Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.148
Filtrar
1.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 36(5): 514-519, 2024 May.
Artigo em Chinês | MEDLINE | ID: mdl-38845499

RESUMO

OBJECTIVE: To investigate the effect of mild hypothermia on macrophage polarization in lipopolysaccharide (LPS)-induced acute lung injury (ALI) mice and to clarify its role in lung injury. METHODS: According to a random number table method, 18 male C57BL/6 mice were divided into sham operation group (Sham group), ALI normothermic model group (NT group) and ALI mild hypothermia treatment group (HT group), with 6 mice in each group. The ALI model in mice was established by the method of tracheal instillation of LPS, and temperature control was administered at 1 hour after surgery. The anus temperature in NT group was kept at 36-38?centigrade, while the anus temperature in HT group was kept at 32-34?centigrade. The target anus temperature in both groups were maintained for 6 hours and then slowly rewarmed to 36-38 centigrade. The Sham group was infused with an equal amount of physiological saline through the trachea without temperature control. After 24 hours of modeling, serum was collected and mice were sacrificed to obtain lung tissue. Pathological changes in lung tissue were observed under light microscopy and semi-quantitative lung injury score was performed. Enzyme linked immunosorbent assay (ELISA) was used to detect the serum levels of interleukins (IL-1ß, IL-10). Real-time quantitative polymerase chain reaction (RT-qPCR) was used to test the indicators of macrophage polarization, such as the mRNA expressions of CD86, IL-6, CD206 and arginase 1 (Arg1) in the lung tissue. The protein expression of M1 macrophage marker inducible nitric oxide synthase (iNOS) and M2 macrophage marker Arg1 were detected by Western blotting. RESULTS: Compared with the Sham group, the NT group appeared significant pulmonary hemorrhage and edema, thickened lung septum, inflammatory cell infiltration, and lung injury score was significantly increased; serum IL-1ß level was significantly elevated; IL-10 level was increased without statistical significance; the expressions of CD86 mRNA, IL-6 mRNA and iNOS protein were significantly elevated, and CD206 mRNA was significantly decreased; the mRNA and protein expressions of Arg1 decreased, but there were no significant differences. Compared with the NT group, the pathological injury of lung tissue in HT group was significantly reduced, and the lung injury score was significantly decreased (4.78±0.96 vs. 8.56±1.98, P < 0.01); serum IL-1ß level was decreased (ng/L: 13.52±1.95 vs. 27.18±3.87, P < 0.01), and IL-10 level was significantly increased (ng/L: 42.59±15.79 vs. 14.62±4.47, P < 0.01); IL-6 mRNA expression was decreased in lung tissue (2-ΔΔCt: 3.37±0.92 vs. 10.04±0.91, P < 0.05), the expression of M1 macrophage markers CD86 mRNA and iNOS protein were significantly decreased [CD86 mRNA (2-ΔΔCt): 0.52±0.16 vs. 1.95±0.33, iNOS protein (iNOS/ß-actin): 0.57±0.19 vs. 1.11±0.27, both P < 0.05], the expression of M2 macrophage markers CD206 mRNA, Arg1 mRNA and Arg1 protein were significantly increased [CD206 mRNA (2-ΔΔCt): 3.99±0.17 vs. 0.34±0.17, Arg1 mRNA (2-ΔΔCt): 2.33±0.73 vs. 0.94±0.23, Arg1 protein (Arg1/ß-actin): 0.96±0.09 vs. 0.31±0.11, all P < 0.05]. CONCLUSIONS: Mild hypothermia can alleviate the inflammatory response and protect lung tissue in ALI mice, which may be related to the inhibition of M1 macrophage polarization and promotion of M2 macrophage polarization.


Assuntos
Lesão Pulmonar Aguda , Lipopolissacarídeos , Macrófagos , Camundongos Endogâmicos C57BL , Animais , Lesão Pulmonar Aguda/terapia , Masculino , Camundongos , Macrófagos/metabolismo , Lipopolissacarídeos/efeitos adversos , Óxido Nítrico Sintase Tipo II/metabolismo , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Hipotermia Induzida , Interleucina-1beta/metabolismo , Modelos Animais de Doenças
2.
J Clin Invest ; 134(11)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38828725

RESUMO

Although antibody-mediated lung damage is a major factor in transfusion-related acute lung injury (ALI), autoimmune lung disease (for example, coatomer subunit α [COPA] syndrome), and primary graft dysfunction following lung transplantation, the mechanism by which antigen-antibody complexes activate complement to induce lung damage remains unclear. In this issue of the JCI, Cleary and colleagues utilized several approaches to demonstrate that IgG forms hexamers with MHC class I alloantibodies. This hexamerization served as a key pathophysiological mechanism in alloimmune lung injury models and was mediated through the classical pathway of complement activation. Additionally, the authors provided avenues for exploring therapeutics for this currently hard-to-treat clinical entity that has several etiologies but a potentially focused mechanism.


Assuntos
Lesão Pulmonar Aguda , Ativação do Complemento , Imunoglobulina G , Humanos , Imunoglobulina G/imunologia , Lesão Pulmonar Aguda/imunologia , Lesão Pulmonar Aguda/patologia , Ativação do Complemento/imunologia , Animais , Isoanticorpos/imunologia , Multimerização Proteica/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Complexo Antígeno-Anticorpo/imunologia
3.
J Int Med Res ; 52(5): 3000605241247707, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38717029

RESUMO

Lipopolysaccharide (LPS) is widely used to establish various animal models, including models of acute lung injury, cardiomyocyte damage, and acute kidney injury. Currently, there is no consensus on the diagnosis and treatment of LPS-induced disease. We herein present a case series of four patients who developed dose-dependent multi-organ injury, including acute lung injury and acute kidney injury, after inhaling LPS gas in a sealed room. These patients exhibited varying degrees of multi-organ injury characterized by inflammatory cell infiltration and secretion of proinflammatory cytokines. One patient showed progressive symptoms even with active treatment, leading to mild pulmonary fibrosis. This study emphasizes the importance of early diagnosis and treatment of significant LPS exposure and suggests personalized treatment approaches for managing LPS poisoning.


Assuntos
Lipopolissacarídeos , Humanos , Masculino , Pessoa de Meia-Idade , Feminino , Adulto , Insuficiência de Múltiplos Órgãos/etiologia , Insuficiência de Múltiplos Órgãos/induzido quimicamente , Administração por Inalação , Lesão Pulmonar Aguda/induzido quimicamente , Injúria Renal Aguda/induzido quimicamente , Citocinas/metabolismo , Idoso , Relação Dose-Resposta a Droga
4.
PLoS One ; 19(5): e0302628, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38723000

RESUMO

Blood vessels permit the selective passage of molecules and immune cells between tissues and circulation. Uncontrolled inflammatory responses from an infection can increase vascular permeability and edema, which can occasionally lead to fatal organ failure. We identified mexenone as a vascular permeability blocker by testing 2,910 compounds in the Clinically Applied Compound Library using the lipopolysaccharide (LPS)-induced vascular permeability assay. Mexenone suppressed the LPS-induced downregulation of junctional proteins and phosphorylation of VE-cadherin in Bovine Aortic Endothelial Cells (BAECs). The injection of mexenone 1 hr before LPS administration completely blocked LPS-induced lung vascular permeability and acute lung injury in mice after 18hr. Our results suggest that mexenone-induced endothelial cell (EC) barrier stabilization could be effective in treating sepsis patients.


Assuntos
Células Endoteliais , Lipopolissacarídeos , Sepse , Animais , Sepse/tratamento farmacológico , Sepse/induzido quimicamente , Sepse/metabolismo , Camundongos , Bovinos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Permeabilidade Capilar/efeitos dos fármacos , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/prevenção & controle , Masculino , Caderinas/metabolismo , Camundongos Endogâmicos C57BL , Antígenos CD/metabolismo
5.
Cells ; 13(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38727303

RESUMO

Small interfering RNA (siRNA) holds significant therapeutic potential by silencing target genes through RNA interference. Current clinical applications of siRNA have been primarily limited to liver diseases, while achievements in delivery methods are expanding their applications to various organs, including the lungs. Cholesterol-conjugated siRNA emerges as a promising delivery approach due to its low toxicity and high efficiency. This study focuses on developing a cholesterol-conjugated anti-Il6 siRNA and the evaluation of its potency for the potential treatment of inflammatory diseases using the example of acute lung injury (ALI). The biological activities of different Il6-targeted siRNAs containing chemical modifications were evaluated in J774 cells in vitro. The lead cholesterol-conjugated anti-Il6 siRNA after intranasal instillation demonstrated dose-dependent therapeutic effects in a mouse model of ALI induced by lipopolysaccharide (LPS). The treatment significantly reduced Il6 mRNA levels, inflammatory cell infiltration, and the severity of lung inflammation. IL6 silencing by cholesterol-conjugated siRNA proves to be a promising strategy for treating inflammatory diseases, with potential applications beyond the lungs.


Assuntos
Lesão Pulmonar Aguda , Colesterol , Interleucina-6 , RNA Interferente Pequeno , Animais , RNA Interferente Pequeno/metabolismo , RNA Interferente Pequeno/genética , Lesão Pulmonar Aguda/terapia , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/metabolismo , Interleucina-6/metabolismo , Interleucina-6/genética , Colesterol/metabolismo , Camundongos , Lipopolissacarídeos , Masculino , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Linhagem Celular , Pulmão/patologia , Pulmão/metabolismo
6.
Wiad Lek ; 77(3): 497-505, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38691792

RESUMO

OBJECTIVE: Aim: The aim of this research is to clarify the potential effect of CDDO-EA against experimentally sepsis induced lung injury in mice. PATIENTS AND METHODS: Materials and Methods: Mice have divided into four groups: Sham group CLP group, Vehicle-treatment group, CDDO-EA-treated group: mice in this group received CDDO-EA 2mg/kg intraperitoneally, 1hr before CLP, then the animals were sacrificed 24hr after CLP. After exsAngpuinations, tissue samples of lung were collected, followed by markers measurement including, TNF-α, IL-1ß, VEGF, MPO, caspase11, Angp-1and Angp-2 by ELISA, gene expression of TIE2 and VE-cadherin by qRT-PCR, in addition to histopathological study. RESULTS: Results: A significant elevation (p<0.05) in TNF-α, IL-1ß, MPO, ANGP-2, VEGF, CASPASE 11 in CLP and vehicle groups when compared with sham group. CDDO-EA group showed significantly lower levels p<0.05, level of ANGP-1 was significantly lower p<0.05 in the CLP and vehicle groups as compared with the sham group. Quantitative real-time PCR demonstrated a significant decrement in mRNA expression of TIE2&ve-cadherin genes p<0.05 in sepsis & vehicle. CONCLUSION: Conclusions: CDDO-EA has lung protective effects due to its anti-inflammatory and antiAngpiogenic activity, additionally, CDDO-EA showes a lung protective effect as they affect tissue mRNA expression of TIE2 and cadherin gene. Furthermore, CDDO-EA attenuate the histopathological changes that occur during polymicrobial sepsis thereby lung protection effect.


Assuntos
Lesão Pulmonar Aguda , Modelos Animais de Doenças , Endotoxemia , Sepse , Animais , Camundongos , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Endotoxemia/metabolismo , Sepse/complicações , Sepse/metabolismo , Masculino , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Pulmão/patologia , Pulmão/metabolismo , Interleucina-1beta/metabolismo
7.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 36(4): 430-434, 2024 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-38813641

RESUMO

Hyperoxia-induced acute lung injury (HALI) is an important complication of clinical oxygen therapy, which is mainly characterized by acute respiratory distress syndrome (ARDS) in adults and broncho-pulmonary dysplasia (BPD) in infants. HALI seriously affects the prognosis and quality of life of patients, so it has received more and more attention. However, the pathogenesis of HALI is complex and unclear, and there is no clear treatment method at present. Non-coding RNA (ncRNA) is an important type of functional RNA transcriptome. Due to the lack of effective open reading frame, ncRNA does not have the function of coding proteins. However, ncRNA can still regulate gene expression at multiple levels and affect the occurrence and development of many diseases. In recent years, a large number of in vitro and in vivo studies have shown that ncRNA is involved in the pathogenesis of HALI and is of great significance. This article reviews the expression and significance of ncRNA in HALI, in order to provide new diagnosis and treatment ideas for the prevention and treatment of HALI.


Assuntos
Lesão Pulmonar Aguda , Hiperóxia , RNA não Traduzido , Humanos , Hiperóxia/complicações , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/terapia , RNA não Traduzido/genética , Animais
8.
PLoS One ; 19(5): e0303556, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38753858

RESUMO

Echinatin is an active ingredient in licorice, a traditional Chinese medicine used in the treatment of inflammatory disorders. However, the protective effect and underlying mechanism of echinatin against acute lung injury (ALI) is still unclear. Herein, we aimed to explore echinatin-mediated anti-inflammatory effects on lipopolysaccharide (LPS)-stimulated ALI and its molecular mechanisms in macrophages. In vitro, echinatin markedly decreased the levels of nitric oxide (NO) and prostaglandin E2 (PGE2) in LPS-stimulated murine MH-S alveolar macrophages and RAW264.7 macrophages by suppressing inducible nitric oxide synthase and cyclooxygenase-2 (COX-2) expression. Furthermore, echinatin reduced LPS-induced mRNA expression and release of interleukin-1ß (IL-1ß) and IL-6 in RAW264.7 cells. Western blotting and CETSA showed that echinatin repressed LPS-induced activation of mitogen-activated protein kinase (MAPK) and nuclear factor-kappa B (NF-κB) pathways through targeting transforming growth factor-beta-activated kinase 1 (TAK1). Furthermore, echinatin directly interacted with Kelch-like ECH-associated protein 1 (Keap1) and activated the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway to enhance heme oxygenase-1 (HO-1) expression. In vivo, echinatin ameliorated LPS-induced lung inflammatory injury, and reduced production of IL-1ß and IL-6. These findings demonstrated that echinatin exerted anti-inflammatory effects in vitro and in vivo, via blocking the TAK1-MAPK/NF-κB pathway and activating the Keap1-Nrf2-HO-1 pathway.


Assuntos
Lesão Pulmonar Aguda , Heme Oxigenase-1 , Proteína 1 Associada a ECH Semelhante a Kelch , Lipopolissacarídeos , MAP Quinase Quinase Quinases , Fator 2 Relacionado a NF-E2 , NF-kappa B , Transdução de Sinais , Animais , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/induzido quimicamente , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , MAP Quinase Quinase Quinases/metabolismo , NF-kappa B/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Transdução de Sinais/efeitos dos fármacos , Heme Oxigenase-1/metabolismo , Células RAW 264.7 , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/patologia , Anti-Inflamatórios/farmacologia
9.
Sci Rep ; 14(1): 11160, 2024 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750066

RESUMO

Sepsis is a systemic inflammatory response syndrome resulting from the invasion of the human body by bacteria and other pathogenic microorganisms. One of its most prevalent complications is acute lung injury, which places a significant medical burden on numerous countries and regions due to its high morbidity and mortality rates. MicroRNA (miRNA) plays a critical role in the body's inflammatory response and immune regulation. Recent studies have focused on miR-21-5p in the context of acute lung injury, but its role appears to vary in different models of this condition. In the LPS-induced acute injury model of A549 cells, there is differential expression, but the specific mechanism remains unclear. Therefore, our aim is to investigate the changes in the expression of miR-21-5p and SLC16A10 in a type II alveolar epithelial cell injury model induced by LPS and explore the therapeutic effects of their targeted regulation. A549 cells were directly stimulated with 10 µg/ml of LPS to construct a model of LPS-induced cell injury. Cells were collected at different time points and the expression of interleukin 1 beta (IL-1ß), tumor necrosis factor-α (TNF-α) and miR-21-5p were measured by RT-qPCR and western blot. Then miR-21-5p mimic transfection was used to up-regulate the expression of miR-21-5p in A549 cells and the expression of IL-1ß and TNF-α in each group of cells was measured by RT-qPCR and western blot. The miRDB, TargetScan, miRWalk, Starbase, Tarbase and miR Tarbase databases were used to predict the miR-21-5p target genes and simultaneously, the DisGeNet database was used to search the sepsis-related gene groups. The intersection of the two groups was taken as the core gene. Luciferase reporter assay further verified SLC16A10 as the core gene with miR-21-5p. The expression of miR-21-5p and SLC16A10 were regulated by transfection or inhibitors in A549 cells with or without LPS stimulation. And then the expression of IL-1ß and TNF-α in A549 cells was tested by RT-qPCR and western blot in different groups, clarifying the role of miR-21-5p-SLC16A10 axis in LPS-induced inflammatory injury in A549 cells. (1) IL-1ß and TNF-α mRNA and protein expression significantly increased at 6, 12, and 24 h after LPS stimulation as well as the miR-21-5p expression compared with the control group (P < 0.05). (2) After overexpression of miR-21-5p in A549 cells, the expression of IL-1ß and TNF-α was significantly reduced after LPS stimulation, suggesting that miR-21-5p has a protection against LPS-induced injury. (3) The core gene set, comprising 51 target genes of miR-21-5p intersecting with the 1448 sepsis-related genes, was identified. This set includes SLC16A10, TNPO1, STAT3, PIK3R1, and FASLG. Following a literature review, SLC16A10 was selected as the ultimate target gene. Dual luciferase assay results confirmed that SLC16A10 is indeed a target gene of miR-21-5p. (4) Knocking down SLC16A10 expression by siRNA significantly reduced the expression of IL-1ß and TNF-α in A549 cells after LPS treatment (P < 0.05). (5) miR-21-5p inhibitor increased the expression levels of IL-1ß and TNF-α in A549 cells after LPS stimulation (P < 0.05). In comparison to cells solely transfected with miR-21-5p inhibitor, co-transfection of miR-21-5p inhibitor and si-SLC6A10 significantly reduced the expression of IL-1ß and TNF-α (P < 0.05). MiR-21-5p plays a protective role in LPS-induced acute inflammatory injury of A549 cells. By targeting SLC16A10, it effectively mitigates the inflammatory response in A549 cells induced by LPS. Furthermore, SLC16A10 holds promise as a potential target for the treatment of acute lung injury.


Assuntos
Lesão Pulmonar Aguda , Células Epiteliais Alveolares , Lipopolissacarídeos , MicroRNAs , MicroRNAs/genética , MicroRNAs/metabolismo , Humanos , Lipopolissacarídeos/toxicidade , Células A549 , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/efeitos dos fármacos , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/patologia , Interleucina-1beta/metabolismo , Interleucina-1beta/genética , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/genética , Regulação da Expressão Gênica
10.
BMC Vet Res ; 20(1): 204, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38755662

RESUMO

Actinobacillus pleuropneumoniae (APP) causes porcine pleuropneumonia (PCP), which is clinically characterized by acute hemorrhagic, necrotizing pneumonia, and chronic fibrinous pneumonia. Although many measures have been taken to prevent the disease, prevention and control of the disease are becoming increasingly difficult due to the abundance of APP sera, weak vaccine cross-protection, and increasing antibiotic resistance in APP. Therefore, there is an urgent need to develop novel drugs against APP infection to prevent the spread of APP. Naringin (NAR) has been reported to have an excellent therapeutic effect on pulmonary diseases, but its therapeutic effect on lung injury caused by APP is not apparent. Our research has shown that NAR was able to alleviate APP-induced weight loss and quantity of food taken and reduce the number of WBCs and NEs in peripheral blood in mice; pathological tissue sections showed that NAR was able to prevent and control APP-induced pathological lung injury effectively; based on the establishment of an in vivo/in vitro model of APP inflammation, it was found that NAR was able to play an anti-inflammatory role through inhibiting the MAPK/NF-κB signaling pathway and exerting anti-inflammatory effects; additionally, NAR activating the Nrf2 signalling pathway, increasing the secretion of antioxidant enzymes Nqo1, CAT, and SOD1, inhibiting the secretion of oxidative damage factors NOS2 and COX2, and enhancing the antioxidant stress ability, thus playing an antioxidant role. In summary, NAR can relieve severe lung injury caused by APP by reducing excessive inflammatory response and improving antioxidant capacity.


Assuntos
Infecções por Actinobacillus , Actinobacillus pleuropneumoniae , Lesão Pulmonar Aguda , Flavanonas , Proteína 1 Associada a ECH Semelhante a Kelch , Fator 2 Relacionado a NF-E2 , NF-kappa B , Animais , Actinobacillus pleuropneumoniae/efeitos dos fármacos , Flavanonas/uso terapêutico , Flavanonas/farmacologia , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/prevenção & controle , Fator 2 Relacionado a NF-E2/metabolismo , Infecções por Actinobacillus/veterinária , Infecções por Actinobacillus/tratamento farmacológico , Camundongos , NF-kappa B/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Transdução de Sinais/efeitos dos fármacos , Feminino , Proteínas de Membrana , Heme Oxigenase-1
11.
J Cell Mol Med ; 28(10): e18280, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38758159

RESUMO

Acute lung injury (ALI) is featured with a robust inflammatory response. Angiopoietin-like protein 2 (ANGPTL2), a pro-inflammatory protein, is complicated with various disorders. However, the role of ANGPTL2 in ALI remains to be further explored. The mice and MH-S cells were administrated with lipopolysaccharide (LPS) to evoke the lung injury in vivo and in vitro. The role and mechanism of ANGPTL was investigated by haematoxylin-eosin, measurement of wet/dry ratio, cell count, terminal deoxynucleotidyl transferase deoxyuridine triphosphate (dUTP) nick end labeling, reverse transcription quantitative polymerase chain reaction, immunofluorescence, enzyme-linked immunosorbent assay, detection of autophagic flux and western blot assays. The level of ANGPTL2 was upregulated in lung injury. Knockout of ANGPTL2 alleviated LPS-induced pathological symptoms, reduced pulmonary wet/dry weight ratio, the numbers of total cells and neutrophils in BALF, apoptosis rate and the release of pro-inflammatory mediators, and modulated polarization of alveolar macrophages in mice. Knockdown of ANGPTL2 downregulated the level of pyroptosis indicators, and elevated the level of autophagy in LPS-induced MH-S cells. Besides, downregulation of ANGPTL2 reversed the LPS-induced the expression of leukocyte immunoglobulin (Ig)-like receptor B2 (LILRB2) and triggering receptor expressed on myeloid cells 2 (TREM2), which was reversed by the overexpression of LILRB2. Importantly, knockdown of TREM2 reversed the levels of autophagy- and pyroptosis-involved proteins, and the contents of pro-inflammatory factors in LPS-induced MH-S cells transfected with si ANGPTL2, which was further inverted with the treatment of rapamycin. Therefore, ANGPTL2 silencing enhanced autophagy to alleviate alveolar macrophage pyroptosis via reducing LILRB2-mediated inhibition of TREM2.


Assuntos
Lesão Pulmonar Aguda , Proteína 2 Semelhante a Angiopoietina , Autofagia , Lipopolissacarídeos , Macrófagos Alveolares , Glicoproteínas de Membrana , Piroptose , Receptores Imunológicos , Animais , Piroptose/genética , Piroptose/efeitos dos fármacos , Autofagia/genética , Camundongos , Macrófagos Alveolares/metabolismo , Receptores Imunológicos/metabolismo , Receptores Imunológicos/genética , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/induzido quimicamente , Técnicas de Silenciamento de Genes , Masculino , Camundongos Endogâmicos C57BL , Proteínas Semelhantes a Angiopoietina/metabolismo , Proteínas Semelhantes a Angiopoietina/genética , Camundongos Knockout
12.
PLoS One ; 19(5): e0303282, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38758742

RESUMO

BACKGROUND: Severe acute lung failure (ALF) often necessitates veno-venous extracorporeal membrane oxygenation (VV-ECMO), where identifying predictors of weaning success and mortality remains crucial yet challenging. The study aims to identify predictors of weaning success and mortality in adults undergoing VV-ECMO for severe ALF, a gap in current clinical knowledge. METHODS AND ANALYSIS: PubMed, EMBASE, and the Cochrane Central Register of Controlled Trials will be searched for cohort studies examining the predictive factors of successful weaning and mortality in adult patients on VV-ECMO due to severe ALF. Risk of bias assessment will be conducted using the Newcastle-Ottawa scale for each included study. The primary outcomes will be successful weaning from VV-ECMO and all-cause mortality. Between-study heterogeneity will be evaluated using the I2 statistic. Sensitivity, subgroup, and meta-regression analyses will be performed to ascertain potential sources of heterogeneity and assess the robustness of our results. We will use the Grading of Recommendations, Assessment, Development, and Evaluations (GRADE) tool to recommend the level of evidence. DISCUSSION: This study seeks to provide clinically significant insights into predictors for weaning and mortality during VV-ECMO treatment for ALF, aiming to support clinical decisions and potentially influence health policy, thereby improving patient outcomes. ETHICS AND DISSEMINATION: Given the absence of direct engagement with human subjects or access to personal medical records, ethical approval for this study is deemed unnecessary. The study findings will be shared at a scientific conference either at the global or national level. Alternatively, the results will be presented for publication in a rigorously peer-reviewed journal regarding critical care medicine.


Assuntos
Lesão Pulmonar Aguda , Oxigenação por Membrana Extracorpórea , Humanos , Oxigenação por Membrana Extracorpórea/métodos , Adulto , Lesão Pulmonar Aguda/terapia , Lesão Pulmonar Aguda/mortalidade , Estudos de Coortes
13.
ACS Nano ; 18(20): 13361-13376, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38728619

RESUMO

Oxygen therapy cannot rescue local lung hypoxia in patients with severe respiratory failure. Here, an inhalable platform is reported for overcoming the aberrant hypoxia-induced immune changes and alveolar damage using camouflaged poly(lactic-co-glycolic) acid (PLGA) microparticles with macrophage apoptotic body membrane (cMAB). cMABs are preloaded with mitochondria-targeting superoxide dismutase/catalase nanocomplexes (NCs) and modified with pathology-responsive macrophage growth factor colony-stimulating factor (CSF) chains, which form a core-shell platform called C-cMAB/NC with efficient deposition in deeper alveoli and high affinity to alveolar epithelial cells (AECs) after CSF chains are cleaved by matrix metalloproteinase 9. Therefore, NCs can be effectively transported into mitochondria to inhibit inflammasome-mediated AECs damage in mouse models of hypoxic acute lung injury. Additionally, the at-site CSF release is sufficient to rescue circulating monocytes and macrophages and alter their phenotypes, maximizing synergetic effects of NCs on creating a pro-regenerative microenvironment that enables resolution of lung injury and inflammation. This inhalable platform may have applications to numerous inflammatory lung diseases.


Assuntos
Macrófagos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Animais , Camundongos , Macrófagos/metabolismo , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Camundongos Endogâmicos C57BL , Hipóxia , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar/patologia , Lesão Pulmonar/terapia , Administração por Inalação , Apoptose/efeitos dos fármacos
14.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(4): 296-302, 2024 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-38710513

RESUMO

Objective To evaluate the effects of heme oxygenase-1 (HO-1) gene deletion on immune cell composition and inflammatory injury in lung tissues of mice with lipopolysaccharide (LPS)-induced acute lung injury (ALI). Methods C57BL/6 wild-type (WT) mice and HO-1 conditional-knockout (HO-1-/-) mice on the same background were randomly divided into four groups (n=5 in every group): WT control group, LPS-treated WT group, HO-1-/- control group and LPS-treated HO-1-/- group. LPS-treated WT and HO-1-/- groups were injected with LPS (15 mg/kg) through the tail vein to establish ALI model, while WT control group and HO-1-/- control group were injected with an equivalent volume of normal saline through the tail vein, respectively. Twelve hours later, the mice were sacrificed and lung tissues from each group were collected for analysis. Histopathological alterations of lung tissues were assessed by HE staining. The levels of mRNA expression of tumor necrosis factor α (TNF-α), interleukin 1ß (IL-1ß), and IL-6 were determined by PCR. The percentages of neutrophils (CD45+CD11b+Ly6G+Ly6C-), total monocytes (CD45+CD11b+Ly6Chi), pro-inflammatory monocyte subsets (CD45+CD11b+Ly6ChiCCR2hi) and total macrophages (CD45+CD11b+F4/80+), M1 macrophage (CD45+CD11b+F4/80+CD86+), M2 macrophage (CD45+CD11b+F4/80+CD206+), total T cells (CD45+CD3+), CD3+CD4+ T cells, CD3+CD8+ T cells and myeloid suppressor cells (MDSCs, CD45+CD11b+Gr1+) were detected by flow cytometry. Results Compared with the corresponding control groups, HE staining exhibited increased inflammation in the lung tissues of both LPS-treated WT and HO-1-/- model mice; mRNA expression levels of TNF-α, IL-1ß and IL-6 were up-regulated; the proportions of neutrophils, total monocytes, pro-inflammatory monocyte subsets, MDSCs and total macrophages increased significantly. The percentage of CD3+, CD3+CD4+ and CD3+CD8+ T cells decreased significantly. Under resting-state, compared with WT control mice, the proportion of neutrophils, monocytes and pro-inflammatory monocyte subset increased in lung tissues of HO-1-/- control mice, while the proportion of CD3+ and CD3+CD8+ T cells decreased. Compared with LPS-treated WT mice, the mRNA expression levels of TNF-α and IL-1ß were up-regulated in lung tissues of LPS-treated HO-1-/- mice; the proportion of total monocytes, pro-inflammatory monocyte subsets, M1 macrophages and M1/M2 ratio increased greatly; the percentage of CD3+CD8+ T cells decreased significantly. Conclusion The deletion of HO-1 affects the function of the lung immune system and aggravates the inflammatory injury after LPS stimulation in ALI mice.


Assuntos
Lesão Pulmonar Aguda , Heme Oxigenase-1 , Lipopolissacarídeos , Pulmão , Camundongos Endogâmicos C57BL , Camundongos Knockout , Animais , Masculino , Camundongos , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/imunologia , Lesão Pulmonar Aguda/patologia , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Inflamação/genética , Inflamação/induzido quimicamente , Inflamação/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Pulmão/patologia , Pulmão/imunologia , Pulmão/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
15.
Commun Biol ; 7(1): 514, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710749

RESUMO

Acute lung injury (ALI) is characterized by respiratory failure resulting from the disruption of the epithelial and endothelial barriers as well as immune system. In this study, we evaluated the therapeutic potential of airway epithelial cell-derived extracellular vesicles (EVs) in maintaining lung homeostasis. We isolated human bronchial epithelial cell-derived EVs (HBEC-EVs), which endogenously express various immune-related surface markers and investigated their immunomodulatory potential in ALI. In ALI cellular models, HBEC-EVs demonstrated immunosuppressive effects by reducing the secretion of proinflammatory cytokines in both THP-1 macrophages and HBECs. Mechanistically, these effects were partially ascribed to nine of the top 10 miRNAs enriched in HBEC-EVs, governing toll-like receptor-NF-κB signaling pathways. Proteomic analysis revealed the presence of proteins in HBEC-EVs involved in WNT and NF-κB signaling pathways, pivotal in inflammation regulation. ANXA1, a constituent of HBEC-EVs, interacts with formyl peptide receptor (FPR)2, eliciting anti-inflammatory responses by suppressing NF-κB signaling in inflamed epithelium, including type II alveolar epithelial cells. In a mouse model of ALI, intratracheal administration of HBEC-EVs reduced lung injury, inflammatory cell infiltration, and cytokine levels. Collectively, these findings suggest the therapeutic potential of HBEC-EVs, through their miRNAs and ANXA1 cargo, in mitigating lung injury and inflammation in ALI patients.


Assuntos
Lesão Pulmonar Aguda , Anexina A1 , Células Epiteliais , Vesículas Extracelulares , Receptores de Formil Peptídeo , Receptores de Lipoxinas , Transdução de Sinais , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Humanos , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/transplante , Anexina A1/metabolismo , Anexina A1/genética , Animais , Camundongos , Receptores de Formil Peptídeo/metabolismo , Receptores de Formil Peptídeo/genética , Células Epiteliais/metabolismo , Brônquios/metabolismo , Brônquios/citologia , Masculino , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , MicroRNAs/genética , NF-kappa B/metabolismo , Citocinas/metabolismo , Células THP-1
16.
Clin Chest Med ; 45(2): 357-371, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38816093

RESUMO

Organizing pneumonia, acute fibrinous and organizing pneumonia, and diffuse alveolar damage, represent multi-compartment patterns of lung injury. The initial region of injury in all remains the same and is centered on the fused basement membrane (BM) between the capillary endothelium and type I pneumocyte. Injury leads to cellular death, BM denudation, increased cellular permeability, and BM structural damage, which leads to exudation, organization, and attempts at repair. When acute lung injury does lead to fibrosis, in some instances it can lead to histologic and/or radiologic usual interstitial pneumonia or nonspecific interstital pneumonia patterns suggesting that lung injury is the primary mechanism for the development of fibrosis.


Assuntos
Lesão Pulmonar Aguda , Humanos , Lesão Pulmonar Aguda/diagnóstico por imagem , Lesão Pulmonar Aguda/fisiopatologia , Tomografia Computadorizada por Raios X
17.
Front Immunol ; 15: 1374541, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38807598

RESUMO

Objective: The coronavirus disease 2019 (COVID-19) spread rapidly and claimed millions of lives worldwide. Acute respiratory distress syndrome (ARDS) is the major cause of COVID-19-associated deaths. Due to the limitations of current drugs, developing effective therapeutic options that can be used rapidly and safely in clinics for treating severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infections is necessary. This study aims to investigate the effects of two food-extracted immunomodulatory agents, ajoene-enriched garlic extract (AGE) and cruciferous vegetables-extracted sulforaphane (SFN), on anti-inflammatory and immune responses in a SARS-CoV-2 acute lung injury mouse model. Methods: In this study, we established a mouse model to mimic the SARS-CoV-2 infection acute lung injury model via intratracheal injection of polyinosinic:polycytidylic acid (poly[I:C]) and SARS-CoV-2 recombinant spike protein (SP). After the different agents treatment, lung sections, bronchoalveolar lavage fluid (BALF) and fresh faeces were harvested. Then, H&E staining was used to examine symptoms of interstitial pneumonia. Flow cytometry was used to examine the change of immune cell populations. Multiplex cytokines assay was used to examine the inflammatory cytokines.16S rDNA high-throughput sequencing was used to examine the change of gut microbiome. Results: Our results showed that AGE and SFN significantly suppressed the symptoms of interstitial pneumonia, effectively inhibited the production of inflammatory cytokines, decreased the percentage of inflammatory cell populations, and elevated T cell populations in the mouse model. Furthermore, we also observed that the gut microbiome of genus Paramuribaculum were enriched in the AGE-treated group. Conclusion: Here, for the first time, we observed that these two novel, safe, and relatively inexpensive immunomodulatory agents exhibited the same effects on anti-inflammatory and immune responses as neutralizing monoclonal antibodies (mAbs) against interleukin 6 receptor (IL-6R), which have been suggested for treating COVID-19 patients. Our results revealed the therapeutic ability of these two immunomodulatory agents in a mouse model of SARS-CoV-2 acute lung injury by promoting anti-inflammatory and immune responses. These results suggest that AGE and SFN are promising candidates for the COVID-19 treatment.


Assuntos
Lesão Pulmonar Aguda , Enzima de Conversão de Angiotensina 2 , Anti-Inflamatórios , Tratamento Farmacológico da COVID-19 , COVID-19 , Modelos Animais de Doenças , Agentes de Imunomodulação , SARS-CoV-2 , Animais , Camundongos , Lesão Pulmonar Aguda/imunologia , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/etiologia , COVID-19/imunologia , SARS-CoV-2/imunologia , Agentes de Imunomodulação/farmacologia , Agentes de Imunomodulação/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/farmacologia , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/genética , Isotiocianatos/farmacologia , Isotiocianatos/uso terapêutico , Sulfóxidos , Humanos , Citocinas/metabolismo , Glicoproteína da Espícula de Coronavírus/imunologia , Pulmão/imunologia , Pulmão/patologia , Pulmão/virologia , Pulmão/efeitos dos fármacos , Masculino , Poli I-C , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico
18.
Zhongguo Zhong Yao Za Zhi ; 49(7): 1915-1923, 2024 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-38812204

RESUMO

This study aims to elucidate the therapeutic effect and mechanism of Jingfang Granules on acute lung injury, and to investigate the regulatory effect of Jingfang Granules on the metabolic disorders of endogenous metabolites in feces and the homeostasis of intestinal microbiota in acute lung injury, mice were randomly divided into a sham group, a model group, and a Jingfang Granules group. After modeling, the mice were continuously administered for 6 days. Using ultra-high performance liquid chromatography quadrupole/electrostatic field orbital trap high-resolution mass spectrometry(UHPLC-HESI-QE-Orbitrap-MS/MS) metabolomics technology and 16S rRNA high-throughput sequencing technology, changes in endogenous small molecule substances and gut microbiota in mouse intestines were determined, and potential biomarkers were identified. The results showed that Jingfang Granules can regulate 11 biomarkers, including L-glutamic acid, succinic acid, arachidonic acid, linoleic acid, linolenic acid, phenylalanine, sphingosine, 2-hydroxy-2-methyl butyric acid, pyruvate, tryptophan, and palmitic acid. Metabolic pathway analysis was conducted on these 11 biomarkers using the online software MetaboAnalyst, identifying potential major metabolic pathways. Among them, a total of 10 metabolic pathways are closely related to the treatment of acute lung injury with Jingfang Granules, including alanine, aspartate and glutamate metabolism, aminoacyl-tRNA biosynthesis, citrate cycle(TCA cycle), alyoxylate and dicarboxylate metabolism, arginine and proline metabolism, linoleic acid metabolism and linolenic acid metabolism, nitrogen metabolism, D-glutamine and D-gluta-matemetabolism, phenylalanine, tyrosine and tryptophan biosynthesis, phenylalanine metabolism. The results of gut microbiota showed significant differences in bacteria, mainly including Bacteroides, Akkermansia, Lachnospiraceae_NK4A136_group, Lachnochlostridium, and Klebsiella. Spearman analysis confirms that Akkermansia and Lachnospiraceae_NK4A136_group is a significant positive correlation between the abundance of succinic acid, arachidonic acid, linolenic acid, linoleic acid, butyric acid, and pyruvate in the group; Bacteroides, Klebsiella, Lachnochlostrium are significantly positively correlated with the abundance of L-glutamic acid, phenylalanine, and sphingosine. The above results indicate that the therapeutic effect of Jingfang Granules on acute lung injury is achieved by improving the imbalance of gut microbiota in mice with acute lung injury, balancing the metabolism of alanine, biosynthesis of aminoacyl tRNA, aspartic acid, glutamate, tricarboxylic acid cycle, biosynthesis of phenylalanine, tyrosine, tryptophan, and metabolism of linoleic acid.


Assuntos
Lesão Pulmonar Aguda , Medicamentos de Ervas Chinesas , Fezes , Microbioma Gastrointestinal , Metabolômica , Animais , Camundongos , Microbioma Gastrointestinal/efeitos dos fármacos , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/microbiologia , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/administração & dosagem , Masculino , Fezes/microbiologia , Fezes/química , Humanos , Cromatografia Líquida de Alta Pressão
19.
Zhongguo Zhong Yao Za Zhi ; 49(8): 2197-2209, 2024 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-38812235

RESUMO

This study aims to explore the potential mechanism of action in the intervention of acute lung injury(ALI) based on the blood entry components of Ganke Granules in rats and in conjunction with network pharmacology, molecular docking, and animal experimental validation. The blood entry components of Ganke Granules in rats were imported into the SwissTargetPrediction platform to predict drug targets, and ALI-related targets were collected from the disease database. Intersections were taken, and protein-protein interaction(PPI) networks were constructed to screen the core targets, followed by Gene Ontology(GO) functional and Kyoto encyclopedia of genes and gnomes(KEGG) pathway enrichment analyses. A "blood entry components-target-pathway-disease" network was constructed, and the core components for disease intervention based on their topological parameters were screened. Molecular docking was used to predict the binding ability of the core components to key targets. The key targets of Ganke Granules in the intervention of ALI were verified by the lipopolysaccharide(LPS)-induced ALI mouse model. Through PPI topological parameter analysis, the top six key targets of STAT3, SRC, HSP90AA1, MAPK3, HRAS, and MAPK1 related to ALI were obtained. GO functional analysis showed that it was mainly related to ERK1 and ERK2 cascade, inflammatory response, and response to LPS. KEGG analysis showed that the main enrichment pathways were MAPK, neutrophil extracellular trap(NET) formation, and so on. Six core components(schizantherin B, schisandrin, besigomsin, harpagoside, isotectorigenin, and trachelanthamine) were filtered out by the "blood entry components-target-pathway-disease" network based on the analysis of topological parameters. Molecular docking results showed that the six core components and Tectoridin with the highest content in the granules had a high affinity with the key targets of MAPK3, SRC, MAPK1, and STAT3. In vivo experiment results showed that compared with the model group, Ganke Granules could effectively alleviate LPS-induced histopathological injury in the lungs of mice and reduce the percentage of inflammatory infiltration. The total protein content, nitric oxide(NO) level, myeloperoxidase(MPO) content, tumor necrosis factor-α(TNF-α), gamma interferon(IFN-γ), interleukin-1ß(IL-1ß), interleukin-6(IL-6), vascular endothelial growth factor(VEGF), and chemokine(C-X-C motif) ligand 1(CXCL1) chemokines in bronchoalveolar lavage fluid(BALF) were decreased, and the expression levels of lymphocyte antigen 6G(Ly6G), citrullinated histones 3(Cit-H3), and phosphorylated proteins SRC, ERK1/2, and STAT3 in lung tissue were significantly down-regulated. In conclusion, Ganke Granules could effectively inhibit the inflammatory response of ALI induced by LPS, protect lung tissue, regulate the release of inflammatory factors, and inhibit neutrophil infiltration and NET formation, and the mechanism of action may be related to inhibiting the activation of SRC/ERK1/2/STAT3 signaling pathway.


Assuntos
Lesão Pulmonar Aguda , Medicamentos de Ervas Chinesas , Simulação de Acoplamento Molecular , Farmacologia em Rede , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Animais , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Camundongos , Ratos , Masculino , Mapas de Interação de Proteínas , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Ratos Sprague-Dawley , Humanos
20.
Eur J Med Chem ; 272: 116487, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38759452

RESUMO

Acute lung injury (ALI) and inflammatory bowel disease (IBD) are common inflammatory illnesses that seriously affect people's health. Herein, a series of 4-hydroxylcoumarin (4-HC) derivatives were designed and synthesized. The inhibitory effects of these compounds on LPS-induced interleukin-6 (IL-6) release from J774A.1 cells were then screened via ELISA assay, compound B8 showed 3 times more active than the lead compound 4-HC. The most active compound B8 had the IC50 values of 4.57 µM and 6.51 µM for IL-6 release on mouse cells J774A.1 and human cells THP-1, respectively. Furthermore, we also found that B8 could act on the MAPK pathway. Based on the target prediction results of computer virtual docking, kinase inhibitory assay was carried out, and it revealed that targeting IRAK1 was a key mechanism for B8 to exert anti-inflammatory activity. Moreover, B8 exerted a good therapeutic effect on the dextran sulfate sodium (DSS)-induced colitis model and liposaccharide (LPS)-induced ALI mouse models. The acute toxicity experiments indicated that high-dose B8 caused no adverse reactions in mice, confirming its safety in vivo. Additionally, the preliminary pharmacokinetic (PK) parameters of B8 in SD rats were also examined, revealing a bioavailability (F) of 28.72 %. In conclusion, B8 is a potential candidate of drug for the treatment of ALI and colitis.


Assuntos
4-Hidroxicumarinas , Lesão Pulmonar Aguda , Colite , Desenho de Fármacos , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/induzido quimicamente , Animais , Colite/tratamento farmacológico , Colite/induzido quimicamente , Camundongos , Humanos , Relação Estrutura-Atividade , 4-Hidroxicumarinas/farmacologia , 4-Hidroxicumarinas/química , 4-Hidroxicumarinas/síntese química , Estrutura Molecular , Sulfato de Dextrana , Masculino , Relação Dose-Resposta a Droga , Ratos , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/antagonistas & inibidores , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/síntese química , Anti-Inflamatórios/química , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/química , Interleucina-6/metabolismo , Interleucina-6/antagonistas & inibidores , Quinases Associadas a Receptores de Interleucina-1/antagonistas & inibidores , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Simulação de Acoplamento Molecular , Camundongos Endogâmicos C57BL , Linhagem Celular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA