Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 17.069
Filtrar
1.
Mol Biol Rep ; 51(1): 712, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824221

RESUMO

INTRODUCTION: Coronary artery disease (CAD) in young adults can have devastating consequences. The cardiac developmental gene MEIS1 plays important roles in vascular networks and heart development. This gene effects on the regeneration capacity of the heart. Considering role of MEIS1 in cardiac tissue development and the progression of myocardial infarction this study investigated the expression levels of the MEIS1, HIRA, and Myocardin genes in premature CAD patients compared to healthy subjects and evaluated the relationships between these genes and possible inflammatory factors. METHODS AND RESULTS: The study conducted a case-control design involving 35 CAD patients and 35 healthy individuals. Peripheral blood mononuclear cells (PBMCs) were collected, and gene expression analysis was performed using real-time PCR. Compared with control group, the number of PBMCs in the CAD group exhibited greater MEIS1 and HIRA gene expression, with fold changes of 2.45 and 3.6. The expression of MEIS1 exhibited a negative correlation with IL-10 (r= -0.312) expression and positive correlation with Interleukin (IL)-6 (r = 0.415) and tumor necrosis factor (TNF)-α (r = 0.534) gene expression. Moreover, there was an inverse correlation between the gene expression of HIRA and that of IL-10 (r= -0.326), and a positive correlation was revealed between the expression of this gene and that of the IL-6 (r = 0.453) and TNF-α (r = 0.572) genes. CONCLUSION: This research demonstrated a disparity in expression levels of MEIS1, HIRA, and Myocardin, between CAD and healthy subjects. The results showed that, MEIS1 and HIRA play significant roles in regulating the synthesis of proinflammatory cytokines, namely, TNF-α and IL-6.


Assuntos
Doença da Artéria Coronariana , Proteína Meis1 , Proteínas Nucleares , Transativadores , Humanos , Doença da Artéria Coronariana/genética , Feminino , Masculino , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteína Meis1/genética , Proteína Meis1/metabolismo , Transativadores/genética , Transativadores/metabolismo , Estudos de Casos e Controles , Adulto , Pessoa de Meia-Idade , Interleucina-6/genética , Interleucina-6/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Leucócitos Mononucleares/metabolismo , Interleucina-10/genética , Regulação da Expressão Gênica/genética , Expressão Gênica/genética
2.
Int Heart J ; 65(3): 498-505, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38825494

RESUMO

This study aimed to explore the expression of long non-coding RNA (lncRNA) nuclear paraspeckle assembly transcript 1 (NEAT1) in patients with acute myocardial infarction (AMI) and its inflammatory regulation mechanism through miR-211/interleukin 10 (IL-10) axis.A total of 75 participants were enrolled in this study: 25 healthy people in the control group, 25 patients with stable angina pectoris (SAP) in the SAP group, and 25 patients with AMI in the AMI group. Real-time qPCR was used to detect mRNA expression levels of NEAT1, miR-211, and IL-10. The interaction between miR-211, NEAT1, and IL-10 was confirmed by dual-luciferase reporter assay, and protein expression was detected using western blot.High expression of NEAT1 in peripheral blood mononuclear cells (PBMCs) of patients with AMI was negatively related to serum creatine kinase-MB (CK-MB), cardiac troponin I (cTnI), tumor necrosis factor-α (TNF-α), IL-6, and IL-1ß and was positively correlated with left ventricular ejection fraction (LVEF). In THP-1 cells, miR-211 was confirmed to target and inhibit IL-10 expression. NEAT1 knockdown and miR-211-mimic markedly decreased IL-10 protein levels, whereas anti-miR-211 markedly increased IL-10 protein levels. Importantly, miR-211 level was negatively related to NEAT1 and IL-10 levels, whereas IL-10 level was positively related to the level of NEAT1 expression in PBMCs of patients with AMI.LncRNA NEAT1 was highly expressed in PBMCs of patients with AMI, and NEAT1 suppressed inflammation via miR-211/IL-10 axis in PBMCs of patients with AMI.


Assuntos
Interleucina-10 , Leucócitos Mononucleares , MicroRNAs , Infarto do Miocárdio , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/sangue , MicroRNAs/sangue , MicroRNAs/genética , Interleucina-10/sangue , Interleucina-10/metabolismo , Infarto do Miocárdio/sangue , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Leucócitos Mononucleares/metabolismo , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Inflamação/genética , Inflamação/sangue , Inflamação/metabolismo , Estudos de Casos e Controles
3.
FASEB J ; 38(11): e23719, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38837828

RESUMO

Chronic disruption of circadian rhythms by night shift work is associated with an increased breast cancer risk. However, little is known about the impact of night shift on peripheral circadian genes (CGs) and circadian-controlled genes (CCGs) associated with breast cancer. Hence, we assessed central clock markers (melatonin and cortisol) in plasma, and peripheral CGs (PER1, PER2, PER3, and BMAL1) and CCGs (ESR1 and ESR2) in peripheral blood mononuclear cells (PBMCs). In day shift nurses (n = 12), 24-h rhythms of cortisol and melatonin were aligned with day shift-oriented light/dark schedules. The mRNA expression of PER2, PER3, BMAL1, and ESR2 showed 24-h rhythms with peak values in the morning. In contrast, night shift nurses (n = 10) lost 24-h rhythmicity of cortisol with a suppressed morning surge but retained normal rhythmic patterns of melatonin, leading to misalignment between cortisol and melatonin. Moreover, night shift nurses showed disruption of rhythmic expressions of PER2, PER3, BMAL1, and ESR2 genes, resulting in an impaired inverse correlation between PER2 and BMAL1 compared to day shift nurses. The observed trends of disrupted circadian markers were recapitulated in additional day (n = 20) and night (n = 19) shift nurses by measurement at early night and midnight time points. Taken together, this study demonstrated the misalignment of cortisol and melatonin, associated disruption of PER2 and ESR2 circadian expressions, and internal misalignment in peripheral circadian network in night shift nurses. Morning plasma cortisol and PER2, BMAL1, and ESR2 expressions in PBMCs may therefore be useful biomarkers of circadian disruption in shift workers.


Assuntos
Relógios Circadianos , Ritmo Circadiano , Hidrocortisona , Melatonina , Jornada de Trabalho em Turnos , Humanos , Feminino , Melatonina/metabolismo , Melatonina/sangue , Adulto , Jornada de Trabalho em Turnos/efeitos adversos , Relógios Circadianos/genética , Hidrocortisona/sangue , Hidrocortisona/metabolismo , Ritmo Circadiano/fisiologia , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Enfermeiras e Enfermeiros , Leucócitos Mononucleares/metabolismo , Receptor alfa de Estrogênio/metabolismo , Receptor alfa de Estrogênio/genética , Receptor beta de Estrogênio/metabolismo , Receptor beta de Estrogênio/genética , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Tolerância ao Trabalho Programado/fisiologia , Condições de Trabalho
4.
Cell Mol Biol (Noisy-le-grand) ; 70(6): 73-77, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38836679

RESUMO

GABBR1 receptors have been implicated in the progression of rheumatoid arthritis (RA), and p38 MAP kinase (MAPK) was shown to be downregulated by GABA and result in unchecked production of pro-inflammatory cytokine. GABBR1 is a member of GABA receptors, and it is known to be upregulated and plays a vital role in RA. Glucocorticoids are efficient therapeutics in rheumatoid arthritis (RA) and are known to regulate GABA actions; therefore, we intended to investigate the potential of glucocorticoids in RA concerning the potential pathway GABBR1/MAPK. Joint specimens were obtained from collagen-induced arthritis mouse model. A double-blind semi-quantitative analysis of vascularity, cell infiltration, as well as lining thickness by help of a 4-point scale setting was used to assess joint inflammation. Expression of GABBR1 and p38 was evaluated immunohistochemically. In vitro peripheral blood (PB), synovial fluid (SF), and mononuclear cells (MCs) were acquired from RA mice. Western blotting was used for detecting expression of GABBR1 and p38 proteins. The presence of high levels of GABBR1 and p38 was prevalent in RA joints relative to healthy joints and related to the inflammation level. Glucocorticoid treatment alters GABBR1 along with p38 protein expression in joints while reducing joint inflammation. Ex vivo and in vitro assays revealed glucocorticoids have a direct impact on p38, such as the decreased GABBR1 expression level after dexamethasone incubation with SFMC. GABBR1 together with p38 expression in RA joints depends on local inflammation and can be targeted by glucocorticoids.


Assuntos
Artrite Experimental , Artrite Reumatoide , Glucocorticoides , Proteínas Quinases p38 Ativadas por Mitógeno , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Animais , Glucocorticoides/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Artrite Experimental/tratamento farmacológico , Artrite Experimental/metabolismo , Artrite Experimental/patologia , Camundongos , Masculino , Articulações/patologia , Articulações/efeitos dos fármacos , Articulações/metabolismo , Camundongos Endogâmicos DBA , Líquido Sinovial/metabolismo , Líquido Sinovial/efeitos dos fármacos , Microambiente Celular/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/efeitos dos fármacos , Modelos Animais de Doenças
5.
Cell Biochem Funct ; 42(4): e4025, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38845083

RESUMO

Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease. Metabolic and mitochondrial dysregulation are critical causal factors in the pathogenesis and progression of RA. Mitochondrial dysfunction include abnormal energy metabolism, and excessive production of reactive oxygen species (ROS). This study aimed to investigate the adenosine triphosphate (ATP), mitochondrial membrane potential (ΔΨm), ROS, and mRNA expression level of ROMO1 (as ROS modulator) and OMA1 (as regulator mitochondrial dynamics) of peripheral blood mononuclear cells (PBMC) in RA patients. The study participants were 50 patients with RA and 50 sex- and age-matched healthy volunteers. PBMC of all participant were isolated by Ficoll-Paque. Alteration in ΔΨm and cellular ROS were measured using flow cytometry, ATP level was also assessed via luminometry, and ROMO1 and OMA1 mRNA expression via qRT-PCR assay. A significant decrease in ATP (p = .005) and ΔΨm (p < .001) was observed in the PBMC of RA compared to control. The ROS levels were significantly higher in the PBMC of RA compared to the control (p < .001). ROMO1 and OMA1 mRNA expression was also significantly increased in RA patients compared to control (p < .001). The decrease in ATP is strongly associated with ROS increasing in PBMC of RA patients, denoting an inverse and negative relationship between ATP and ROS production. Also, a decrease in ΔΨm was observed. It seems that in line with mitochondrial dysfunction in PBMC, increased expression of ROMO1 and OMA1 genes could also be involved in the development of RA.


Assuntos
Artrite Reumatoide , Leucócitos Mononucleares , Mitocôndrias , Espécies Reativas de Oxigênio , Humanos , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Leucócitos Mononucleares/metabolismo , Feminino , Masculino , Espécies Reativas de Oxigênio/metabolismo , Mitocôndrias/metabolismo , Pessoa de Meia-Idade , Biomarcadores/metabolismo , Biomarcadores/sangue , Trifosfato de Adenosina/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Adulto , Potencial da Membrana Mitocondrial , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , RNA Mensageiro/metabolismo , RNA Mensageiro/genética
6.
Sci Rep ; 14(1): 12872, 2024 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834577

RESUMO

The initial Phase-I single centre, single dose, randomized, double-blind, cross-over study was planned to assess the pharmacokinetic and pharmacodynamic bioequivalence of the trastuzumab biosimilar (MYL-1401O) compared to the reference Herceptin®. Their respective immunomodulation profile presented in this paper involved healthy males receiving a single infusion of both monoclonals, separated by a washout period. Sixty parameters were assessed in total, including serum cytokines, peripheral mononuclear cell (PBMC) subsets, cell activation and response to recall antigens and mitogen, pre- and post- infusion, as well as a cytokine release assay (CRA) at baseline. Trastuzumab infusion induced a transient and weak peak of serum IL-6 at 6 h, and a modulation of mononuclear cell subset profile and activation level, notably CD16 + cells. Except for CD8 + T cells, there were no significant differences between Herceptin® and MYL-1401O. In CRA, PBMC stimulated with MYL-1401O or Herceptin® similarly secreted IL-6, TNF-α, IL-1ß, GM-CSF, IFN-γ, and IL-10, but no or low level of IL-2. Interestingly, some observed adverse events correlated with IL-2 and IFN-γ in CRA. MYL-1401O exhibited a very similar immunomodulation profile to Herceptin®, strongly supporting its bioequivalence. This approach may thus be included in a proof-of-concept study. CRA may be used as a predictive assay for the evaluation of clinical monoclonals.


Assuntos
Medicamentos Biossimilares , Estudos Cross-Over , Citocinas , Equivalência Terapêutica , Trastuzumab , Humanos , Trastuzumab/farmacocinética , Medicamentos Biossimilares/farmacocinética , Medicamentos Biossimilares/administração & dosagem , Masculino , Adulto , Citocinas/metabolismo , Citocinas/sangue , Método Duplo-Cego , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/imunologia , Imunomodulação/efeitos dos fármacos , Adulto Jovem
7.
J Exp Med ; 221(8)2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38847806

RESUMO

Due to bladder tumors' contact with urine, urine-derived cells (UDCs) may serve as a surrogate for monitoring the tumor microenvironment (TME) in bladder cancer (BC). However, the composition of UDCs and the extent to which they mirror the tumor remain poorly characterized. We generated the first single-cell RNA-sequencing of BC patient UDCs with matched tumor and peripheral blood mononuclear cells (PBMC). BC urine was more cellular than healthy donor (HD) urine, containing multiple immune populations including myeloid cells, CD4+ and CD8+ T cells, natural killer (NK) cells, B cells, and dendritic cells (DCs) in addition to tumor and stromal cells. Immune UDCs were transcriptionally more similar to tumor than blood. UDCs encompassed cytotoxic and activated CD4+ T cells, exhausted and tissue-resident memory CD8+ T cells, macrophages, germinal-center-like B cells, tissue-resident and adaptive NK cells, and regulatory DCs found in tumor but lacking or absent in blood. Our findings suggest BC UDCs may be surrogates for the TME and serve as therapeutic biomarkers.


Assuntos
Microambiente Tumoral , Neoplasias da Bexiga Urinária , Neoplasias da Bexiga Urinária/imunologia , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia , Humanos , Microambiente Tumoral/imunologia , Masculino , Células Matadoras Naturais/imunologia , Feminino , Linfócitos T CD8-Positivos/imunologia , Idoso , Linfócitos T CD4-Positivos/imunologia , Análise de Célula Única/métodos , Células Dendríticas/imunologia , Pessoa de Meia-Idade , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , RNA-Seq , Análise da Expressão Gênica de Célula Única
8.
Front Immunol ; 15: 1376933, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38726007

RESUMO

Introduction: Systemic autoimmune diseases (SADs) are a significant burden on the healthcare system. Understanding the complexity of the peripheral immunophenotype in SADs may facilitate the differential diagnosis and identification of potential therapeutic targets. Methods: Single-cell mass cytometric immunophenotyping was performed on peripheral blood mononuclear cells (PBMCs) from healthy controls (HCs) and therapy-naive patients with rheumatoid arthritis (RA), progressive systemic sclerosis (SSc), and systemic lupus erythematosus (SLE). Immunophenotyping was performed on 15,387,165 CD45+ live single cells from 52 participants (13 cases/group), using an antibody panel to detect 34 markers. Results: Using the t-SNE (t-distributed stochastic neighbor embedding) algorithm, the following 17 main immune cell types were determined: CD4+/CD57- T cells, CD4+/CD57+ T cells, CD8+/CD161- T cells, CD8+/CD161+/CD28+ T cells, CD8dim T cells, CD3+/CD4-/CD8- T cells, TCRγ/δ T cells, CD4+ NKT cells, CD8+ NKT cells, classic NK cells, CD56dim/CD98dim cells, B cells, plasmablasts, monocytes, CD11cdim/CD172dim cells, myeloid dendritic cells (mDCs), and plasmacytoid dendritic cells (pDCs). Seven of the 17 main cell types exhibited statistically significant frequencies in the investigated groups. The expression levels of the 34 markers in the main populations were compared between HCs and SADs. In summary, 59 scatter plots showed significant differences in the expression intensities between at least two groups. Next, each immune cell population was divided into subpopulations (metaclusters) using the FlowSOM (self-organizing map) algorithm. Finally, 121 metaclusters (MCs) of the 10 main immune cell populations were found to have significant differences to classify diseases. The single-cell T-cell heterogeneity represented 64MCs based on the expression of 34 markers, and the frequency of 23 MCs differed significantly between at least twoconditions. The CD3- non-T-cell compartment contained 57 MCs with 17 MCs differentiating at least two investigated groups. In summary, we are the first to demonstrate the complexity of the immunophenotype of 34 markers over 15 million single cells in HCs vs. therapy-naive patients with RA, SSc, and SLE. Disease specific population frequencies or expression patterns of peripheral immune cells provide a single-cell data resource to the scientific community.


Assuntos
Artrite Reumatoide , Imunofenotipagem , Lúpus Eritematoso Sistêmico , Escleroderma Sistêmico , Análise de Célula Única , Humanos , Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/diagnóstico , Feminino , Análise de Célula Única/métodos , Artrite Reumatoide/imunologia , Artrite Reumatoide/diagnóstico , Pessoa de Meia-Idade , Adulto , Masculino , Escleroderma Sistêmico/imunologia , Idoso , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Biomarcadores
9.
Life Sci Alliance ; 7(7)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38724195

RESUMO

Toxoplasmosis is the most prevalent parasitic zoonosis worldwide, causing ocular and neurological diseases. No vaccine has been approved for human use. We evaluated the response of peripheral blood mononuclear cells (PBMCs) to a novel construct of Toxoplasma gondii total antigen in maltodextrin nanoparticles (NP/TE) in individuals with varying infectious statuses (uninfected, chronic asymptomatic, or ocular toxoplasmosis). We analyzed the concentration of IFN-γ after NP/TE ex vivo stimulation using ELISA and the immunophenotypes of CD4+ and CD8+ cell populations using flow cytometry. In addition, serotyping of individuals with toxoplasmosis was performed by ELISA using GRA6-derived polypeptides. Low doses of NP/TE stimulation (0.9 µg NP/0.3 µg TE) achieved IFN-γ-specific production in previously exposed human PBMCs without significant differences in the infecting serotype. Increased IFN-γ expression in CD4+ effector memory cell subsets was found in patients with ocular toxoplasmosis with NP/TE but not with TE alone. This is the first study to show how T-cell subsets respond to ex vivo stimulation with a vaccine candidate for human toxoplasmosis, providing crucial insights for future clinical trials.


Assuntos
Antígenos de Protozoários , Interferon gama , Ativação Linfocitária , Nanopartículas , Polissacarídeos , Toxoplasma , Toxoplasmose , Humanos , Nanopartículas/química , Polissacarídeos/imunologia , Toxoplasma/imunologia , Antígenos de Protozoários/imunologia , Toxoplasmose/imunologia , Interferon gama/metabolismo , Interferon gama/imunologia , Ativação Linfocitária/imunologia , Feminino , Adulto , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Masculino , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Pessoa de Meia-Idade
10.
Front Immunol ; 15: 1404121, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38720900

RESUMO

Pharmacodynamic assessment of T-cell-based cancer immunotherapies often focus on detecting rare circulating T-cell populations. The therapy-induced immune cells in blood-derived clinical samples are often present in very low frequencies and with the currently available T-cell analytical assays, amplification of the cells of interest prior to analysis is often required. Current approaches aiming to enrich antigen-specific T cells from human Peripheral Blood Mononuclear Cells (PBMCs) depend on in vitro culturing in presence of their cognate peptides and cytokines. In the present work, we improved a standard, publicly available protocol for T-cell immune analyses based on the in vitro expansion of T cells. We used PBMCs from healthy subjects and well-described viral antigens as a model system for optimizing the experimental procedures and conditions. Using the standard protocol, we first demonstrated significant enrichment of antigen-specific T cells, even when their starting frequency ex vivo was low. Importantly, this amplification occurred with high specificity, with no or neglectable enrichment of irrelevant T-cell clones being observed in the cultures. Testing of modified culturing timelines suggested that the protocol can be adjusted accordingly to allow for greater cell yield with strong preservation of the functionality of antigen-specific T cells. Overall, our work has led to the refinement of a standard protocol for in vitro stimulation of antigen-specific T cells and highlighted its reliability and reproducibility. We envision that the optimized protocol could be applied for longitudinal monitoring of rare blood-circulating T cells in scenarios with limited sample material.


Assuntos
Linfócitos T , Humanos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Antígenos Virais/imunologia , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Células Cultivadas , Vacinas Anticâncer/imunologia
11.
Front Endocrinol (Lausanne) ; 15: 1323168, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38706700

RESUMO

Background: Coronary artery disease (CAD) is a common complication of Type 2 diabetes mellitus (T2DM). Understanding the pathogenesis of this complication is essential in both diagnosis and management. Thus, this study aimed to characterize the presence of CAD in T2DM using molecular markers and pathway analyses. Methods: The study is a sex- and age-frequency matched case-control design comparing 23 unrelated adult Filipinos with T2DM-CAD to 23 controls (DM with CAD). Healthy controls served as a reference. Total RNA from peripheral blood mononuclear cells (PBMCs) underwent whole transcriptomic profiling using the Illumina HumanHT-12 v4.0 expression beadchip. Differential gene expression with gene ontogeny analyses was performed, with supporting correlational analyses using weighted correlation network analysis (WGCNA). Results: The study observed that 458 genes were differentially expressed between T2DM with and without CAD (FDR<0.05). The 5 top genes the transcription factor 3 (TCF3), allograft inflammatory factor 1 (AIF1), nuclear factor, interleukin 3 regulated (NFIL3), paired immunoglobulin-like type 2 receptor alpha (PILRA), and cytoskeleton-associated protein 4 (CKAP4) with AUCs >89%. Pathway analyses show differences in innate immunity activity, which centers on the myelocytic (neutrophilic/monocytic) theme. SNP-module analyses point to a possible causal dysfunction in innate immunity that triggers the CAD injury in T2DM. Conclusion: The study findings indicate the involvement of innate immunity in the development of T2DM-CAD, and potential immunity markers can reflect the occurrence of this injury. Further studies can verify the mechanistic hypothesis and use of the markers.


Assuntos
Doença da Artéria Coronariana , Diabetes Mellitus Tipo 2 , Perfilação da Expressão Gênica , Humanos , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/complicações , Doença da Artéria Coronariana/genética , Feminino , Masculino , Pessoa de Meia-Idade , Estudos de Casos e Controles , Transcriptoma , Idoso , Adulto , Leucócitos Mononucleares/metabolismo
12.
Sci Rep ; 14(1): 10175, 2024 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702356

RESUMO

Acute myocardial infarction (AMI) commonly precedes ventricular remodeling, heart failure. Few dynamic molecular signatures have gained widespread acceptance in mainstream clinical testing despite the discovery of many potential candidates. These unmet needs with respect to biomarker and drug discovery of AMI necessitate a prioritization. We enrolled patients with AMI aged between 30 and 70. RNA-seq analysis was performed on the peripheral blood mononuclear cells collected from the patients at three time points: 1 day, 7 days, and 3 months after AMI. PLC/LC-MS analysis was conducted on the peripheral blood plasma collected from these patients at the same three time points. Differential genes and metabolites between groups were screened by bio-informatics methods to understand the dynamic changes of AMI in different periods. We obtained 15 transcriptional and 95 metabolite expression profiles at three time points after AMI through high-throughput sequencing. AMI-1d: enrichment analysis revealed the biological features of 1 day after AMI primarily included acute inflammatory response, elevated glycerophospholipid metabolism, and decreased protein synthesis capacity. Phosphatidylcholine (PC) and phosphatidylethanolamine (PE) might stand promising biomarkers to differentiate post-AMI stage. Anti-inflammatory therapy during the acute phase is an important direction for preventing related pathology. AMI-7d: the biological features of this stage primarily involved the initiation of cardiac fibrosis response and activation of platelet adhesion pathways. Accompanied by upregulated TGF-beta signaling pathway and ECM receptor interaction, GP5 help assess platelet activation, a potential therapeutic target to improve haemostasis. AMI-3m: the biological features of 3 months after AMI primarily showed a vascular regeneration response with VEGF signaling pathway, NOS3 and SHC2 widely activated, which holds promise for providing new therapeutic approaches for AMI. Our analysis highlights transcriptional and metabolomics signatures at different time points after MI, which deepens our understanding of the dynamic biological responses and associated molecular mechanisms that occur during cardiac repair.


Assuntos
Metabolômica , Infarto do Miocárdio , Humanos , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/genética , Infarto do Miocárdio/sangue , Pessoa de Meia-Idade , Masculino , Feminino , Metabolômica/métodos , Idoso , Adulto , Transcriptoma , Biomarcadores/metabolismo , Biomarcadores/sangue , Leucócitos Mononucleares/metabolismo , Perfilação da Expressão Gênica
13.
Methods Cell Biol ; 186: 1-24, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38705595

RESUMO

Broadly speaking, cell tracking dyes are fluorescent compounds that bind stably to components on or within the cells so the fate of the labeled cells can be followed. Their staining should be bright and homogeneous without affecting cell function. For purposes of monitoring cell proliferation, each time a cell divides the intensity of cell tracking dye should diminish equally between daughter cells. These dyes can be grouped into two different classes. Protein reactive dyes label cells by reacting covalently but non-selectively with intracellular proteins. Carboxyfluorescein diacetate succinimidyl ester (CFSE) is the prototypic general protein label. Membrane intercalating dyes label cells by partitioning non-selectively and non-covalently within the plasma membrane. The PKH membrane dyes are examples of lipophilic compounds whose chemistry allows for their retention within biological membranes without affecting cellular growth, viability, or proliferation when used properly. Here we provide considerations based for labeling cell lines and peripheral blood mononuclear cells using both classes of dyes. Examples from optimization experiments are presented along with critical aspects of the staining procedures to help mitigate common risks. Of note, we present data where a logarithmically growing cell line is labeled with both a protein dye and a membrane tracking dye to compare dye loss rates over 6days. We found that dual stained cells paralleled dye loss of the corresponding single stained cells. The decrease in fluorescence intensity by protein reactive dyes, however, was more rapid than that with the membrane reactive dyes, indicating the presence of additional division-independent dye loss.


Assuntos
Proliferação de Células , Fluoresceínas , Corantes Fluorescentes , Coloração e Rotulagem , Succinimidas , Humanos , Corantes Fluorescentes/química , Fluoresceínas/química , Succinimidas/química , Coloração e Rotulagem/métodos , Rastreamento de Células/métodos , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/metabolismo , Animais , Membrana Celular/metabolismo , Membrana Celular/química
14.
J Orthop Surg Res ; 19(1): 323, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38811966

RESUMO

BACKGROUND: To investigate the effect and underlying mechanism of umbilical cord blood-mononuclear cells (UCB-MNCs) in treating knee osteoarthritis (KOA) in rabbits. METHODS: A rabbit KOA model was prepared by anterior cruciate ligament transection (ACLT). Fifty New Zealand white rabbits were randomly divided into the control group, model group, sodium hyaluronate (SH) group, platelet-rich plasma (PRP) group and UCB-MNC group. Knee injections were performed once a week for five consecutive weeks. The gross view of the knee joint, morphology of knee cartilage and structural changes in the knee joint were observed on CT scans, and graded by the Lequesne MG behavioral score and the Mankin score. TNF-α and IL-1ß levels in the synovial fluid of the knee were measured by the enzyme-linked immunosorbent assay (ELISA). Expression levels of MMP-13 and COL-II in the knee cartilage were detected by Western blotting and qRT-PCR. RESULTS: The Lequesne MG behavioral score and the Mankin score were significantly higher in the model group than those in the control group (P < 0.05). Rabbits in the SH, PRP and UCB-MNC groups had sequentially lower scores than those in the model group. Imaging features of KOA were more pronounced in the model group than in the remaining groups. CB-MNC significantly relieved KOA, compared to SH and PRP. Significantly higher levels of TNF-α and IL-1ß in the synovial fluid of the knee, and up-regulated MMP-13 and down-regulated COL-II in the knee cartilage were detected in the model group than in the control group. These changes were significantly reversed by the treatment with SH, PRP and UCB-MNCs, especially UCB-MNCs. CONCLUSION: Injections of UCB-MNCs into knees protect the articular cartilage and hinder the progression of KOA in rabbits by improving the local microenvironment at knee joints.


Assuntos
Osteoartrite do Joelho , Animais , Coelhos , Osteoartrite do Joelho/terapia , Osteoartrite do Joelho/patologia , Sangue Fetal , Modelos Animais de Doenças , Masculino , Leucócitos Mononucleares/transplante , Leucócitos Mononucleares/metabolismo , Interleucina-1beta/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Líquido Sinovial/metabolismo , Plasma Rico em Plaquetas , Transplante de Células-Tronco de Sangue do Cordão Umbilical/métodos , Distribuição Aleatória
15.
BMC Complement Med Ther ; 24(1): 186, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734604

RESUMO

BACKGROUND: Cepharanthin® alone or in combination with glucocorticoid (GC) has been used to treat chronic immune thrombocytopenia (ITP) since the 1990s. Cepharanthine (CEP) is one of the main active components of Cepharanthin®. The purpose of this study was to investigate the effects of CEP on GC pharmacodynamics on immune cells and analyse the possible action mechanism of their interactions. METHODS: Peripheral blood mononuclear cells (PBMCs), T lymphocytic leukemia MOLT-4 cells and daunorubicin resistant MOLT-4 cells (MOLT-4/DNR) were used to evaluate the pharmacodynamics and molecular mechanisms. Drug pharmacodynamics was evaluated by WST-8 assay. P-glycoprotein function was examined by rhodamine 123 assay. CD4+CD25+Foxp3+ regulatory T cells and Th1/Th2/Th17 cytokines were detected by flow cytometry. P-glycoprotein expression and GC receptor translocation were examined by Western blot. RESULTS: CEP synergistically increased methylprednisolone (MP) efficacy with the suppressive effect on the cell viability of PBMCs. 0.3 and 1 µM of CEP significantly inhibited P-glycoprotein efflux function of CD4+ cells, CD8+ cells, and lymphocytes (P<0.05). 0.03~3 µM of CEP also inhibited the P-glycoprotein efflux function in MOLT-4/DNR cells in a concentration-dependent manner (P<0.001). However, 0.03~3 µM of CEP did not influence P-glycoprotein expression. 0.03~0.3 µM of CEP significantly increased the GC receptor distribution from the cytoplasm to the nucleus in a concentration-dependent manner in MOLT-4/DNR cells. The combination did not influence the frequency of CD4+, CD4+CD25+ and CD4+CD25+Foxp3+ T cells or the secretion of Th1/Th2/Th17 cytokines from PBMCs. In contrast, CEP alone at 1 µM decreased the percentage of CD4+ T cell significantly (P<0.01). It also inhibited the secretion of IL-6, IL-10, IL-17, TNF-α, and IFN-γ. CONCLUSIONS: CEP synergistically promoted MP pharmacodynamics to decrease the cell viability of the mitogen-activated PBMCs, possibly via inhibiting P-glycoprotein function and potentiating GC receptor translocation. The present study provides new evidence of the therapeutic effect of Cepharanthin® alone or in combination with GC for the management of chronic ITP.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Benzilisoquinolinas , Sinergismo Farmacológico , Leucócitos Mononucleares , Metilprednisolona , Receptores de Glucocorticoides , Humanos , Benzilisoquinolinas/farmacologia , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Metilprednisolona/farmacologia , Receptores de Glucocorticoides/metabolismo , Benzodioxóis
16.
Cell Commun Signal ; 22(1): 264, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734696

RESUMO

BACKGROUND: Traditional biomarkers of chronic kidney disease (CKD) detect the disease in its late stages and hardly predict associated vascular damage. Integrin-linked kinase (ILK) is a scaffolding protein and a serine/threonine protein kinase that plays multiple roles in several pathophysiological processes during renal damage. However, the involvement of ILK as a biomarker of CKD and its associated vascular problems remains to be fully elucidated. METHODS: CKD was induced by an adenine-rich diet for 6 weeks in mice. We used an inducible ILK knockdown mice (cKD-ILK) model to decrease ILK expression. ILK content in mice's peripheral blood mononuclear cells (PBMCs) was determined and correlated with renal function parameters and with the expression of ILK and fibrosis and inflammation markers in renal and aortic tissues. Also, the expression of five miRNAs that target ILK was analyzed in whole blood of mice. RESULTS: The adenine diet increased ILK expression in PBMCs, renal cortex, and aortas, and creatinine and urea nitrogen concentrations in the plasma of WT mice, while these increases were not observed in cKD-ILK mice. Furthermore, ILK content in PBMCs directly correlated with renal function parameters and with the expression of renal and vascular ILK and fibrosis and inflammation markers. Finally, the expression of the five miRNAs increased in the whole blood of adenine-fed mice, although only four correlated with plasma urea nitrogen, and of those, three were downregulated in cKD-ILK mice. CONCLUSIONS: ILK, in circulating mononuclear cells, could be a potential biomarker of CKD and CKD-associated renal and vascular damage.


Assuntos
Biomarcadores , Rim , Leucócitos Mononucleares , Proteínas Serina-Treonina Quinases , RNA Mensageiro , Insuficiência Renal Crônica , Animais , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/patologia , Leucócitos Mononucleares/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Biomarcadores/metabolismo , Biomarcadores/sangue , Camundongos , Rim/patologia , Rim/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Masculino , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/sangue , MicroRNAs/metabolismo , Modelos Animais de Doenças , Fibrose
17.
Mol Biol Rep ; 51(1): 651, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734860

RESUMO

BACKGROUND: Canine atopic dermatitis (CAD) is a common genetically predisposed, inflammatory, and pruritic skin disorder that affects dogs globally. To date, there are no specific biomarkers available to diagnose CAD, and the current diagnosis is based on a combination of criteria including patient history, clinical signs, and exclusion of other relevant differential diagnoses. METHODS AND RESULTS: We examined the gene expression of phosphodiesterase 4D (PDE4D) in peripheral blood mononuclear cells (PBMCs), as well as miR-203 and miR-483 in plasma, in three groups: healthy dogs, CAD dogs, and other inflammatory pruritic skin diseases (OIPSD) such as pemphigus foliaceus, scabies, cutaneous lymphoma, and dermatophytosis. Our results showed that PDE4D gene expression in the CAD group is statistically higher compared to those in the healthy and OIPSD groups, suggesting PDE4D may be a specific marker for CAD. Nevertheless, no correlation was found between PDE4D gene expression levels and the lesion severity gauged by CAD severity index-4 (CADESI-4). We also showed that miR-203 is a generic marker for clinical dermatitis and differentiates both CAD and OIPSD inflammatory conditions from healthy controls. CONCLUSIONS: We show that PDE4D is a potential marker to differentiate CAD from non-atopic healthy and OIPSD while miR-203 may be a potential marker for general dermatologic inflammation. Future study of PDE4D and miR-203 on a larger scale is warranted.


Assuntos
Biomarcadores , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4 , Dermatite Atópica , Doenças do Cão , MicroRNAs , Dermatite Atópica/genética , Dermatite Atópica/veterinária , Dermatite Atópica/sangue , Dermatite Atópica/diagnóstico , Animais , Cães , MicroRNAs/genética , MicroRNAs/sangue , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Biomarcadores/sangue , Doenças do Cão/genética , Doenças do Cão/diagnóstico , Doenças do Cão/sangue , Masculino , Leucócitos Mononucleares/metabolismo , Feminino
18.
Sci Rep ; 14(1): 11057, 2024 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744942

RESUMO

Circulating tumor cells (CTCs) are tumor cells that separate from the solid tumor and enter the bloodstream, which can cause metastasis. Detection and enumeration of CTCs show promising potential as a predictor for prognosis in cancer patients. Furthermore, single-cells sequencing is a technique that provides genetic information from individual cells and allows to classify them precisely and reliably. Sequencing data typically comprises thousands of gene expression reads per cell, which artificial intelligence algorithms can accurately analyze. This work presents machine-learning-based classifiers that differentiate CTCs from peripheral blood mononuclear cells (PBMCs) based on single cell RNA sequencing data. We developed four tree-based models and we trained and tested them on a dataset consisting of Smart-Seq2 sequenced data from primary tumor sections of breast cancer patients and PBMCs and on a public dataset with manually annotated CTC expression profiles from 34 metastatic breast patients, including triple-negative breast cancer. Our best models achieved about 95% balanced accuracy on the CTC test set on per cell basis, correctly detecting 133 out of 138 CTCs and CTC-PBMC clusters. Considering the non-invasive character of the liquid biopsy examination and our accurate results, we can conclude that our work has potential application value.


Assuntos
Neoplasias da Mama , Aprendizado de Máquina , Células Neoplásicas Circulantes , Humanos , Células Neoplásicas Circulantes/metabolismo , Células Neoplásicas Circulantes/patologia , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/sangue , Análise de Célula Única/métodos , Leucócitos Mononucleares/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/diagnóstico , Análise de Sequência de RNA/métodos , Algoritmos , Biomarcadores Tumorais/genética
19.
Arthritis Res Ther ; 26(1): 101, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745331

RESUMO

BACKGROUND: The purpose of this study was to investigate the role of macrophage polarization in the pathogenesis of primary Sjogren's syndrome (pSS). METHODS: Peripheral venous blood samples were collected from 30 patients with pSS and 30 healthy controls. Minor salivary gland samples were abtainted from 10 of these patients and 10 non-pSS controls whose minor salivary gland didn't fulfill the classification criteria for pSS. Enzyme-linked immuno sorbent assay was used to examine the serum concentration of M1/M2 macrophage related cytokines (TNF-a, IL-6, IL-23, IL-4, IL-10 and TGF-ß). Flow cytometry was used to examine the numbers of CD86+ M1 macrophages and CD206+ M2 macrophages in peripheral blood mononuclear cells (PBMCs). Immunofluorescence was used to test the infiltration of macrophages in minor salivary glands. RESULTS: This study observed a significant increase in pSS patients both in the numbers of M1 macrophages in peripheral blood and serum levels of M1-related pro-inflammatory cytokines (IL-6, IL-23 and TNF-α). Conversely, M2 macrophages were downregulated in the peripheral blood of pSS patients. Similarly, in the minor salivary glands of pSS patients, the expression of M1 macrophages was increased, and that of M2 macrophages was decreased. Furthermore, a significantly positive correlation was found between the proportions of M1 macrophages in PBMCs and serum levels of IgG and RF. CONCLUSIONS: This study reveals the presence of an significant imbalance in M1/M2 macrophages in pSS patients. The M1 polarization of macrophages may play an central role in the pathogenesis of pSS.


Assuntos
Citocinas , Macrófagos , Síndrome de Sjogren , Síndrome de Sjogren/imunologia , Síndrome de Sjogren/sangue , Síndrome de Sjogren/patologia , Humanos , Macrófagos/imunologia , Macrófagos/metabolismo , Feminino , Pessoa de Meia-Idade , Citocinas/sangue , Citocinas/metabolismo , Masculino , Adulto , Citometria de Fluxo , Idoso , Polaridade Celular , Ensaio de Imunoadsorção Enzimática , Ativação de Macrófagos/imunologia , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/imunologia
20.
Sci Rep ; 14(1): 11179, 2024 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-38750069

RESUMO

During a SARS-CoV-2 infection, macrophages recognize viral components resulting in cytokine production. While this response fuels virus elimination, overexpression of cytokines can lead to severe COVID-19. Previous studies suggest that the spike protein (S) of SARS-CoV-2 can elicit cytokine production via the transcription factor NF-κB and the toll-like receptors (TLRs). In this study, we found that: (i) S and the S2 subunit induce CXCL10, a chemokine implicated in severe COVID-19, gene expression by human macrophage cells (THP-1); (ii) a glycogen synthase kinase-3 inhibitor attenuates this induction; (iii) S and S2 do not activate NF-κB but do activate the transcription factor IRF; (iv) S and S2 do not require TLR2 to elicit CXCL10 production or activate IRF; and (v) S and S2 elicit CXCL10 production by peripheral blood mononuclear cells (PBMCs). We also discovered that the cellular response, or lack thereof, to S and S2 is a function of the recombinant S and S2 used. While such a finding raises the possibility of confounding LPS contamination, we offer evidence that potential contaminating LPS does not underly induced increases in CXCL10. Combined, these results provide insights into the complex immune response to SARS-CoV-2 and suggest possible therapeutic targets for severe COVID-19.


Assuntos
COVID-19 , Quimiocina CXCL10 , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Quimiocina CXCL10/metabolismo , Humanos , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/imunologia , COVID-19/virologia , COVID-19/imunologia , COVID-19/metabolismo , Macrófagos/metabolismo , Macrófagos/imunologia , Macrófagos/virologia , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/virologia , NF-kappa B/metabolismo , Células THP-1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA