Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 853
Filtrar
1.
Cells ; 13(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38727303

RESUMO

Small interfering RNA (siRNA) holds significant therapeutic potential by silencing target genes through RNA interference. Current clinical applications of siRNA have been primarily limited to liver diseases, while achievements in delivery methods are expanding their applications to various organs, including the lungs. Cholesterol-conjugated siRNA emerges as a promising delivery approach due to its low toxicity and high efficiency. This study focuses on developing a cholesterol-conjugated anti-Il6 siRNA and the evaluation of its potency for the potential treatment of inflammatory diseases using the example of acute lung injury (ALI). The biological activities of different Il6-targeted siRNAs containing chemical modifications were evaluated in J774 cells in vitro. The lead cholesterol-conjugated anti-Il6 siRNA after intranasal instillation demonstrated dose-dependent therapeutic effects in a mouse model of ALI induced by lipopolysaccharide (LPS). The treatment significantly reduced Il6 mRNA levels, inflammatory cell infiltration, and the severity of lung inflammation. IL6 silencing by cholesterol-conjugated siRNA proves to be a promising strategy for treating inflammatory diseases, with potential applications beyond the lungs.


Assuntos
Lesão Pulmonar Aguda , Colesterol , Interleucina-6 , RNA Interferente Pequeno , Animais , RNA Interferente Pequeno/metabolismo , RNA Interferente Pequeno/genética , Lesão Pulmonar Aguda/terapia , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/metabolismo , Interleucina-6/metabolismo , Interleucina-6/genética , Colesterol/metabolismo , Camundongos , Lipopolissacarídeos , Masculino , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Linhagem Celular , Pulmão/patologia , Pulmão/metabolismo
2.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 36(4): 430-434, 2024 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-38813641

RESUMO

Hyperoxia-induced acute lung injury (HALI) is an important complication of clinical oxygen therapy, which is mainly characterized by acute respiratory distress syndrome (ARDS) in adults and broncho-pulmonary dysplasia (BPD) in infants. HALI seriously affects the prognosis and quality of life of patients, so it has received more and more attention. However, the pathogenesis of HALI is complex and unclear, and there is no clear treatment method at present. Non-coding RNA (ncRNA) is an important type of functional RNA transcriptome. Due to the lack of effective open reading frame, ncRNA does not have the function of coding proteins. However, ncRNA can still regulate gene expression at multiple levels and affect the occurrence and development of many diseases. In recent years, a large number of in vitro and in vivo studies have shown that ncRNA is involved in the pathogenesis of HALI and is of great significance. This article reviews the expression and significance of ncRNA in HALI, in order to provide new diagnosis and treatment ideas for the prevention and treatment of HALI.


Assuntos
Lesão Pulmonar Aguda , Hiperóxia , RNA não Traduzido , Humanos , Hiperóxia/complicações , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/terapia , RNA não Traduzido/genética , Animais
3.
Sci Rep ; 14(1): 11160, 2024 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750066

RESUMO

Sepsis is a systemic inflammatory response syndrome resulting from the invasion of the human body by bacteria and other pathogenic microorganisms. One of its most prevalent complications is acute lung injury, which places a significant medical burden on numerous countries and regions due to its high morbidity and mortality rates. MicroRNA (miRNA) plays a critical role in the body's inflammatory response and immune regulation. Recent studies have focused on miR-21-5p in the context of acute lung injury, but its role appears to vary in different models of this condition. In the LPS-induced acute injury model of A549 cells, there is differential expression, but the specific mechanism remains unclear. Therefore, our aim is to investigate the changes in the expression of miR-21-5p and SLC16A10 in a type II alveolar epithelial cell injury model induced by LPS and explore the therapeutic effects of their targeted regulation. A549 cells were directly stimulated with 10 µg/ml of LPS to construct a model of LPS-induced cell injury. Cells were collected at different time points and the expression of interleukin 1 beta (IL-1ß), tumor necrosis factor-α (TNF-α) and miR-21-5p were measured by RT-qPCR and western blot. Then miR-21-5p mimic transfection was used to up-regulate the expression of miR-21-5p in A549 cells and the expression of IL-1ß and TNF-α in each group of cells was measured by RT-qPCR and western blot. The miRDB, TargetScan, miRWalk, Starbase, Tarbase and miR Tarbase databases were used to predict the miR-21-5p target genes and simultaneously, the DisGeNet database was used to search the sepsis-related gene groups. The intersection of the two groups was taken as the core gene. Luciferase reporter assay further verified SLC16A10 as the core gene with miR-21-5p. The expression of miR-21-5p and SLC16A10 were regulated by transfection or inhibitors in A549 cells with or without LPS stimulation. And then the expression of IL-1ß and TNF-α in A549 cells was tested by RT-qPCR and western blot in different groups, clarifying the role of miR-21-5p-SLC16A10 axis in LPS-induced inflammatory injury in A549 cells. (1) IL-1ß and TNF-α mRNA and protein expression significantly increased at 6, 12, and 24 h after LPS stimulation as well as the miR-21-5p expression compared with the control group (P < 0.05). (2) After overexpression of miR-21-5p in A549 cells, the expression of IL-1ß and TNF-α was significantly reduced after LPS stimulation, suggesting that miR-21-5p has a protection against LPS-induced injury. (3) The core gene set, comprising 51 target genes of miR-21-5p intersecting with the 1448 sepsis-related genes, was identified. This set includes SLC16A10, TNPO1, STAT3, PIK3R1, and FASLG. Following a literature review, SLC16A10 was selected as the ultimate target gene. Dual luciferase assay results confirmed that SLC16A10 is indeed a target gene of miR-21-5p. (4) Knocking down SLC16A10 expression by siRNA significantly reduced the expression of IL-1ß and TNF-α in A549 cells after LPS treatment (P < 0.05). (5) miR-21-5p inhibitor increased the expression levels of IL-1ß and TNF-α in A549 cells after LPS stimulation (P < 0.05). In comparison to cells solely transfected with miR-21-5p inhibitor, co-transfection of miR-21-5p inhibitor and si-SLC6A10 significantly reduced the expression of IL-1ß and TNF-α (P < 0.05). MiR-21-5p plays a protective role in LPS-induced acute inflammatory injury of A549 cells. By targeting SLC16A10, it effectively mitigates the inflammatory response in A549 cells induced by LPS. Furthermore, SLC16A10 holds promise as a potential target for the treatment of acute lung injury.


Assuntos
Lesão Pulmonar Aguda , Células Epiteliais Alveolares , Lipopolissacarídeos , MicroRNAs , MicroRNAs/genética , MicroRNAs/metabolismo , Humanos , Lipopolissacarídeos/toxicidade , Células A549 , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/efeitos dos fármacos , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/patologia , Interleucina-1beta/metabolismo , Interleucina-1beta/genética , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/genética , Regulação da Expressão Gênica
4.
J Cell Mol Med ; 28(10): e18280, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38758159

RESUMO

Acute lung injury (ALI) is featured with a robust inflammatory response. Angiopoietin-like protein 2 (ANGPTL2), a pro-inflammatory protein, is complicated with various disorders. However, the role of ANGPTL2 in ALI remains to be further explored. The mice and MH-S cells were administrated with lipopolysaccharide (LPS) to evoke the lung injury in vivo and in vitro. The role and mechanism of ANGPTL was investigated by haematoxylin-eosin, measurement of wet/dry ratio, cell count, terminal deoxynucleotidyl transferase deoxyuridine triphosphate (dUTP) nick end labeling, reverse transcription quantitative polymerase chain reaction, immunofluorescence, enzyme-linked immunosorbent assay, detection of autophagic flux and western blot assays. The level of ANGPTL2 was upregulated in lung injury. Knockout of ANGPTL2 alleviated LPS-induced pathological symptoms, reduced pulmonary wet/dry weight ratio, the numbers of total cells and neutrophils in BALF, apoptosis rate and the release of pro-inflammatory mediators, and modulated polarization of alveolar macrophages in mice. Knockdown of ANGPTL2 downregulated the level of pyroptosis indicators, and elevated the level of autophagy in LPS-induced MH-S cells. Besides, downregulation of ANGPTL2 reversed the LPS-induced the expression of leukocyte immunoglobulin (Ig)-like receptor B2 (LILRB2) and triggering receptor expressed on myeloid cells 2 (TREM2), which was reversed by the overexpression of LILRB2. Importantly, knockdown of TREM2 reversed the levels of autophagy- and pyroptosis-involved proteins, and the contents of pro-inflammatory factors in LPS-induced MH-S cells transfected with si ANGPTL2, which was further inverted with the treatment of rapamycin. Therefore, ANGPTL2 silencing enhanced autophagy to alleviate alveolar macrophage pyroptosis via reducing LILRB2-mediated inhibition of TREM2.


Assuntos
Lesão Pulmonar Aguda , Proteína 2 Semelhante a Angiopoietina , Autofagia , Lipopolissacarídeos , Macrófagos Alveolares , Glicoproteínas de Membrana , Piroptose , Receptores Imunológicos , Animais , Piroptose/genética , Piroptose/efeitos dos fármacos , Autofagia/genética , Camundongos , Macrófagos Alveolares/metabolismo , Receptores Imunológicos/metabolismo , Receptores Imunológicos/genética , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/induzido quimicamente , Técnicas de Silenciamento de Genes , Masculino , Camundongos Endogâmicos C57BL , Proteínas Semelhantes a Angiopoietina/metabolismo , Proteínas Semelhantes a Angiopoietina/genética , Camundongos Knockout
5.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(4): 296-302, 2024 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-38710513

RESUMO

Objective To evaluate the effects of heme oxygenase-1 (HO-1) gene deletion on immune cell composition and inflammatory injury in lung tissues of mice with lipopolysaccharide (LPS)-induced acute lung injury (ALI). Methods C57BL/6 wild-type (WT) mice and HO-1 conditional-knockout (HO-1-/-) mice on the same background were randomly divided into four groups (n=5 in every group): WT control group, LPS-treated WT group, HO-1-/- control group and LPS-treated HO-1-/- group. LPS-treated WT and HO-1-/- groups were injected with LPS (15 mg/kg) through the tail vein to establish ALI model, while WT control group and HO-1-/- control group were injected with an equivalent volume of normal saline through the tail vein, respectively. Twelve hours later, the mice were sacrificed and lung tissues from each group were collected for analysis. Histopathological alterations of lung tissues were assessed by HE staining. The levels of mRNA expression of tumor necrosis factor α (TNF-α), interleukin 1ß (IL-1ß), and IL-6 were determined by PCR. The percentages of neutrophils (CD45+CD11b+Ly6G+Ly6C-), total monocytes (CD45+CD11b+Ly6Chi), pro-inflammatory monocyte subsets (CD45+CD11b+Ly6ChiCCR2hi) and total macrophages (CD45+CD11b+F4/80+), M1 macrophage (CD45+CD11b+F4/80+CD86+), M2 macrophage (CD45+CD11b+F4/80+CD206+), total T cells (CD45+CD3+), CD3+CD4+ T cells, CD3+CD8+ T cells and myeloid suppressor cells (MDSCs, CD45+CD11b+Gr1+) were detected by flow cytometry. Results Compared with the corresponding control groups, HE staining exhibited increased inflammation in the lung tissues of both LPS-treated WT and HO-1-/- model mice; mRNA expression levels of TNF-α, IL-1ß and IL-6 were up-regulated; the proportions of neutrophils, total monocytes, pro-inflammatory monocyte subsets, MDSCs and total macrophages increased significantly. The percentage of CD3+, CD3+CD4+ and CD3+CD8+ T cells decreased significantly. Under resting-state, compared with WT control mice, the proportion of neutrophils, monocytes and pro-inflammatory monocyte subset increased in lung tissues of HO-1-/- control mice, while the proportion of CD3+ and CD3+CD8+ T cells decreased. Compared with LPS-treated WT mice, the mRNA expression levels of TNF-α and IL-1ß were up-regulated in lung tissues of LPS-treated HO-1-/- mice; the proportion of total monocytes, pro-inflammatory monocyte subsets, M1 macrophages and M1/M2 ratio increased greatly; the percentage of CD3+CD8+ T cells decreased significantly. Conclusion The deletion of HO-1 affects the function of the lung immune system and aggravates the inflammatory injury after LPS stimulation in ALI mice.


Assuntos
Lesão Pulmonar Aguda , Heme Oxigenase-1 , Lipopolissacarídeos , Pulmão , Camundongos Endogâmicos C57BL , Camundongos Knockout , Animais , Masculino , Camundongos , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/imunologia , Lesão Pulmonar Aguda/patologia , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Inflamação/genética , Inflamação/induzido quimicamente , Inflamação/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Pulmão/patologia , Pulmão/imunologia , Pulmão/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
6.
Front Immunol ; 15: 1382449, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38745657

RESUMO

Background: Acute Respiratory Distress Syndrome (ARDS) or its earlier stage Acute lung injury (ALI), is a worldwide health concern that jeopardizes human well-being. Currently, the treatment strategies to mitigate the incidence and mortality of ARDS are severely restricted. This limitation can be attributed, at least in part, to the substantial variations in immunity observed in individuals with this syndrome. Methods: Bulk and single cell RNA sequencing from ALI mice and single cell RNA sequencing from ARDS patients were analyzed. We utilized the Seurat program package in R and cellmarker 2.0 to cluster and annotate the data. The differential, enrichment, protein interaction, and cell-cell communication analysis were conducted. Results: The mice with ALI caused by pulmonary and extrapulmonary factors demonstrated differential expression including Clec4e, Retnlg, S100a9, Coro1a, and Lars2. We have determined that inflammatory factors have a greater significance in extrapulmonary ALI, while multiple pathways collaborate in the development of pulmonary ALI. Clustering analysis revealed significant heterogeneity in the relative abundance of immune cells in different ALI models. The autocrine action of neutrophils plays a crucial role in pulmonary ALI. Additionally, there was a significant increase in signaling intensity between B cells and M1 macrophages, NKT cells and M1 macrophages in extrapulmonary ALI. The CXCL, CSF3 and MIF, TGFß signaling pathways play a vital role in pulmonary and extrapulmonary ALI, respectively. Moreover, the analysis of human single-cell revealed DCs signaling to monocytes and neutrophils in COVID-19-associated ARDS is stronger compared to sepsis-related ARDS. In sepsis-related ARDS, CD8+ T and Th cells exhibit more prominent signaling to B-cell nucleated DCs. Meanwhile, both MIF and CXCL signaling pathways are specific to sepsis-related ARDS. Conclusion: This study has identified specific gene signatures and signaling pathways in animal models and human samples that facilitate the interaction between immune cells, which could be targeted therapeutically in ARDS patients of various etiologies.


Assuntos
Lesão Pulmonar Aguda , Comunicação Celular , Perfilação da Expressão Gênica , Animais , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/imunologia , Camundongos , Humanos , Comunicação Celular/imunologia , Transcriptoma , Síndrome do Desconforto Respiratório/imunologia , Síndrome do Desconforto Respiratório/genética , Modelos Animais de Doenças , Análise de Célula Única , Camundongos Endogâmicos C57BL , Neutrófilos/imunologia , Neutrófilos/metabolismo , COVID-19/imunologia , COVID-19/genética , Transdução de Sinais , Masculino , Macrófagos/imunologia , Macrófagos/metabolismo
7.
J Pharmacol Sci ; 155(3): 94-100, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38797538

RESUMO

Interleukin (IL-19) belongs to the IL-10 family of cytokines and plays diverse roles in inflammation, cell development, viral responses, and lipid metabolism. Acute lung injury (ALI) is a severe respiratory condition associated with various diseases, including severe pneumonia, sepsis, and trauma, lacking established treatments. However, the role of IL-19 in acute inflammation of the lungs is unknown. We reported the impact of IL-19 functional deficiency in mice crossed with an ALI model using HCl. Lungs damages, neutrophil infiltration, and pulmonary edema induced by HCl were significantly worse in IL-19 knockout (KO) mice than in wild-type (WT) mice. mRNA expression levels of C-X-C motif chemokine ligand 1 (CXCL1) and IL-6 in the lungs were significantly higher in IL-19 KO mice than in WT mice. Little apoptosis was detected in lung injury in WT mice, whereas apoptosis was observed in exacerbated area of lung injury in IL-19 KO mice. These results are the first to show that IL-19 is involved in acute inflammation of the lungs, suggesting a novel molecular mechanism in acute respiratory failures. If it can be shown that neutrophils have IL-19 receptors and that IL-19 acts directly on them, it would be a novel drug target.


Assuntos
Lesão Pulmonar Aguda , Ácido Clorídrico , Interleucinas , Camundongos Knockout , Animais , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/genética , Interleucinas/genética , Interleucinas/metabolismo , Camundongos Endogâmicos C57BL , Interleucina-6/metabolismo , Interleucina-6/genética , Modelos Animais de Doenças , Infiltração de Neutrófilos , Quimiocina CXCL1/genética , Quimiocina CXCL1/metabolismo , Masculino , Pulmão/patologia , Pulmão/metabolismo , Apoptose/genética , Apoptose/efeitos dos fármacos , Camundongos , Neutrófilos , Edema Pulmonar/etiologia , Expressão Gênica
8.
Sci Rep ; 14(1): 11860, 2024 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789583

RESUMO

Acute lung injury (ALI) is life-threatening. MicroRNAs (miRNAs) are often abnormally expressed in inflammatory diseases and are closely associated with ALI. This study investigates whether miRNA-206-3p attenuates pyroptosis in ALI and elucidates the underlying molecular mechanisms. ALI mouse and cell models were established through lipopolysaccharide (LPS) treatment for 24 h. Subsequently, the models were evaluated based on ultrasonography, the lung tissue wet/dry (W/D) ratio, pathological section assessment, electron microscopy, and western blotting. Pyroptosis in RAW264.7 cells was then assessed via electron microscopy, immunofluorescence, and western blotting. Additionally, the regulatory relationship between miRNA-206-3p and the Toll-like receptor (TLR)4/nuclear factor (NF)-κB/Nod-like receptor protein-3 (NLRP3) pathway was verified. Finally, luciferase reporter gene and RNA pull-down assays were used to verify the targeting relationship between miRNA-206-3p and TLR4. miRNA206-3p levels are significantly decreased in the LPS-induced ALI model. Overexpression of miRNA-206-3p improves ALI, manifested as improved lung ultrasound, improved pathological changes of lung tissue, reduced W/D ratio of lung tissue, release of inflammatory factors in lung tissue, and reduced pyroptosis. Furthermore, overexpression of miRNA-206-3p contributed to reversing the ALI-promoting effect of LPS by hindering TLR4, myeloid differentiation primary response 88 (MyD88), NF-κB, and NLRP3 expression. In fact, miRNA-206-3p binds directly to TLR4. In conclusion, miRNA-206-3p alleviates LPS-induced ALI by inhibiting inflammation and pyroptosis via TLR4/NF-κB/NLRP3 pathway modulation.


Assuntos
Lesão Pulmonar Aguda , Lipopolissacarídeos , MicroRNAs , NF-kappa B , Proteína 3 que Contém Domínio de Pirina da Família NLR , Piroptose , Transdução de Sinais , Receptor 4 Toll-Like , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Piroptose/genética , Camundongos , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/patologia , NF-kappa B/metabolismo , Células RAW 264.7 , Inflamação/metabolismo , Inflamação/patologia , Inflamação/genética , Masculino , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
10.
Mol Biol Rep ; 51(1): 492, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578368

RESUMO

BACKGROUND: Lactoferrin (LF) is an iron-binding multifunctional cationic glycoprotein. Previous studies have demonstrated that LF may be a potential drug for treating acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). In this study, we explored the anti-inflammatory effect and mechanism of bovine lactoferrin (bLF) in ALI using the RNA sequencing (RNA-seq) technology and transcriptome analysis. METHODS AND RESULTS: Based on the differentially expressed genes (DEGs) obtained from RNA-seq of the Lung from mouse model, the bioinformatics workflow was implemented using the BGISEQ-500 platform. The protein-protein interaction (PPI) network was obtained using STRING, and the hub gene was screened using Cytoscape. To verify the results of transcriptome analysis, the effects of bLF on Lipopolysaccharide (LPS)-induced BEAS-2B cells and its anti-reactive oxygen species (ROS), anti-inflammatory, and antiapoptotic effects were studied via Cell Counting Kit-8 (CCK-8) test, active oxygen detection test, ELISA, and western blot assay. Transcriptome analysis revealed that two hub gene modules of DEGs were screened via PPI analysis using the STRING and MCODE plug-ins of Cytoscape. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that these core modules are enriched in the PPAR (peroxisome proliferator-activated receptor) and AMPK (AMP-activated protein kinase) signaling pathways. Through cell experiments, our study shows that bLF can inhibit ROS, inflammatory reaction, and LPS-induced BEAS-2B cell apoptosis, which are significantly antagonized by the PPAR-γ inhibitor GW9662. CONCLUSION: This study has suggested that the PPAR-γ pathway is the critical target of bLF in anti-inflammatory reactions and apoptosis of ALI, which provides a direction for further research.


Assuntos
Lesão Pulmonar Aguda , Lactoferrina , Animais , Camundongos , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/genética , Anti-Inflamatórios/farmacologia , Apoptose , Lactoferrina/farmacologia , Lipopolissacarídeos , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Espécies Reativas de Oxigênio/metabolismo
11.
Exp Cell Res ; 438(1): 114047, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38631546

RESUMO

BACKGROUND: Programmed death ligand-1(PD-L1) has been postulated to play a crucial role in the regulation of barrier functions of the vascular endothelium, yet how this novel molecule mediates dysfunction in endothelial cells (ECs) during acute lung injury (ALI) remains largely unknown. METHODS: PD-L1 siRNA and plasmids were synthesized and applied respectively to down- or up-regulate PD-L1 expression in human lung microvascular endothelial cells (HMVECs). RNA sequencing was used to explore the differentially expressed genes following PD-L1 overexpression. The expression levels of tight junction proteins (ZO-1 and occludin) and the signaling pathways of NLRP-3/caspase-1/pyroptosis were analyzed. A mouse model of indirect ALI was established through hemorrhagic shock (HEM) followed by cecal ligation and puncture (CLP), enabling further investigation into the effects of intravenous delivery of PD-L1 siRNA. RESULTS: A total of 1502 differentially expressed genes were identified, comprising 532 down-regulated and 970 up-regulated genes in ECs exhibiting PD-L1overexpression. Enrichment of PD-L1-correlated genes were observed in the NOD-like receptor signaling pathway and the TNF signaling pathway. Western blot assays confirmed that PD-L1 overexpression elevated the expression of NLRP3, cleaved-caspase-1, ASC and GSDMD, and concurrently diminished the expression of ZO-1 and occludin. This overexpression also enhanced mitochondrial oxidative phosphorylation and mitochondrial reactive oxygen species (mtROS) production. Interestingly, mitigating mitochondrial dysfunction with mitoQ partially countered the adverse effects of PD-L1 on the functionality of ECs. Furthermore, intravenous administration of PD-L1 siRNA effectively inhibited the activation of the NLRP3 inflammasome and pyroptosis in pulmonary ECs, subsequently ameliorating lung injury in HEM/CLP mice. CONCLUSION: PD-L1-mediated activation of the inflammasome contributes significantly to the disruption of tight junction and induction of pyroptosis in ECs, where oxidative stress associated with mitochondrial dysfunction serves as a pivotal mechanism underpinning these effects.


Assuntos
Antígeno B7-H1 , Caspase 1 , Endotélio Vascular , Proteína 3 que Contém Domínio de Pirina da Família NLR , Piroptose , Transdução de Sinais , Animais , Humanos , Masculino , Camundongos , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/genética , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética , Caspase 1/metabolismo , Caspase 1/genética , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Mitocôndrias/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Piroptose/genética , Espécies Reativas de Oxigênio/metabolismo
12.
Clinics (Sao Paulo) ; 79: 100354, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38640751

RESUMO

AIM: The study was to clarify the mechanism of miR-1258 targeting Prep1 (pKnox1) to control Transforming Growth Factor ß1 (TGF-ß1)/SMAD3 pathway in septic Acute Lung Injury (ALI)-induced oxidative stress and inflammation. METHODS: BEAS-2B cells and C57BL/6 mice were used to make in vitro and in vivo septic ALI models, respectively. miR-1258 expression was checked by RT-qPCR. After transfection in the in vitro experimental model, inflammation, oxidative stress, viability, and apoptosis were observed through ELISA, MTT, and flow cytometry. RESULTS: In the in vivo model after miR-1258 overexpression treatment, inflammation, oxidative stress, and lung injury were further investigated. The targeting relationship between miR-1258 and Pknox1 was tested. Low miR-1258 was expressed in septic ALI patients, LPS-treated BEAS-2B cells, and mice. Upregulated miR-1258 prevented inflammation, oxidative stress, and apoptosis but enhanced the viability of LPS-treated BEAS-2B cells. The impact of upregulated miR-1258 on LPS-treated BEAS-2B cells was mitigated by inhibiting Pknox1 expression. MiR-1258 overexpression had the alleviating effects on inflammation, oxidative stress, and lung injury of LPS-injured mice through suppressing Pknox1 expression and TGF-ß1/SMAD3 cascade activation. CONCLUSIONS: The study concludes that miR-1258 suppresses oxidative stress and inflammation in septic ALI through the Pknox1-regulated TGF-ß1/SMAD3 cascade.


Assuntos
Lesão Pulmonar Aguda , Apoptose , Camundongos Endogâmicos C57BL , MicroRNAs , Estresse Oxidativo , Sepse , Proteína Smad3 , Fator de Crescimento Transformador beta1 , Animais , Humanos , Masculino , Camundongos , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/metabolismo , Modelos Animais de Doenças , Inflamação/metabolismo , MicroRNAs/metabolismo , MicroRNAs/genética , Sepse/complicações , Sepse/metabolismo , Sepse/genética , Transdução de Sinais , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Regulação para Cima
13.
Mol Med ; 30(1): 53, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649840

RESUMO

OBJECTIVE: Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are associated with significant mortality rates. The role of Fcgr2b in the pathogenesis of ALI/ARDS is not fully elucidated. This study aimed to investigate the functions of Fcgr2b in ALI/ARDS and explore its underlying mechanisms. METHODS: Methods: In this study, rat models of ARDS and pulmonary microvascular endothelial cell (PMVEC) injury models were established through the administration of lipopolysaccharide (LPS). The expression levels of Fcgr2b and Elk1 were quantified in both LPS-induced ARDS rats and PMVECs. Subsequent gain- and loss-of-function experiments were conducted, followed by comprehensive assessments of lung tissue for pathomorphological changes, edema, glycogen storage, fibrosis, and infiltration of inflammatory cells. Additionally, bronchoalveolar lavage fluid was analyzed for T-helper 17 (Th17) cell infiltration, inflammatory response, and microvascular permeability to evaluate lung injury severity in ARDS models. Furthermore, the activity, cytotoxicity, apoptosis, and angiogenic potential of PMVECs were assessed to gauge cell injury. The interaction between Elk1 and Fcgr2b was also examined to confirm their regulatory relationship. RESULTS: In the context of LPS-induced ARDS and PMVEC injury, Fcgr2b expression was markedly reduced, whereas Elk1 expression was elevated. Overexpression of Fcgr2b led to a decrease in Th17 cell infiltration and mitigated lung tissue damage in ARDS models, in addition to reducing LPS-induced injury in PMVECs. Elk1 was found to suppress Fcgr2b transcription through the recruitment of histone 3 lysine 9 trimethylation (H3K9me3). Knockdown of Elk1 diminished Th17 cell infiltration and lung tissue damage in ARDS models, and alleviated LPS-induced injury in PMVECs, effects that were reversed upon Fcgr2b upregulation. CONCLUSION: Elk1 negatively regulates Fcgr2b transcription, thereby augmenting the inflammatory response and exacerbating lung injury in LPS-induced ALI/ARDS.


Assuntos
Lesão Pulmonar Aguda , Modelos Animais de Doenças , Células Endoteliais , Lipopolissacarídeos , Receptores de IgG , Síndrome do Desconforto Respiratório , Proteínas Elk-1 do Domínio ets , Animais , Masculino , Ratos , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/etiologia , Células Endoteliais/metabolismo , Proteínas Elk-1 do Domínio ets/metabolismo , Proteínas Elk-1 do Domínio ets/genética , Pulmão/patologia , Pulmão/metabolismo , Ratos Wistar , Receptores de IgG/metabolismo , Receptores de IgG/genética , Síndrome do Desconforto Respiratório/metabolismo , Síndrome do Desconforto Respiratório/patologia , Síndrome do Desconforto Respiratório/genética , Células Th17/metabolismo , Células Th17/imunologia , Transcrição Gênica
14.
Acta Biochim Biophys Sin (Shanghai) ; 56(5): 789-804, 2024 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-38686458

RESUMO

Acute lung injury (ALI) is a serious condition characterized by damage to the lungs. Recent research has revealed that activation of the NLRP3 inflammasome in alveolar macrophages, a type of immune cell in the lungs, plays a key role in the development of ALI. This process, known as pyroptosis, contributes significantly to ALI pathogenesis. Researchers have conducted comprehensive bioinformatics analyses and identified 15 key genes associated with alveolar macrophage pyroptosis in ALI. Among these, NLRP3 has emerged as a crucial regulator. This study further reveal that the ULK1 protein diminishes the expression of NLRP3, thereby reducing the immune response of alveolar macrophages and mitigating ALI. Conversely, TRAF3, another protein, is found to inhibit ULK1 through a process called ubiquitination, leading to increased activation of the NLRP3 inflammasome and exacerbation of ALI. This TRAF3-mediated suppression of ULK1 and subsequent activation of NLRP3 are confirmed through various in vitro and in vivo experiments. The presence of abundant M0 and M1 alveolar macrophages in the ALI tissue samples further support these findings. This research highlights the TRAF3-ULK1-NLRP3 regulatory axis as a pivotal pathway in ALI development and suggests that targeting this axis could be an effective therapeutic strategy for ALI treatment.


Assuntos
Lesão Pulmonar Aguda , Proteína Homóloga à Proteína-1 Relacionada à Autofagia , Macrófagos Alveolares , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR , Piroptose , Fator 3 Associado a Receptor de TNF , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/patologia , Animais , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Camundongos , Fator 3 Associado a Receptor de TNF/metabolismo , Fator 3 Associado a Receptor de TNF/genética , Humanos , Masculino , Inflamassomos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Transdução de Sinais , Ubiquitinação
15.
J Tradit Chin Med ; 44(2): 303-314, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38504536

RESUMO

OBJECTIVE: To investigate the impact of Yemazhui (Herba Eupatorii Lindleyani, HEL) against lipopolysaccharide (LPS)-induced acute lung injury (ALI) and explore its underlying mechanism in vivo. METHODS: The chemical constituents of HEL were analyzed by ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry method. Then, HEL was found to suppress LPS-induced ALI in vivo. Six-week-old male Sprague-Dawley rats were randomly divided into 6 groups: control, LPS, Dexamethasone (Dex), HEL low dose 6 g/kg (HEL-L), HEL medium dose 18 g/kg (HEL-M) and HEL high dose 54 g/kg (HEL-H) groups. The model rats were intratracheally injected with 3 mg/kg LPS to establish an ALI model. Leukocyte counts, lung wet/dry weight ratio, as well as myeloperoxidase (MPO) activity were determined followed by the detection with hematoxylin and eosin staining, enzyme linked immunosorbent assay, quantitative real time polymerase chain reaction, western blotting, immunohistochemistry, and immunofluorescence. Besides, to explore the effect of HEL on ALI-mediated intestinal flora, we performed 16s rRNA sequencing analysis of intestinal contents. RESULTS: HEL attenuated LPS-induced inflammation in lung tissue and intestinal flora disturbance. Mechanism study indicated that HEL suppressed the lung coefficient and wet/dry weight ratio of LPS-induced ALI in rats, inhibited leukocytes exudation and MPO activity, and improved the pathological injury of lung tissue. In addition, HEL reduced the expression of tumor necrosis factor-alpha, interleukin-1beta (IL-1ß) and interleukin-6 (IL-6) in bronchoalveolar lavage fluid and serum, and inhibited nuclear displacement of nuclear factor kappa-B p65 (NF-κBp65). And 18 g/kg HEL also reduced the expression levels of toll-like receptor 4 (TLR4), myeloid differentiation factor 88, NF-κBp65, phosphorylated inhibitor kappa B alpha (phospho-IκBα), nod-like receptor family pyrin domain-containing 3 protein (NLRP3), IL-1ß, and interleukin-18 (IL-18) in lung tissue, and regulated intestinal flora disturbance. CONCLUSIONS: In summary, our findings revealed that HEL has a protective effect on LPS-induced ALI in rats, and its mechanism may be related to inhibiting TLR4/ NF-κB/NLRP3 signaling pathway and improving intestinal flora disturbance.


Assuntos
Lesão Pulmonar Aguda , Microbioma Gastrointestinal , Ratos , Masculino , Animais , NF-kappa B/genética , NF-kappa B/metabolismo , Lipopolissacarídeos/efeitos adversos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Domínio Pirina , RNA Ribossômico 16S , Ratos Sprague-Dawley , Transdução de Sinais , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/genética , Pulmão , Interleucina-6
16.
Cell Mol Biol Lett ; 29(1): 36, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486141

RESUMO

BACKGROUND: Macrophage activation may play a crucial role in the increased susceptibility of obese individuals to acute lung injury (ALI). Dysregulation of miRNA, which is involved in various inflammatory diseases, is often observed in obesity. This study aimed to investigate the role of miR-192 in lipopolysaccharide (LPS)-induced ALI in obese mice and its mechanism of dysregulation in obesity. METHODS: Human lung tissues were obtained from obese patients (BMI ≥ 30.0 kg/m2) and control patients (BMI 18.5-24.9 kg/m2). An obese mouse model was established by feeding a high-fat diet (HFD), followed by intratracheal instillation of LPS to induce ALI. Pulmonary macrophages of obese mice were depleted through intratracheal instillation of clodronate liposomes. The expression of miR-192 was examined in lung tissues, primary alveolar macrophages (AMs), and the mouse alveolar macrophage cell line (MH-S) using RT-qPCR. m6A quantification and RIP assays helped determine the cause of miR-192 dysregulation. miR-192 agomir and antagomir were used to investigate its function in mice and MH-S cells. Bioinformatics and dual-luciferase reporter gene assays were used to explore the downstream targets of miR-192. RESULTS: In obese mice, depletion of macrophages significantly alleviated lung tissue inflammation and injury, regardless of LPS challenge. miR-192 expression in lung tissues and alveolar macrophages was diminished during obesity and further decreased with LPS stimulation. Obesity-induced overexpression of FTO decreased the m6A modification of pri-miR-192, inhibiting the generation of miR-192. In vitro, inhibition of miR-192 enhanced LPS-induced polarization of M1 macrophages and activation of the AKT/ NF-κB inflammatory pathway, while overexpression of miR-192 suppressed these reactions. BIG1 was confirmed as a target gene of miR-192, and its overexpression offset the protective effects of miR-192. In vivo, when miR-192 was overexpressed in obese mice, the activation of pulmonary macrophages and the extent of lung injury were significantly improved upon LPS challenge. CONCLUSIONS: Our study indicates that obesity-induced downregulation of miR-192 expression exacerbates LPS-induced ALI by promoting macrophage activation. Targeting macrophages and miR-192 may provide new therapeutic avenues for obesity-associated ALI.


Assuntos
Lesão Pulmonar Aguda , MicroRNAs , Animais , Humanos , Camundongos , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Regulação para Baixo , Lipopolissacarídeos/toxicidade , Ativação de Macrófagos , Camundongos Obesos , MicroRNAs/genética , MicroRNAs/metabolismo , Obesidade/complicações , Obesidade/genética , Transdução de Sinais
17.
Redox Biol ; 71: 103116, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38479222

RESUMO

Oxidative stress plays an important role in the pathogenesis of acute lung injury (ALI). As a typical post-translational modification triggered by oxidative stress, protein S-glutathionylation (PSSG) is regulated by redox signaling pathways and plays diverse roles in oxidative stress conditions. In this study, we found that GSTP downregulation exacerbated LPS-induced injury in human lung epithelial cells and in mice ALI models, confirming the protective effect of GSTP against ALI both in vitro and in vivo. Additionally, a positive correlation was observed between total PSSG level and GSTP expression level in cells and mice lung tissues. Further results demonstrated that GSTP inhibited KEAP1-NRF2 interaction by promoting PSSG process of KEAP1. By the integration of protein mass spectrometry, molecular docking, and site-mutation validation assays, we identified C434 in KEAP1 as the key PSSG site catalyzed by GSTP, which promoted the dissociation of KEAP1-NRF2 complex and activated the subsequent anti-oxidant genes. In vivo experiments with AAV-GSTP mice confirmed that GSTP inhibited LPS-induced lung inflammation by promoting PSSG of KEAP1 and activating the NRF2 downstream antioxidant pathways. Collectively, this study revealed the novel regulatory mechanism of GSTP in the anti-inflammatory function of lungs by modulating PSSG of KEAP1 and the subsequent KEAP1/NRF2 pathway. Targeting at manipulation of GSTP level or activity might be a promising therapeutic strategy for oxidative stress-induced ALI progression.


Assuntos
Lesão Pulmonar Aguda , Fator 2 Relacionado a NF-E2 , Animais , Humanos , Camundongos , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/tratamento farmacológico , Antioxidantes/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Lipopolissacarídeos/toxicidade , Pulmão/metabolismo , Simulação de Acoplamento Molecular , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo
18.
Cell Mol Biol (Noisy-le-grand) ; 70(2): 104-112, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38430034

RESUMO

Acute lung injury (ALI) is a serious lung disease. The apoptosis and inflammation of pulmonary microvascular endothelial cells (PMVECs) are the primary reasons for ALI. This study aimed to explore the treatment effect and regulatory mechanism of bone mesenchymal stem cell-derived exosomes (BMSC-expos) on ALI. PMVECs were stimulated by Lipopolysaccharide (LPS) to imitate ALI environment. Cell viability was determined by CCK-8 assay. Cell apoptosis was evaluated by TUNEL and flow cytometry. ELISA was utilized for testing the contents of TNF-α, IL-1ß, IL-6, and IL-17. Western blot was applied for testing the levels of autophagy-related proteins LC3, p62, and Beclin-1. RNA interaction was determined by luciferase reporter assay. The ALI rat model was established by intratracheal injection of LPS. Evans blue staining was utilized for detecting pulmonary vascular permeability. Our results showed that LPS stimulation notably reduced cell viability, increased cell apoptosis rate, and enhanced the contents of inflammatory factors in PMVECs. However, BMSC-exo treatment significantly abolished the promoting effects of LPS on cell injury. In addition, we discovered that BMSC-exo treatment notably activated autophagy in LPS-induced PMVECs. Furthermore, BMSC-expos upregulated miR-26a-3p expression and downregulated PTEN in PMVECs. MiR-26a-3p was directly bound to PTEN. MiR-26a-3p overexpression reduced cell apoptosis, and inflammation and promoted autophagy by silencing PTEN. Animal experiments proved that miR-26a-3p overexpression effectively improved LPS-induced lung injury in rats. The results proved that BMSC-expos promotes autophagy to attenuate LPS-induced apoptosis and inflammation in pulmonary microvascular endothelial cells via miR-26a-3p/PTEN axis.


Assuntos
Lesão Pulmonar Aguda , Células-Tronco Mesenquimais , MicroRNAs , Ratos , Animais , Lipopolissacarídeos/toxicidade , Células Endoteliais/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Inflamação/genética , Inflamação/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/terapia , Apoptose/genética , Células-Tronco Mesenquimais/metabolismo , Autofagia/genética
19.
Eur J Pharmacol ; 971: 176392, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38365107

RESUMO

The excessive elevation of angiotensin II (ANG II) is closely associated with the occurrence and development of aortic dissection (AD)-related acute lung injury (ALI), through its binding to angiotensin II receptor type I (AT1R). MiR-145-5p is a noncoding RNA that can be involved in a variety of cellular physiopathological processes. Transfection with miR-145-5p was found to downregulated the expression of A disintegrin and metalloprotease 17 (ADAM17) and reduced the levels of angiotensin-converting enzyme 2 (ACE2) in lung tissue, while concurrently increasing plasma ACE2 levels in the AD combined with ALI mice. ADAM17 was proved to be a target of miR-145-5p. Transfection with miR-145-5p decreased the shedding of ACE2 and alleviated the inflammatory response induced by ANG II through targeting ADAM17 and inhibiting the AT1R/ADAM17 pathway in A549 cells. In conclusion, our present study demonstrates the role and mechanism of miR-145-5p in alleviating ANG II-induced acute lung injury, providing a new insight into miRNA therapy for reducing lung injury in patients with aortic dissection.


Assuntos
Lesão Pulmonar Aguda , Dissecção Aórtica , MicroRNAs , Humanos , Animais , Camundongos , Enzima de Conversão de Angiotensina 2/genética , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , Células Epiteliais Alveolares/metabolismo , Proteína ADAM17/genética , Angiotensina II/farmacologia , Angiotensina II/metabolismo , MicroRNAs/genética , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/metabolismo
20.
Front Immunol ; 15: 1308915, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38348045

RESUMO

Background: Sepsis-induced acute lung injury (ALI) poses a significant threat to human health. Endothelial cells, especially pulmonary capillaries, are the primary barriers against sepsis in the lungs. Therefore, investigating endothelial cell function is essential to understand the pathophysiological processes of sepsis-induced ALI. Methods: We downloaded single-cell RNA-seq expression data from GEO with accession number GSE207651. The mice underwent cecal ligation and puncture (CLP) surgery, and lung tissue samples were collected at 0, 24, and 48 h. The cells were annotated using the CellMarker database and FindAllMarkers functions. GO enrichment analyses were performed using the Metascape software. Gene set enrichment Analysis (GSEA) and variation Analysis (GSVA) were performed to identify differential signaling pathways. Differential expression genes were collected with the "FindMarkers" function. The R package AUCell was used to score individual cells for pathway activities. The Cellchat package was used to explore intracellular communication. Results: Granulocytes increased significantly as the duration of endotoxemia increased. However, the number of T cells, NK cells, and B cells declined. Pulmonary capillary cells were grouped into three sub-clusters. Capillary-3 cells were enriched in the sham group, but declined sharply in the CLP.24 group. Capillary-1 cells peaked in the CLP.24 group, while Capillary-2 cells were enriched in the CLP.48 group. Furthermore, we found that Cd74+ Capillary-3 cells mainly participated in immune interactions. Plat+ Capillary-1 and Clec1a+ Capillary-2 are involved in various physiological processes. Regarding cell-cell interactions, Plat+ Capillary-1 plays the most critical role in granulocyte adherence to capillaries during ALI. Cd74+ Capillary cells expressing high levels of major histocompatibility complex (MHC) and mainly interacted with Cd8a+ T cells in the sham group. Conclusion: Plat+ capillaries are involved in the innate immune response through their interaction with neutrophils via ICAM-1 adhesion during endotoxemia, while Cd74+ capillaries epxressed high level of MHC proteins play a role in adaptive immune response through their interaction with T cells. However, it remains unclear whether the function of Cd74+ capillaries leans towards immunity or tolerance, and further studies are needed to confirm this.


Assuntos
Lesão Pulmonar Aguda , Endotoxemia , Sepse , Camundongos , Animais , Humanos , RNA/metabolismo , Capilares/metabolismo , Células Endoteliais/metabolismo , Endotoxemia/metabolismo , Pulmão/metabolismo , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/metabolismo , Sepse/complicações , Sepse/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA