Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.011
Filtrar
1.
J Pharmacol Sci ; 156(3): 188-197, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39313277

RESUMO

Acute lung injury (ALI) is closely related to high mortality in severe acute pancreatitis (SAP). This study unveils the therapeutic effect and mechanism of miR-217-5p on SAP-associated ALI. The miR-217-5p RNA expression was significantly up-regulated in lipopolysaccharide (LPS)-stimulated primary rat alveolar epithelial type II cells (AEC II) and sodium taurocholate-treated pancreas and lung in SAP rats. miR-217 inhibition protected AEC II from LPS-induced damage by inhibiting apoptosis and reducing the TNF-α, IL-6, and ROS levels. miR-217 inhibition suppressed apoptosis and alleviated mitochondrial damage through mitochondria-mediated apoptotic pathway in vitro. Sirt1 is a direct target of miR-217-5p. Dual-luciferase reporter assay confirmed the binding of miR-217-5p to Sirt1 mRNA 3'-UTR. The rescue experiment identified that the anti-apoptotic, anti-inflammatory, and anti-oxidative effects of miR-217 inhibition were mediated by Sirt1 in vitro. Emodin (EMO) protected AEC II from LPS-induced damage and alleviated pancreatic and lung tissue injuries. EMO exerted similar effects as miR-217 inhibition in vitro and in vivo. The effects of EMO were abolished by miR-217 overexpression. In conclusion, miR-217-5p inhibition exerts protective effects on SAP-ALI in vitro and in vivo by repressing apoptosis, inflammation, and oxidative stress through Sirt1 activation. EMO protects against lung injuries in SAP-associated ALI rats through miR-217-5p/Sirt1 axis.


Assuntos
Lesão Pulmonar Aguda , Apoptose , Emodina , MicroRNAs , Pancreatite , Ratos Sprague-Dawley , Sirtuína 1 , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Sirtuína 1/metabolismo , Sirtuína 1/genética , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/induzido quimicamente , Emodina/farmacologia , Emodina/uso terapêutico , Masculino , Pancreatite/tratamento farmacológico , Pancreatite/metabolismo , Pancreatite/genética , Pancreatite/induzido quimicamente , Apoptose/efeitos dos fármacos , Apoptose/genética , Lipopolissacarídeos/efeitos adversos , Ratos , Células Cultivadas , Doença Aguda , Modelos Animais de Doenças
2.
Can Respir J ; 2024: 1068326, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39268525

RESUMO

Sepsis is a systemic inflammatory reaction syndrome caused by infections. Acute lung injury (ALI) occurs first and most frequently in patients with sepsis. Gentiopicroside (GPS), which originates mostly from Gentiana, is classified as a secoiridoid glycosides. Terpenoid glycosides have various biological effects, including liver protection, blood glucose and cholesterol level management, and anti-inflammatory and antitumor effects. However, presently, the biochemical foundation and mechanism of the anti-inflammatory effects of GPS in sepsis-induced ALI have not been explained. In the present study, we established a rat model of sepsis ALI induced by cecal ligation and puncture. This enables us to observe the effects of GPS therapy, which significantly reduced the inflammatory response (TNF-α, IL-1ß, and IL-6), nitrogen stress, oxidative stress, and severity of ALI at both the whole animal and molecular levels. In addition, GPS ameliorates LPS-induced ALI via regulation of inflammatory response and cell proptosis in BEAS-2B. This study provides a theoretical basis for treating sepsis-induced ALI with GPS.


Assuntos
Lesão Pulmonar Aguda , Glucosídeos Iridoides , Sepse , Animais , Sepse/complicações , Sepse/tratamento farmacológico , Glucosídeos Iridoides/farmacologia , Glucosídeos Iridoides/uso terapêutico , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/tratamento farmacológico , Ratos , Masculino , Ratos Sprague-Dawley , Modelos Animais de Doenças , Estresse Oxidativo/efeitos dos fármacos , Inflamação/tratamento farmacológico
3.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 36(7): 717-722, 2024 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-39223886

RESUMO

OBJECTIVE: To investigate the protective effects of an anti-inflammatory mixture on acute lung injury (ALI) induced by sepsis in rats, as well as its possible mechanisms. METHODS: A total of 40 Sprague-Dawley (SD) rats were randomly divided into the sham group, septic ALI model group (model group), 3-methyladenine (3-MA) control group, and anti-inflammatory mixture pretreatment group, with 10 rats in each group. Cecal ligation and perforation (CLP) was performed to reproduce a septic ALI model. The rats in the sham group only underwent opening and closing the abdomen without perforation and ligation. Both groups were given saline gavage and intraperitoneal injection for 3 consecutive days before surgery. The 3-MA control group was given intraperitoneal injection of saline and autophagy inhibitor 3-MA 15 mg/kg for 3 consecutive days before modeling. The anti-inflammatory mixture pretreatment group was given 8.8 mL/kg of anti-inflammatory mixture by gavage [the composition of anti-inflammatory mixture: rhubarb 15 g (after the next), coptis chinensis 15 g, baical skullcap root 12 g, magnoliae cortex 12 g, dahurian patrinia herb 30 g] and saline intraperitoneal injection for 3 consecutive days before modeling. The rats in each group were anesthetized 24 hours after surgery and died due to abdominal aortic blood collection. Enzyme-linked immunosorbent assay (ELISA) was used to detect the levels of serum inflammatory cytokines interleukins (IL-1ß and IL-6). Lung tissue was taken and then the bronchoalveolar lavage fluid (BALF) was collected, and the levels of IL-1ß and IL-6 were detected by ELISA. Lung wet/dry weight (W/D) ratio was measured. After hematoxylin-eosin (HE) staining, the histopathological changes of the lungs were observed under light microscopy. Western blotting was used to detect the expression of autophagy markers microtubule-associated protein 1 light chain 3- II/I (LC3- II/I) and Beclin-1 protein in lung tissue. Autophagosomes in lung tissue were observed with transmission electron microscopy. RESULTS: Compared with the sham group, the rats in the model group exhibited severe destruction of lung tissue structure, with significant infiltration of inflammatory cells, the lung W/D ratio and the levels of IL-1ß and IL-6 in serum and BALF were significantly increased, the expressions of LC3- II/I and Beclin-1 protein were down-regulated, the autophagosomes were more. The rats in the 3-MA control group exhibited more severe lung tissue injury as compared with the model group, the lung W/D ratio and the levels of inflammatory cytokines in serum and BALF were further increased, the expressions of LC3- II/I and Beclin-1 protein still showed a decrease tendency as compared with the sham group, and the autophagosomes were less than that in the model group. Compared with the model group, the anti-inflammatory mixture pretreatment group showed milder lung tissue injury with a minimal amount of inflammatory cell infiltration, the lung W/D ratio was significantly reduced (7.07±1.02 vs. 11.33±1.85, P < 0.05), the levels of IL-1ß and IL-6 in both serum and BALF were significantly decreased [IL-1ß (ng/L): 26.04±3.86 vs. 40.83±5.46 in serum, 17.75±2.02 vs. 26.86±4.32 in BALF; IL-6 (ng/L): 91.28±10.15 vs. 129.44±13.05 in serum, 76.06±7.51 vs. 120.91±7.47 in BALF, all P < 0.05], and the ratio of LC3- II/I and Beclin-1 protein expression were significantly increased [LC3- II/I ratio: 1.23±0.02 vs. 0.60±0.02, Beclin-1 protein (Beclin-1/GAPDH): 2.37±0.33 vs. 0.62±0.05, both P < 0.05]. Furthermore, an increase in the number of autophagosomes was observed. CONCLUSIONS: The anti-inflammatory mixture improves lung injury in rats with sepsis induced by CLP and reduce inflammation levels, potentially through upregulation of Beclin-1-mediated autophagy.


Assuntos
Lesão Pulmonar Aguda , Autofagia , Proteína Beclina-1 , Ratos Sprague-Dawley , Sepse , Animais , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/metabolismo , Ratos , Sepse/complicações , Sepse/metabolismo , Sepse/tratamento farmacológico , Autofagia/efeitos dos fármacos , Masculino , Proteína Beclina-1/metabolismo , Anti-Inflamatórios/farmacologia , Proteínas Reguladoras de Apoptose/metabolismo , Interleucina-1beta/metabolismo , Pulmão/patologia , Pulmão/metabolismo , Interleucina-6/metabolismo , Modelos Animais de Doenças
4.
J Mol Cell Cardiol ; 195: 55-67, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39089571

RESUMO

Acute lung injury (ALI) including acute respiratory distress syndrome (ARDS) is a major complication and increase the mortality of patients with cardiac surgery. We previously found that the protein cargoes enriched in circulating extracellular vesicles (EVs) are closely associated with cardiopulmonary disease. We aimed to evaluate the implication of EVs on cardiac surgery-associated ALI/ARDS. The correlations between "oncoprotein-induced transcript 3 protein (OIT3) positive" circulating EVs and postoperative ARDS were assessed. The effects of OIT3-overexpressed EVs on the cardiopulmonary bypass (CPB) -induced ALI in vivo and inflammation of human bronchial epithelial cells (BEAS-2B) were detected. OIT3 enriched in circulating EVs is reduced after cardiac surgery with CPB, especially with postoperative ARDS. The "OIT3 positive" EVs negatively correlate with lung edema, hypoxemia and CPB time. The OIT3-overexpressed EVs can be absorbed by pulmonary epithelial cells and OIT3 transferred by EVs triggered K48- and K63-linked polyubiquitination to inactivate NOD-like receptor protein 3 (NLRP3) inflammasome, and restrains pro-inflammatory cytokines releasing and immune cells infiltration in lung tissues, contributing to the alleviation of CPB-induced ALI. Overexpression of OIT3 in human bronchial epithelial cells have similar results. OIT3 promotes the E3 ligase Cbl proto-oncogene B associated with NLRP3 to induce the ubiquitination of NLRP3. Immunofluorescence tests reveal that OIT3 is reduced in the generation from the liver sinusoids endothelial cells (LSECs) and secretion in liver-derived EVs after CPB. In conclusion, OIT3 enriched in EVs is a promising biomarker of postoperative ARDS and a therapeutic target for ALI after cardiac surgery.


Assuntos
Lesão Pulmonar Aguda , Vesículas Extracelulares , Proteína 3 que Contém Domínio de Pirina da Família NLR , Ubiquitinação , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Vesículas Extracelulares/metabolismo , Humanos , Animais , Masculino , Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Camundongos , Inflamassomos/metabolismo , Proto-Oncogene Mas , Ponte Cardiopulmonar/efeitos adversos , Células Epiteliais/metabolismo , Síndrome do Desconforto Respiratório/metabolismo , Síndrome do Desconforto Respiratório/etiologia , Pulmão/metabolismo , Pulmão/patologia , Peptídeos e Proteínas de Sinalização Intracelular
5.
Acta Histochem ; 126(5-7): 152189, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39197328

RESUMO

Our previous study has shown that exosomes derived from human umbilical cord mesenchymal stem cells (hUCMSCs-exo) alleviated burn-induced acute lung injury (ALI). In this study, we explored a novel mechanism by which hUCMSCs-exo contributed to the inhibition of burn-induced ALI. The ALI rat model with severe burn was established for the in vivo experiments, and rats PMVECs were stimulated with the serum from burn-induced ALI rats for the in vitro experiments. The pathological changes of lung tissues were evaluated by HE staining; the cell viability was measured using CCK-8; the iron level and Fe2+ concentration were assessed using Iron Assay Kit and Fe2+ fluorescence detection probe; the mRNA expression of SLC7A11 and GPX4 were measured by qRT-PCR; the protein levels of SLC7A11, GPX4, Nrf2 and HO-1 were detected by western blot. Both the in vivo and in vitro experiments revealed that ferroptosis was significantly induced in burn-induced ALI, which as verified by increased iron level and Fe2+ concentration, and decreased SLC7A11 and GPX4 mRNA and protein levels. Furthermore, both hUCMSCs-exo and Fer-1 (the inhibitor of ferroptosis) alleviated lung inflammation and up-regulated protein levels of Nrf2 and HO-1 in the lung tissues of burn-induced ALI rats. These results suggested that hUCMSCs-exo exhibited a protective role against burn-induced ALI by inhibiting ferroptosis, partly owing to the activation of Nrf2/HO-1 pathway, thus providing a novel therapeutic strategy for burn-induced ALI.


Assuntos
Lesão Pulmonar Aguda , Queimaduras , Exossomos , Ferroptose , Células-Tronco Mesenquimais , Ratos Sprague-Dawley , Cordão Umbilical , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/metabolismo , Animais , Exossomos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Humanos , Queimaduras/complicações , Queimaduras/metabolismo , Ratos , Cordão Umbilical/citologia , Masculino , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Sistema y+ de Transporte de Aminoácidos/metabolismo , Sistema y+ de Transporte de Aminoácidos/genética , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Ferro/metabolismo
6.
PLoS One ; 19(8): e0308557, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39178201

RESUMO

OBJECTIVES: To investigate the effect of dexamethasone (DXM) on acute lung and kidney injury with sepsis and its possible mechanism. METHODS: Control (NC), lipopolysaccharide (LPS) and lipopolysaccharide + dexamethasone (LPS+DXM) treated groups were established by random assignment of 72 Wistar rats. The NC rats were injected with physiological saline, while the LPS group was injected with LPS (5 mg/kg) and LPS+DXM group was injected with LPS(5 mg/kg) first and followed by DXM (1 mg/kg). Serum tumor necrosis factor-α (TNF-α) and serum macrophage inflammatory protein 1α (MIP-1α) were measured by ELISA. Lung wet/dry weight ratio, serum creatinine(SCR) and blood urea nitrogen(BUN) were determined at various time points. Hematoxylin Eosin staining (HE) for pathological changes in the lung and kidney. Radioimmunoassay was used to detect the levels of angiotensin II (Ang II) in plasma, lung and kidney tissues. Immunohistochemistry and western blot (WB) were used to detect angiotensin II receptor type 1 (AT1R) protein and angiotensin II receptor type 2 (AT2R) protein in lung and kidney tissues. The level of nitric oxide (NO) in serum, lung and kidney were detected using nitrate reductase method. RESULTS: Compared with control group, serum TNF-α, MIP-1α, SCR, BUN, lung W/D, Ang II level in plasma, lung and kidney, lung and kidney AT2R protein, NO level in serum, lung and kidney were significantly elevated(P<0.05) and pathological damage of lung and kidney tissues were showed in LPS group rats (P<0.05), whereas DXM down-regulated the above indexes and alleviate pathological damage of lung and kidney tissues. However, the expression of the lung and kidney AT1R protein was opposite to the above results. CONCLUSIONS: Sepsis can cause acute lung and kidney injury and changes RAAS components in circulating, lung and renal. DXM can improve acute lung and kidney injury in septic rats, and the mechanism may be related to the down-regulation of inflammatory factors, AngII, AT2R, NO and up-regulation of AT1R expression by DXM.


Assuntos
Angiotensina II , Dexametasona , Ratos Wistar , Sepse , Animais , Sepse/complicações , Sepse/tratamento farmacológico , Sepse/metabolismo , Dexametasona/farmacologia , Ratos , Masculino , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/sangue , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/patologia , Injúria Renal Aguda/prevenção & controle , Pulmão/patologia , Pulmão/metabolismo , Pulmão/efeitos dos fármacos , Lipopolissacarídeos , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/prevenção & controle , Rim/patologia , Rim/efeitos dos fármacos , Rim/metabolismo , Receptor Tipo 1 de Angiotensina/metabolismo , Óxido Nítrico/metabolismo , Receptor Tipo 2 de Angiotensina/metabolismo , Nitrogênio da Ureia Sanguínea
7.
Eur J Pharmacol ; 980: 176817, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39089462

RESUMO

Infection-related lipopolysaccharide (LPS) release causes cytokine storm and acute lung injury. Emerging data show that the interleukin 6 (IL-6) inhibitor tocilizumab can improve lung damage in patients with sepsis. This study aimed to investigate the therapeutic effect of tocilizumab on acute lung injury in cirrhotic rats. Biliary cirrhosis was induced in Sprague-Dawley rats with common bile duct ligation (BDL). Sham-operated rats served as surgical controls. Tocilizumab was administered on post-operative day 21, and LPS was injected intraperitoneally on day 29. Three hours after LPS injection, hemodynamic parameters, biochemistry data, and arterial blood gas analysis were evaluated, along with measurements of IL-6 and tumor necrosis factor-α (TNF-α). Liver and lung histology was examined, and protein levels were analyzed. LPS administration reduced portal pressure, portal venous flow and cardiac index in the BDL rats. In addition, LPS administration induced acute lung injury, hypoxia and elevated TNF-α and IL-6 levels. Pre-treatment with tocilizumab did not affect hemodynamic and biochemistry data, but it ameliorated lung injury and decreased TNF-α, IL-6, and CD68-positive macrophage infiltration. Moreover, tocilizumab administration improved hypoxia and gas exchange in the BDL rats, and downregulated hepatic and pulmonary inflammatory protein expression. In conclusion, LPS administration induced acute lung injury in biliary cirrhotic rats. Pre-treatment with tocilizumab reduces lung damage and hypoxia, possibly by downregulating inflammatory proteins and reducing IL-6, TNF-α and CD68-positive macrophage recruitment in the lung.


Assuntos
Lesão Pulmonar Aguda , Anticorpos Monoclonais Humanizados , Interleucina-6 , Lipopolissacarídeos , Cirrose Hepática Biliar , Ratos Sprague-Dawley , Animais , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/etiologia , Masculino , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Ratos , Interleucina-6/metabolismo , Cirrose Hepática Biliar/tratamento farmacológico , Cirrose Hepática Biliar/complicações , Cirrose Hepática Biliar/patologia , Pulmão/patologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Fígado/efeitos dos fármacos , Fígado/patologia , Fígado/metabolismo , Hemodinâmica/efeitos dos fármacos
8.
Int Immunopharmacol ; 141: 112907, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39159557

RESUMO

Sepsis, characterized by high mortality rates, causes over 50 % of acute lung injury (ALI) cases, primarily due to the heightened susceptibility of the lungs during this condition. Suppression of the excessive inflammatory response is critical for improving the survival of patients with sepsis; nevertheless, no specific anti-sepsis drugs exist. Huperzine A (HupA) exhibits neuroprotective and anti-inflammatory properties; however, its underlying mechanisms and effects on sepsis-induced ALI have yet to be elucidated. In this study, we demonstrated the potential of HupA for treating sepsis and explored its mechanism of action. To investigate the in vivo impacts of HupA, a murine model of sepsis was induced through cecal ligation and puncture (CLP) in both wild-type (WT) and α7 nicotinic acetylcholine receptor (α7nAChR) knockout mice. Our results showed that HupA ameliorates sepsis-induced acute lung injury by activating the α7nAChR. We used the CLP sepsis model in wild-type and α7nAChR -/- mice and found that HupA significantly increased the survival rate through α7nAChR, reduced the pro-inflammatory cytokine levels and oxidative stress, ameliorated histopathological lung injury, altered the circulating immune cell composition, regulated gut microbiota, and promoted short-chain fatty acid production through α7nAChR in vivo. Additionally, HupA inhibited Toll-like receptor NF-κB signaling by upregulating the α7nAChR/protein kinase B/glycogen synthase kinase-3 pathways. Our data elucidate HupA's mechanism of action and support a "new use for an old drug" in treating sepsis. Our findings serve as a basis for further in vivo studies of this drug, followed by application to humans. Therefore, the findings have the potential to benefit patients with sepsis.


Assuntos
Lesão Pulmonar Aguda , Alcaloides , Camundongos Endogâmicos C57BL , Camundongos Knockout , Estresse Oxidativo , Sepse , Sesquiterpenos , Receptor Nicotínico de Acetilcolina alfa7 , Animais , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/genética , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/patologia , Sepse/tratamento farmacológico , Sepse/complicações , Sepse/imunologia , Estresse Oxidativo/efeitos dos fármacos , Alcaloides/uso terapêutico , Alcaloides/farmacologia , Camundongos , Masculino , Sesquiterpenos/uso terapêutico , Sesquiterpenos/farmacologia , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/farmacologia , Citocinas/metabolismo , Modelos Animais de Doenças , Humanos , Pulmão/patologia , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Microbioma Gastrointestinal/efeitos dos fármacos , Inflamação/tratamento farmacológico
10.
Sci Rep ; 14(1): 16071, 2024 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992150

RESUMO

Sepsis-induced acute lung injury (SALI) poses a significant threat with high incidence and mortality rates. Ginsenoside Rg1 (GRg1), derived from Ginseng in traditional Chinese medicine, has been found to reduce inflammation and protect lung epithelial cells against tissue damage. However, the specific roles and mechanisms by which GRg1 mitigates SALI have yet to be fully elucidated. In this context, we employed a relevant SALI mouse model, alongside network pharmacology, molecular docking, and molecular dynamics simulation to pinpoint GRg1's action targets, complemented by in vitro assays to explore the underlying mechanisms. Our research shows that GRg1 alleviates CLP-induced SALI, decreasing lung tissue damage and levels of serum proinflammatory factor IL-6, TNF-α, and IL-1ß, also enhancing the survival rate of CLP mice. A total of 116 common targets between GRg1 and ALI, with specific core targets including AKT1, VEGFA, SRC, IGF1, ESR1, STAT3, and ALB. Further in vitro experiments assessed GRg1's intervention effects on MLE-12 cells exposed to LPS, with qRT-PCR analysis and molecular dynamics simulations confirming AKT1 as the key target with the favorable binding activity for GRg1. Western blot results indicated that GRg1 increased the Bcl-2/Bax protein expression ratio to reduce apoptosis and decreased the high expression of cleaved caspase-3 in LPS-induced MLE-12 cells. More results showed significant increases in the phosphorylation of PI3K and AKT1. Flow cytometric analysis using PI and Annexin-V assays further verified that GRg1 decreased the apoptosis rate in LPS-stimulated MLE-12 cells (from 14.85 to 6.54%, p < 0.05). The employment of the AKT1 inhibitor LY294002 confirmed these trends, indicating that AKT1's inhibition negates GRg1's protective effects on LPS-stimulated MLE-12 cells. In conclusion, our research highlights GRg1's potential as an effective adjunct therapy for SALI, primarily by inhibiting apoptosis in alveolar epithelial cells and reducing pro-inflammatory cytokine secretion, thus significantly enhancing the survival rates of CLP mice. These beneficial effects are mediated through targeting AKT1 and activating the PI3K-AKT pathway.


Assuntos
Lesão Pulmonar Aguda , Ginsenosídeos , Simulação de Dinâmica Molecular , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Sepse , Transdução de Sinais , Ginsenosídeos/farmacologia , Ginsenosídeos/química , Ginsenosídeos/uso terapêutico , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Camundongos , Sepse/tratamento farmacológico , Sepse/metabolismo , Sepse/complicações , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/etiologia , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Masculino , Simulação de Acoplamento Molecular , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Apoptose/efeitos dos fármacos , Linhagem Celular , Lipopolissacarídeos
11.
Immun Inflamm Dis ; 12(7): e1351, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39023414

RESUMO

BACKGROUND: Severe acute pancreatitis (SAP) is a potentially lethal inflammatory pancreatitis condition that is usually linked to multiple organ failure. When it comes to SAP, the lung is the main organ that is frequently involved. Many SAP patients experience respiratory failure following an acute lung injury (ALI). Clinicians provide insufficient care for compounded ALI since the underlying pathophysiology is unknown. The mortality rate of SAP patients is severely impacted by it. OBJECTIVE: The study aims to provide insight into immune cells, specifically their roles and modifications during SAP and ALI, through a comprehensive literature review. The emphasis is on immune cells as a therapeutic approach for treating SAP and ALI. FINDINGS: Immune cells play an important role in the complicated pathophysiology ofSAP and ALI by maintaining the right balance of pro- and anti-inflammatory responses. Immunomodulatory drugs now in the market have low thepeutic efficacy because they selectively target one immune cell while ignoring immune cell interactions. Accurate management of dysregulated immune responses is necessary. A critical initial step is precisely characterizing the activity of the immune cells during SAP and ALI. CONCLUSION: Given the increasing incidence of SAP, immunotherapy is emerging as a potential treatment option for these patients. Interactions among immune cells improve our understanding of the intricacy of concurrent ALI in SAP patients. Acquiring expertise in these domains will stimulate the development of innovative immunomodulation therapies that will improve the outlook for patients with SAP and ALI.


Assuntos
Lesão Pulmonar Aguda , Pancreatite , Humanos , Lesão Pulmonar Aguda/imunologia , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/etiologia , Pancreatite/imunologia , Pancreatite/terapia , Pancreatite/patologia , Pancreatite/complicações , Pâncreas/imunologia , Pâncreas/patologia , Pulmão/imunologia , Pulmão/patologia , Animais , Imunoterapia/métodos
12.
Int J Mol Sci ; 25(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39000242

RESUMO

Acute lung injury (ALI) is a condition associated with acute respiratory failure, resulting in significant morbidity and mortality. It involves cellular changes such as disruption of the alveolar-capillary membrane, excessive neutrophil migration, and release of inflammatory mediators. Broncho-Vaxom® (BV), a lyophilized product containing cell membrane components derived from eight bacteria commonly found in the respiratory tract, is known for its potential to reduce viral and bacterial lung infections. However, the specific effect of BV on ALI has not been clearly defined. This study explored the preventive effects of BV and its underlying mechanisms in a lipopolysaccharide (LPS)-induced ALI mouse model. Oral BV (1 mg/kg) gavage was administered one hour before the intratracheal injection of LPS to evaluate its preventive effect on the ALI model. The pre-administration of BV significantly mitigates inflammatory parameters, including the production of inflammatory mediators, macrophage infiltration, and NF-κB activation in lung tissue, and the increase in inflammatory cells in bronchoalveolar lavage fluid (BALF). Moreover, BV (3 µg/mL) pretreatment reduced the expression of M1 macrophage markers, interleukins (IL-1ß, IL-6), tumor necrosis factor α, and cyclooxygenase-2, which are activated by LPS, in both mouse alveolar macrophage MH-S cells and human macrophage THP-1 cells. These findings showed that BV exhibits anti-inflammatory effects by suppressing inflammatory mediators through the NF-κB pathway, suggesting its potential to attenuate bronchial and pulmonary inflammation.


Assuntos
Lesão Pulmonar Aguda , Modelos Animais de Doenças , Lipopolissacarídeos , Animais , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/tratamento farmacológico , Camundongos , Humanos , Inflamação/patologia , Inflamação/metabolismo , Inflamação/tratamento farmacológico , Masculino , Extratos Celulares/farmacologia , Extratos Celulares/uso terapêutico , NF-kappa B/metabolismo , Líquido da Lavagem Broncoalveolar , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/efeitos dos fármacos , Citocinas/metabolismo , Mediadores da Inflamação/metabolismo , Pulmão/patologia , Pulmão/metabolismo , Pulmão/efeitos dos fármacos , Lisados Bacterianos
13.
Cell Mol Life Sci ; 81(1): 325, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39079969

RESUMO

Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection. The inflammatory cytokine storm causes systemic organ damage, especially acute lung injury in sepsis. In this study, we found that the expression of S-phase kinase-associated protein 2 (Skp2) was significantly decreased in sepsis-induced acute lung injury (ALI). Sepsis activated the MEK/ERK pathway and inhibited Skp2 expression in the pulmonary epithelium, resulting in a reduction of K48 ubiquitination of solute carrier family 3 member 2 (SLC3A2), thereby impairing its membrane localization and cystine/glutamate exchange function. Consequently, the dysregulated intracellular redox reactions induced ferroptosis in pulmonary epithelial cells, leading to lung injury. Finally, we demonstrated that intravenous administration of Skp2 mRNA-encapsulating lipid nanoparticles (LNPs) inhibited ferroptosis in the pulmonary epithelium and alleviated lung injury in septic mice. Taken together, these data provide an innovative understanding of the underlying mechanisms of sepsis-induced ALI and a promising therapeutic strategy for sepsis.


Assuntos
Lesão Pulmonar Aguda , Ferroptose , Camundongos Endogâmicos C57BL , Proteínas Quinases Associadas a Fase S , Sepse , Ubiquitinação , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/etiologia , Sepse/metabolismo , Sepse/complicações , Sepse/patologia , Animais , Camundongos , Humanos , Masculino , Proteínas Quinases Associadas a Fase S/metabolismo , Proteínas Quinases Associadas a Fase S/genética , Pulmão/patologia , Pulmão/metabolismo , Sistema y+ de Transporte de Aminoácidos/metabolismo , Sistema y+ de Transporte de Aminoácidos/genética
14.
Pulm Pharmacol Ther ; 86: 102312, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38906321

RESUMO

Acute lung injury (ALI) frequently occurs after video-assisted thoracoscopic surgery (VATS). Ferroptosis is implicated in several lung diseases. Therefore, the disparate effects and underlying mechanisms of the two commonly used anesthetics (sevoflurane (Sev) and propofol) on VATS-induced ALI need to be clarified. In the present study, enrolled patients were randomly allocated to receive Sev (group S) or propofol anesthesia (group P). Intraoperative oxygenation, morphology of the lung tissue, expression of ZO-1, tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), superoxide dismutase (SOD), glutathione (GSH), Fe2+, glutathione peroxidase 4 (GPX4), and phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/nuclear factor erythroid-2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway in the lung tissue as well as the expression of TNF-α and IL-6 in plasma were measured. Postoperative complications were recorded. Of the 85 initially screened patients scheduled for VATS, 62 were enrolled in either group S (n = 32) or P (n = 30). Compared with propofol, Sev substantially (1) improved intraoperative oxygenation; (2) relieved histopathological lung injury; (3) increased ZO-1 protein expression; (4) decreased the levels of TNF-α and IL-6 in both the lung tissue and plasma; (5) increased the contents of GSH and SOD but decreased Fe2+ concentration; (6) upregulated the protein expression of p-AKT, Nrf2, HO-1, and GPX4. No significant differences in the occurrence of postoperative outcomes were observed between both groups. In summary, Sev treatment, in comparison to propofol anesthesia, may suppress local lung and systemic inflammatory responses by activating the PI3K/Akt/Nrf2/HO-1 pathway and inhibiting ferroptosis. This cascade of effects contributes to the maintenance of pulmonary epithelial barrier permeability, alleviation of pulmonary injury, and enhancement of intraoperative oxygenation in patients undergoing VATS.


Assuntos
Lesão Pulmonar Aguda , Ferroptose , Propofol , Sevoflurano , Cirurgia Torácica Vídeoassistida , Humanos , Sevoflurano/farmacologia , Sevoflurano/administração & dosagem , Lesão Pulmonar Aguda/prevenção & controle , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/etiologia , Masculino , Feminino , Ferroptose/efeitos dos fármacos , Pessoa de Meia-Idade , Cirurgia Torácica Vídeoassistida/métodos , Propofol/farmacologia , Propofol/administração & dosagem , Anestésicos Inalatórios/farmacologia , Idoso , Complicações Pós-Operatórias/prevenção & controle , Adulto , Fator 2 Relacionado a NF-E2/metabolismo , Anestésicos Intravenosos/farmacologia , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pulmão/metabolismo
15.
Medicina (B Aires) ; 84(3): 560-563, 2024.
Artigo em Espanhol | MEDLINE | ID: mdl-38907974

RESUMO

Vaping is the practice of inhaling an aerosol created by heating a liquid with an electronic cigarette. These aerosols contain toxic, carcinogenic compounds and nicotine, an addictive substance. In Argentina, the commercialization of electronic cigarettes is prohibited. Acute lung injury associated with vaping (EVALI) is an acute respiratory disease that can be life threatening. An 18-year-old male patient, smoker, consulted for shortness of breath and fever. He presented with hypoxemic respiratory failure, and leukocytosis. The patient reported use of electronic cigarettes. Chest computed tomography (CT) showed extensive areas of ground glass opacities with areas of consolidation with air bronchogram. Antibiotic treatment was started and a fibrobronchoscopy was performed, which showed hematic debris, without endoluminal lesions. A diagnosis of EVALI was done and high doses systemic corticosteroids were prescribed. The patient evolved favorably, hewas discharged 48 hours after the end of treatment. In the control ambulatory CT was observed an improvement of the lesions. EVALI is an exclusion diagnosis, so it is necessary to rule out infectious diseases and pulmonary inflammatory processes. There are different scores that describe the probability of EVALI. The Centers for Disease Control and Prevention (CDC), developed in 2019 a definition of confirmed case based on vape exposure, imaging, clinical presentation and history. In 2019 was first reported an EVALI in Argentina. It is important to know the criteria for a confirmed case to initiate accurate and early treatment, considering the exponential increase in electronic cigarette use, mainly in the young population.


El vapeo es la práctica de inhalar un aerosol creado al calentar un líquido con cigarrillo electrónico. Estos aerosoles contienen tóxicos, compuestos cancerígenos y nicotina, sustancia adictiva. En nuestro país está prohibida la comercialización del cigarrillo electrónico. La lesión pulmonar aguda asociada al vapeo (EVALI) es una enfermedad respiratoria aguda potencialmente mortal. Se presenta el caso de un varón de 18 años, tabaquista, que consultó por falta de aire y fiebre. Presentaba insuficiencia respiratoria hipoxémica y leucocitosis, refiriendo reciente inicio de utilización de cigarrillo electrónico. En la tomografía computarizada de tórax (TC) se observaban extensas áreas en "vidrio esmerilado" bilaterales y áreas de consolidación con broncograma aéreo. Se inició tratamiento antibiótico y se realizó una fibrobroncoscopia que mostró restos hemáticos sin lesiones endoluminales. Se interpretó como EVALI y se indicaron corticoides sistémicos. El paciente evolucionó favorablemente y egresó a las 48 h de finalizado el tratamiento. En TC de control se observó mejoría de las lesiones. El diagnóstico de EVALI es de exclusión. Existen diferentes scores que describen la probabilidad de un EVALI. Los Centers for Disease Control and Prevention (CDC), propusieron en 2019 una definición de caso confirmado de EVALI basado en la exposición al vapeo, las imágenes, la presentación clínica y los antecedentes. La primera notificación de un caso de EVALI en la Argentina fue en el año 2019. Es importante conocer los criterios diagnósticos para poder iniciar un tratamiento preciso y precoz, considerando el aumento exponencial del uso de cigarrillo electrónico, principalmente en la población joven.


Assuntos
Lesão Pulmonar Aguda , Vaping , Humanos , Masculino , Vaping/efeitos adversos , Adolescente , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Sistemas Eletrônicos de Liberação de Nicotina , Argentina
16.
J Toxicol Sci ; 49(7): 289-299, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38945840

RESUMO

BACKGROUND: Endothelial barrier dysfunction is critical for the pathogenesis of sepsis-induced acute lung injury (ALI). Lipopolysaccharide (LPS)-stimulated human pulmonary microvascular endothelial cells (HPMECs) are widely used as the cell model of sepsis-associated ALI for exploration of endothelial barrier dysfunction. Dickkopf (DKK) family proteins were reported to mediate endothelial functions in various diseases. The present study explored the effect of Dickkopf-3 (DKK3) on endothelial barrier permeability, angiogenesis, and tight junctions in LPS-stimulated HPMECs. METHODS: RT-qPCR was required for detecting DKK3 and miR-98-3p expression. The angiogenesis of HPMECs was evaluated by tube formation assays. Monolayer permeability of HPMECs was examined by Transwell rhodamine assays. The protein expression of DKK3 and tight junctions in HPMECs was measured via western blotting. Luciferase reporter assay was used to verify the interaction between miR-98-3p and DKK3. RESULTS: LPS treatment inhibited angiogenetic ability while increasing the permeability of HPMECs. DKK3 expression was upregulated while miR-98-3p level was reduced in LPS-treated HPMECs. DKK3 knockdown alleviated HPMEC injury triggered by LPS stimulation. MiR-98-3p targeted DKK3 in HPMECs. Overexpression of miR-98-3p protects HPMECs from the LPS-induced endothelial barrier dysfunction, and the protective effect was reversed by DKK3 overexpression. CONCLUSIONS: MiR-98-3p ameliorates LPS-evoked pulmonary microvascular endothelial barrier dysfunction in sepsis-associated ALI by targeting DKK3.


Assuntos
Lesão Pulmonar Aguda , Proteínas Adaptadoras de Transdução de Sinal , Células Endoteliais , Lipopolissacarídeos , MicroRNAs , Sepse , MicroRNAs/genética , MicroRNAs/metabolismo , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/metabolismo , Humanos , Sepse/complicações , Sepse/metabolismo , Células Endoteliais/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Pulmão/irrigação sanguínea , Células Cultivadas , Junções Íntimas/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Permeabilidade Capilar/efeitos dos fármacos
17.
Poult Sci ; 103(7): 103866, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38833957

RESUMO

Avian pathogenic Escherichia coli (APEC) is the causative agent of chicken colibacillosis. Paeoniflorin, a natural ingredient extracted from Paeonia lactiflora, has a variety of pharmacological effects including anti-inflammatory and immunomodulatory. However, its effects and mechanism in APEC-induced acute lung injury (ALI) in chicken is not clear. The aim of this study was to investigate the protective effect of paeoniflorin on APEC-induced ALI and its possible mechanism. Paeoniflorin (25, 50, and 100 mg/kg) was administered by gavage for 5 d starting at 9 d of age and the chicken were infected with APEC by intraperitoneal injection at 12 d of age. The tissues were collected after APEC infection for 36 h for analysis. The results showed that paeoniflorin significantly alleviated the symptoms, increased the survival rate and body weight gain of APEC-infected chicken, and improved the histopathological damages, and reduced APEC loads in lung tissues. In addition, paeoniflorin restored the gene expression of ZO-1, Occludin and Claudin-3 during APEC infection. Moreover, paeoniflorin pretreatment significantly affected the endocannabinoid system (ECs) by increasing DAGL, decreasing MAGL, increasing secretion of 2-AG. Then, paeoniflorin significantly decreased the secretion of IL-1ß, IL-6 and TNF-α in lung tissues, and decreased the mRNA expression of CXCL8, CXCL12, CCL1, CCL5, and CCL17. In addition, paeoniflorin significantly reduced the phosphorylation levels of PI3K, AKT, P65, and IκB. In summary, we found that paeoniflorin inhibited APEC-induced ALI, and its mechanism may be through affecting ECs and inhibiting the activation of PI3K/AKT and NF-κB signaling pathways, which provides a new idea for the prevention and treatment of chicken colibacillosis.


Assuntos
Lesão Pulmonar Aguda , Galinhas , Infecções por Escherichia coli , Glucosídeos , Monoterpenos , NF-kappa B , Fosfatidilinositol 3-Quinases , Doenças das Aves Domésticas , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Animais , Lesão Pulmonar Aguda/prevenção & controle , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/veterinária , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Glucosídeos/farmacologia , Glucosídeos/administração & dosagem , Monoterpenos/farmacologia , Monoterpenos/administração & dosagem , Doenças das Aves Domésticas/prevenção & controle , Doenças das Aves Domésticas/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , NF-kappa B/metabolismo , NF-kappa B/genética , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/tratamento farmacológico , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/genética , Proteínas Aviárias/metabolismo , Proteínas Aviárias/genética , Relação Dose-Resposta a Droga , Escherichia coli/efeitos dos fármacos
18.
Immunobiology ; 229(4): 152823, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38861873

RESUMO

Acute lung injury caused by severe malaria (SM) is triggered by a dysregulated immune response towards the infection with Plasmodium parasites. Postmortem analysis of human lungs shows diffuse alveolar damage (DAD), the presence of CD8 lymphocytes, neutrophils, and increased expression of Intercellular Adhesion Molecule 1 (ICAM-1). P. berghei ANKA (PbA) infection in C57BL/6 mice reproduces many SM features, including acute lung injury characterized by DAD, CD8+ T lymphocytes and neutrophils in the lung parenchyma, and tissular expression of proinflammatory cytokines and adhesion molecules, such as IFNγ, TNFα, ICAM, and VCAM. Since this is related to a dysregulated immune response, immunomodulatory agents are proposed to reduce the complications of SM. The monocyte locomotion inhibitory factor (MLIF) is an immunomodulatory pentapeptide isolated from axenic cultures of Entamoeba hystolitica. Thus, we evaluated if the MLIF intraperitoneal (i.p.) treatment prevented SM-induced acute lung injury. The peptide prevented SM without a parasiticidal effect, indicating that its protective effect was related to modifications in the immune response. Furthermore, peripheral CD8+ leukocytes and neutrophil proportions were higher in infected treated mice. However, the treatment prevented DAD, CD8+ cell infiltration into the pulmonary tissue and downregulated IFNγ. Moreover, VCAM-1 expression was abrogated. These results indicate that the MLIF treatment downregulated adhesion molecule expression, impeding cell migration and proinflammatory cytokine tissular production, preventing acute lung injury induced by SM. Our findings represent a potential novel strategy to avoid this complication in various events where a dysregulated immune response triggers lung injury.


Assuntos
Lesão Pulmonar Aguda , Modelos Animais de Doenças , Malária , Plasmodium berghei , Animais , Lesão Pulmonar Aguda/imunologia , Lesão Pulmonar Aguda/etiologia , Camundongos , Malária/imunologia , Plasmodium berghei/imunologia , Camundongos Endogâmicos C57BL , Neutrófilos/imunologia , Linfócitos T CD8-Positivos/imunologia , Citocinas/metabolismo , Pulmão/imunologia , Pulmão/patologia , Humanos , Feminino , Oligopeptídeos
19.
Kaohsiung J Med Sci ; 40(8): 710-721, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38837857

RESUMO

The proinflammatory properties of high-mobility group box protein 1 (HMGB1) in sepsis have been extensively studied. This study aimed to investigate the impact of HMGB1 on ferroptosis and its molecular mechanism in sepsis-induced acute lung injury (ALI). A septic mouse model was established using the cecal ligation and puncture method. Blocking HMGB1 resulted in improved survival rates, reduced lung injury, decreased levels of ferroptosis markers (reactive oxygen species, malondialdehyde, and Fe2+), and enhanced antioxidant enzyme activities (superoxide dismutase and catalase) in septic mice. In addition, knockdown of HMGB1 reduced cellular permeability, ferroptosis markers, and raised antioxidant enzyme levels in lipopolysaccharide (LPS)-stimulated MLE-12 cells. Silencing of HMGB1 led to elevations in the expressions of ferroptosis core-regulators in LPS-treated MLE-12 cells, such as solute carrier family 7 member 11 (SLC7A11), solute carrier family 3 member A2 (SLC3A2), and glutathione peroxidase 4. Furthermore, blocking HMGB1 did not alter ferroptosis, oxidative stress-related changes, and permeability in LPS-treated MLE-12 cells that were pretreated with ferrostatin-1 (a ferroptosis inhibitor). HMGB1 inhibition also led to elevated expressions of nuclear factor erythroid 2-related factor 2 (Nrf2) and its downstream targets, heme oxygenase-1 (HO-1) and NAD(P)H: quinone oxidoreductase 1 (NQO1) in LPS-treated MLE-12 cells and lung tissues from septic mice. The Nrf2-specific inhibitor ML385 reversed the effects of HMGB1 silencing on ferroptosis and cell permeability in LPS-treated MLE-12 cells. Our findings indicated that the inhibition of HMGB1 restrains ferroptosis and oxidative stress, thereby alleviating sepsis-induced ALI through the activation of Nrf2 signaling.


Assuntos
Lesão Pulmonar Aguda , Ferroptose , Proteína HMGB1 , Lipopolissacarídeos , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Sepse , Transdução de Sinais , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Proteína HMGB1/metabolismo , Proteína HMGB1/antagonistas & inibidores , Proteína HMGB1/genética , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/tratamento farmacológico , Ferroptose/efeitos dos fármacos , Sepse/complicações , Sepse/metabolismo , Sepse/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Camundongos , Lipopolissacarídeos/toxicidade , Transdução de Sinais/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Espécies Reativas de Oxigênio/metabolismo , Cicloexilaminas/farmacologia , Linhagem Celular , Modelos Animais de Doenças , Fenilenodiaminas/farmacologia , Fenilenodiaminas/uso terapêutico , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/antagonistas & inibidores , NAD(P)H Desidrogenase (Quinona)/metabolismo , NAD(P)H Desidrogenase (Quinona)/genética , Sistema y+ de Transporte de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...