with recombinant MnLec3 protein (rMnLec3) manifested that it had polysaccharide binding activity, a wide spectrum of bacterial binding activity and agglutination activity only for tested Gram-negative bacteria (Escherichia coli, Vibrio anguillarum and A. hydrophila). Moreover, rMnLec3 significantly promoted phagocytic ability of hemocytes against A. hydrophila in vivo. What's more, MnLec3 interference remarkably impaired the survivability of the prawns when infected with A. hydrophila. Collectively, these results ascertained that MnLec3 derived from exoskeleton took an essential part in immune defense of the prawns against invading bacteria as a PRR.


Assuntos
Aeromonas hydrophila , Sequência de Aminoácidos , Proteínas de Artrópodes , Regulação da Expressão Gênica , Hemócitos , Imunidade Inata , Lectinas Tipo C , Palaemonidae , Fagocitose , Filogenia , Alinhamento de Sequência , Animais , Palaemonidae/imunologia , Palaemonidae/genética , Lectinas Tipo C/genética , Lectinas Tipo C/imunologia , Lectinas Tipo C/química , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/imunologia , Proteínas de Artrópodes/química , Hemócitos/imunologia , Imunidade Inata/genética , Aeromonas hydrophila/fisiologia , Alinhamento de Sequência/veterinária , Regulação da Expressão Gênica/imunologia , Perfilação da Expressão Gênica/veterinária , Sequência de Bases , Exoesqueleto/imunologia , Exoesqueleto/química
15.
STAR Protoc ; 5(2): 102996, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38573861

RESUMO

Mincle (macrophage-inducible C-type lectin, CLEC4E) is a C-type lectin immune-stimulatory receptor that can be targeted for inducing potent adjuvant effects. Mincle can recognize trehalose dimycolate and related glycolipids. Here, we present a protocol to identify the ligand binding mode of Mincle. We describe steps for preparing labeled Mincle ectodomain, data acquisition, and analysis of nuclear magnetic resonance experiments using non-detergent sulfobetaine-195. This protocol can be applied to other protein-ligand interactions that have aggregation problems for complex formation. For complete details on the use and execution of this protocol, please refer to Furukawa et al.1.


Assuntos
Lectinas Tipo C , Lectinas Tipo C/metabolismo , Lectinas Tipo C/química , Ligantes , Sítios de Ligação , Humanos , Espectroscopia de Ressonância Magnética/métodos , Ligação Proteica , Receptores Imunológicos/química , Receptores Imunológicos/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Ressonância Magnética Nuclear Biomolecular/métodos
16.
Chemistry ; 30(30): e202400660, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38527187

RESUMO

C-type lectins are a large superfamily of proteins involved in a multitude of biological processes. In particular, their involvement in immunity and homeostasis has rendered them attractive targets for diverse therapeutic interventions. They share a characteristic C-type lectin-like domain whose adaptability enables them to bind a broad spectrum of ligands beyond the originally defined canonical Ca2+-dependent carbohydrate binding. Together with variable domain architecture and high-level conformational plasticity, this enables C-type lectins to meet diverse functional demands. Secondary sites provide another layer of regulation and are often intricately linked to functional diversity. Located remote from the canonical primary binding site, secondary sites can accommodate ligands with other physicochemical properties and alter protein dynamics, thus enhancing selectivity and enabling fine-tuning of the biological response. In this review, we outline the structural determinants allowing C-type lectins to perform a large variety of tasks and to accommodate the ligands associated with it. Using the six well-characterized Ca2+-dependent and Ca2+-independent C-type lectin receptors DC-SIGN, langerin, MGL, dectin-1, CLEC-2 and NKG2D as examples, we focus on the characteristics of non-canonical interactions and secondary sites and their potential use in drug discovery endeavors.


Assuntos
Lectinas Tipo C , Lectinas Tipo C/química , Lectinas Tipo C/metabolismo , Humanos , Ligantes , Sítios de Ligação , Cálcio/metabolismo , Cálcio/química , Receptores de Superfície Celular/química , Receptores de Superfície Celular/metabolismo , Moléculas de Adesão Celular/química , Moléculas de Adesão Celular/metabolismo , Ligação Proteica , Lectinas de Ligação a Manose/química , Lectinas de Ligação a Manose/metabolismo , Lectina de Ligação a Manose/química , Lectina de Ligação a Manose/metabolismo , Subfamília K de Receptores Semelhantes a Lectina de Células NK/química , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Antígenos CD/química , Antígenos CD/metabolismo
17.
Chembiochem ; 25(9): e202400026, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38506247

RESUMO

In this work, we have discovered that the Gal-α-(1→3)-Gal-ß-(1→3)-GlcNAc trisaccharide, a fragment of the B antigen Type-1, is a new ligand of two C-type lectin receptors (CLRs) i. e. DCAR and Mincle which are key players in different types of autoimmune diseases. Accordingly, we report here on a straightforward methodology to access pure Gal-α-(1→3)-Gal-ß-(1→3)-GlcNAc trisaccharide. A spacer with a terminal primary amine group was included at the reducing end of the GlcNAc residue thus ensuring the further functionalization of the trisaccharide Gal-α-(1→3)-Gal-ß-(1→3)-GlcNAc.


Assuntos
Lectinas Tipo C , Receptores Imunológicos , Trissacarídeos , Lectinas Tipo C/metabolismo , Lectinas Tipo C/química , Trissacarídeos/química , Trissacarídeos/síntese química , Ligantes , Estereoisomerismo , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo
18.
Int Immunol ; 36(6): 279-290, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38386511

RESUMO

C-type lectin receptors (CLRs) are a family of pattern recognition receptors, which detect a broad spectrum of ligands via small carbohydrate-recognition domains (CRDs). CLEC12A is an inhibitory CLR that recognizes crystalline structures such as monosodium urate crystals. CLEC12A also recognizes mycolic acid, a major component of mycobacterial cell walls, and suppresses host immune responses. Although CLEC12A could be a therapeutic target for mycobacterial infection, structural information on CLEC12A was not available. We report here the crystal structures of human CLEC12A (hCLEC12A) in ligand-free form and in complex with 50C1, its inhibitory antibody. 50C1 recognizes human-specific residues on the top face of hCLEC12A CRD. A comprehensive alanine scan demonstrated that the ligand-binding sites of mycolic acid and monosodium urate crystals may overlap with each other, suggesting that CLEC12A utilizes a common interface to recognize different types of ligands. Our results provide atomic insights into the blocking and ligand-recognition mechanisms of CLEC12A and leads to the design of CLR-specific inhibitors.


Assuntos
Lectinas Tipo C , Receptores Mitogênicos , Lectinas Tipo C/imunologia , Lectinas Tipo C/química , Lectinas Tipo C/metabolismo , Humanos , Receptores Mitogênicos/química , Receptores Mitogênicos/imunologia , Receptores Mitogênicos/metabolismo , Cristalografia por Raios X , Ligantes , Ligação Proteica , Sítios de Ligação , Modelos Moleculares , Ácido Úrico/química , Ácido Úrico/metabolismo , Ácido Úrico/imunologia
19.
J Biol Chem ; 300(3): 105765, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38367667

RESUMO

CLEC12A, a member of the C-type lectin receptor family involved in immune homeostasis, recognizes MSU crystals released from dying cells. However, the molecular mechanism underlying the CLEC12A-mediated recognition of MSU crystals remains unclear. Herein, we reported the crystal structure of the human CLEC12A-C-type lectin-like domain (CTLD) and identified a unique "basic patch" site on CLEC12A-CTLD that is necessary for the binding of MSU crystals. Meanwhile, we determined the interaction strength between CLEC12A-CTLD and MSU crystals using single-molecule force spectroscopy. Furthermore, we found that CLEC12A clusters at the cell membrane and seems to serve as an internalizing receptor of MSU crystals. Altogether, these findings provide mechanistic insights for understanding the molecular mechanisms underlying the interplay between CLEC12A and MSU crystals.


Assuntos
Lectinas Tipo C , Receptores Mitogênicos , Ácido Úrico , Humanos , Gota/metabolismo , Lectinas Tipo C/química , Lectinas Tipo C/imunologia , Receptores Mitogênicos/química , Receptores Mitogênicos/imunologia , Ácido Úrico/química , Ácido Úrico/imunologia , Domínios Proteicos , Cristalografia por Raios X , Imagem Individual de Molécula , Linhagem Celular
20.
J Biol Chem ; 300(3): 105699, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38301891

RESUMO

DEC205 (CD205) is one of the major endocytic receptors on dendritic cells and has been widely used as a receptor target in immune therapies. It has been shown that DEC205 can recognize dead cells through keratins in a pH-dependent manner. However, the mechanism underlying the interaction between DEC205 and keratins remains unclear. Here we determine the crystal structures of an N-terminal fragment of human DEC205 (CysR∼CTLD3). The structural data show that DEC205 shares similar overall features with the other mannose receptor family members such as the mannose receptor and Endo180, but the individual domains of DEC205 in the crystal structure exhibit distinct structural features that may lead to specific ligand binding properties of the molecule. Among them, CTLD3 of DEC205 adopts a unique fold of CTLD, which may correlate with the binding of keratins. Furthermore, we examine the interaction of DEC205 with keratins by mutagenesis and biochemical assays based on the structural information and identify an XGGGX motif on keratins that can be recognized by DEC205, thereby providing insights into the interaction between DEC205 and keratins. Overall, these findings not only improve the understanding of the diverse ligand specificities of the mannose receptor family members at the molecular level but may also give clues for the interactions of keratins with their binding partners in the corresponding pathways.


Assuntos
Queratinas , Lectinas Tipo C , Modelos Moleculares , Humanos , Células Dendríticas/metabolismo , Lectinas Tipo C/química , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Ligantes , Receptor de Manose/química , Mutagênese , Ligação Proteica , Dobramento de Proteína , Estrutura Terciária de Proteína , Domínios e Motivos de Interação entre Proteínas , Cristalografia por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...