Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.369
Filtrar
1.
Brain Behav ; 14(5): e3527, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38702898

RESUMO

PURPOSE: Sequential working memory is the ability to maintain and manipulate sequential information at a second time scale. Patients with progressive supranuclear palsy (PSP) or Parkinson's disease (PD) perform poorly in tests that require the flexible arrangement of thoughts or actions. This study investigated whether sequential working memory is differently impaired in patients with PSP versus PD. METHOD: Twenty-nine patients with PSP Richardson's syndrome (PSP-RS), 36 patients with PD, and 36 healthy controls (HC) completed 3 well-established neuropsychological tests, including digit span forward (DST-F), digit span backward (DST-B), and adaptive digit ordering tests (DOT-A). The DST-F required maintaining digit sequences, and the DST-B and DOT-A required maintaining and manipulating digit sequences. FINDING: The PSP-RS group scored lower than the PD and HC groups in the DST-B and DOT-A but not in the DST-F, indicating that the ability to manipulate sequences was impaired, but the maintenance ability was preserved in PSP-RS patients. Moreover, in PSP-RS, the DST-B score negatively correlated with the severity of motor symptoms. The actual levodopa dose positively correlated with the DST-B ordering cost (DST-F score vs. DST-B score). The PSP patients who took a greater dose of levodopa tended to have higher DST-B ordering cost. There was no effect of levodopa on DST-B or DOT-A in PD. CONCLUSION: These results suggested that the ability to manipulate sequence was already reduced in patients with PSP-RS and was worse than in patients with PD.


Assuntos
Memória de Curto Prazo , Doença de Parkinson , Paralisia Supranuclear Progressiva , Humanos , Paralisia Supranuclear Progressiva/fisiopatologia , Paralisia Supranuclear Progressiva/tratamento farmacológico , Masculino , Feminino , Idoso , Doença de Parkinson/fisiopatologia , Doença de Parkinson/tratamento farmacológico , Pessoa de Meia-Idade , Memória de Curto Prazo/fisiologia , Testes Neuropsicológicos , Levodopa/administração & dosagem , Levodopa/farmacologia , Levodopa/uso terapêutico
2.
Bull Exp Biol Med ; 176(5): 533-538, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38722506

RESUMO

We performed a comparative analysis of direct and mediated through the maternal organism effects of elevated catecholamine concentration on changes in the cardiac activity parameters in female rats and their fetuses on gestation days 18 and 20 under in vivo conditions. Administration of L-DOPA, a precursor of catecholaminergic transmitters, did not cause chronotropic effects in fetuses. Analysis of HR variability showed that in fetuses, irrespective of the administration route, there was an increase in nervous influences while the leading role of humoral-metabolic factors in the regulation of HR was preserved. In females receiving L-DOPA injection on day 18 of gestation, a decrease in humoral-metabolic and an increase in nerve effects were observed; in rats injected with L-DOPA on day 20 of gestation, an increase in sympathetic influences was found. Administration of L-DOPA to fetuses provoked a slight increase in the power of all components of the heart rhythm periodogram spectrum in females on day 18 of gestation and their decrease on day 20. Changes in the parameters of HR variability in females can confirm the hypothesis that in the "mother-fetus" system, the heart rhythm in the mother can be affected by both maternal and fetal influences presumably through the humoral-metabolic regulation.


Assuntos
Catecolaminas , Feto , Levodopa , Animais , Feminino , Ratos , Gravidez , Levodopa/farmacologia , Catecolaminas/metabolismo , Feto/metabolismo , Feto/efeitos dos fármacos , Frequência Cardíaca/efeitos dos fármacos , Frequência Cardíaca/fisiologia , Ratos Wistar , Frequência Cardíaca Fetal/efeitos dos fármacos , Frequência Cardíaca Fetal/fisiologia
3.
Int J Mol Sci ; 25(10)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38791173

RESUMO

Astrocytes actively participate in neurotransmitter homeostasis by bidirectional communication with neuronal cells, a concept named the tripartite synapse, yet their role in dopamine (DA) homeostasis remains understudied. In the present study, we investigated the kinetic and molecular mechanisms of DA transport in cultured striatal astrocytes of adult rats. Kinetic uptake experiments were performed using radiolabeled [3H]-DA, whereas mRNA expression of the dopamine, norepinephrine, organic cation and plasma membrane monoamine transporters (DAT, NET, OCTs and PMAT) and DA receptors D1 and D2 was determined by qPCR. Additionally, astrocyte cultures were subjected to a 24 h treatment with the DA receptor agonist apomorphine, the DA receptor antagonist haloperidol and the DA precursor L-DOPA. [3H]-DA uptake exhibited temperature, concentration and sodium dependence, with potent inhibition by desipramine, nortriptyline and decynium-22, suggesting the involvement of multiple transporters. qPCR revealed prominent mRNA expression of the NET, the PMAT and OCT1, alongside lower levels of mRNA for OCT2, OCT3 and the DAT. Notably, apomorphine significantly altered NET, PMAT and D1 mRNA expression, while haloperidol and L-DOPA had a modest impact. Our findings demonstrate that striatal astrocytes aid in DA clearance by multiple transporters, which are influenced by dopaminergic drugs. Our study enhances the understanding of regional DA uptake, paving the way for targeted therapeutic interventions in dopaminergic disorders.


Assuntos
Astrócitos , Corpo Estriado , Dopamina , Animais , Astrócitos/metabolismo , Astrócitos/efeitos dos fármacos , Dopamina/metabolismo , Ratos , Corpo Estriado/metabolismo , Corpo Estriado/efeitos dos fármacos , Haloperidol/farmacologia , Cinética , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Apomorfina/farmacologia , Células Cultivadas , Masculino , Receptores de Dopamina D1/metabolismo , Transporte Biológico/efeitos dos fármacos , Levodopa/farmacologia
4.
Free Radic Biol Med ; 220: 167-178, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38718952

RESUMO

Many studies show either the absence, or very low levels of, SARS-CoV-2 viral RNA and/or antigen in the brain of COVID-19 patients. Reports consistently indicate an abortive infection phenomenon in nervous cells despite the fact that they contain the SARS-CoV-2 receptor, ACE2. Dopamine levels in different brain regions are in the range of micromolar to millimolar concentrations. We have shown that sub-micromolar to low micromolar concentrations of dopamine or its precursor (levodopa) time- and dose-dependently inhibit the activity of SARS-CoV-2 main protease (Mpro), which is vital for the viral life cycle, by forming a quinoprotein. Thiol detection coupled with the assessment of Mpro activity suggests that among the 12 cysteinyl thiols, the active site, Cys145-SH, is preferentially conjugated to the quinone derived from the oxidation of dopamine or levodopa. LC-MS/MS analyses show that the Cys145-SH is covalently conjugated by dopamine- or levodopa-o-quinone. These findings help explain why SARS-CoV-2 causes inefficient replication in many nerve cell lines. It is well recognized that inhaled pulmonary drug delivery is the most robust therapy pathway for lung diseases. CVT-301 (orally inhaled levodopa) was approved by the FDA as a drug for Parkinson's patients prior to the outbreak of COVID-19 in 2018. Based on the fact that SARS-CoV-2 causes inefficient replication in the CNS with abundant endogenous Mpro inhibitor in addition to the current finding that levodopa has an Mpro-inhibitory effect somewhat stronger than dopamine, we should urgently investigate the use of CVT-301 as a lung-targeting, COVID-19, Mpro inhibitor.


Assuntos
COVID-19 , Dopamina , Levodopa , SARS-CoV-2 , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/metabolismo , Humanos , Dopamina/metabolismo , Dopamina/farmacologia , Levodopa/farmacologia , Levodopa/metabolismo , COVID-19/virologia , COVID-19/metabolismo , Proteases 3C de Coronavírus/metabolismo , Proteases 3C de Coronavírus/antagonistas & inibidores , Tratamento Farmacológico da COVID-19
5.
Physiol Behav ; 281: 114563, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38723388

RESUMO

Parkinson's Disease (PD) is a neurodegenerative movement disorder characterized by dopamine (DA) cell loss in the substantia nigra pars compacta (SNc). As PD progresses, patients display disruptions in gait such as changes in posture, bradykinesia, and shortened stride. DA replacement via L-DOPA alleviates many PD symptoms, though its effects on gait are not well demonstrated. This study aimed to assess the relationship between DA lesion, gait, and deficit-induced reversal with L-DOPA. To do so, Sprague-Dawley rats (N = 25, 14 males, 11 females) received unilateral medial forebrain bundle (MFB) DA lesions with 6-hydroxydopamine (6-OHDA). An automated gait analysis system assessed spatiotemporal gait parameters pre- and post-lesion, and after various doses of L-DOPA (0, 3, or 6 mg/kg; s.c.). The forepaw adjusting steps (FAS) test was implemented to evaluate lesion efficacy while the abnormal involuntary movements (AIMs) scale monitored the emergence of L-DOPA-induced dyskinesia (LID). High performance liquid chromatography (HPLC) assessed changes in brain monoamines on account of lesion and treatment. Results revealed lesion-induced impairments in gait, inclusive of max-contact area and step-sequence alterations that were not reversible with L-DOPA. However, the emergence of AIMs were observed at higher doses. Post-mortem, 6-OHDA lesions induced a loss of striatal DA and norepinephrine (NE), while prefrontal cortex (PFC) displayed noticeable reduction in NE but not DA. Our findings indicate that hemiparkinsonian rats display measurable gait disturbances similar to PD patients that are not rescued by DA replacement. Furthermore, non-DA mechanisms such as attention-related NE in PFC may contribute to altered gait and may constitute a novel target for its treatment.


Assuntos
Transtornos Neurológicos da Marcha , Levodopa , Oxidopamina , Ratos Sprague-Dawley , Animais , Levodopa/farmacologia , Levodopa/efeitos adversos , Masculino , Feminino , Ratos , Transtornos Neurológicos da Marcha/induzido quimicamente , Transtornos Neurológicos da Marcha/tratamento farmacológico , Transtornos Neurológicos da Marcha/etiologia , Antiparkinsonianos/farmacologia , Modelos Animais de Doenças , Feixe Prosencefálico Mediano/efeitos dos fármacos , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/tratamento farmacológico , Transtornos Parkinsonianos/fisiopatologia , Transtornos Parkinsonianos/patologia , Dopamina/metabolismo , Relação Dose-Resposta a Droga , Lateralidade Funcional/efeitos dos fármacos , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/patologia , Doença de Parkinson/fisiopatologia , Marcha/efeitos dos fármacos , Discinesia Induzida por Medicamentos
6.
J Parkinsons Dis ; 14(4): 843-853, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38728203

RESUMO

Background: Gait issues, including reduced speed, stride length and freezing of gait (FoG), are disabling in advanced phases of Parkinson's disease (PD), and their treatment is challenging. Levodopa/carbidopa intestinal gel (LCIG) can improve these symptoms in PD patients with suboptimal control of motor fluctuations, but it is unclear if continuous dopaminergic stimulation can further improve gait issues, independently from reducing Off-time. Objective: To analyze before (T0) and after 3 (T1) and 6 (T2) months of LCIG initiation: a) the objective improvement of gait and balance; b) the improvement of FoG severity; c) the improvement of motor complications and their correlation with changes in gait parameters and FoG severity. Methods: This prospective, longitudinal 6-months study analyzed quantitative gait parameters using wearable inertial sensors, FoG with the New Freezing of Gait Questionnaire (NFoG-Q), and motor complications, as per the MDS-UPDRS part IV scores. Results: Gait speed and stride length increased and duration of Timed up and Go and of sit-to-stand transition was significantly reduced comparing T0 with T2, but not between T0-T1. NFoG-Q score decreased significantly from 19.3±4.6 (T0) to 11.8±7.9 (T1) and 8.4±7.6 (T2) (T1-T0 p = 0.018; T2-T0 p < 0.001). Improvement of MDS-UPDRS-IV (T0-T2, p = 0.002, T0-T1 p = 0.024) was not correlated with improvement of gait parameters and NFoG-Q from T0 to T2. LEDD did not change significantly after LCIG initiation. Conclusion: Continuous dopaminergic stimulation provided by LCIG infusion progressively ameliorates gait and alleviates FoG in PD patients over time, independently from improvement of motor fluctuations and without increase of daily dosage of dopaminergic therapy.


Assuntos
Antiparkinsonianos , Carbidopa , Combinação de Medicamentos , Transtornos Neurológicos da Marcha , Géis , Levodopa , Doença de Parkinson , Humanos , Levodopa/administração & dosagem , Levodopa/farmacologia , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/complicações , Doença de Parkinson/fisiopatologia , Masculino , Idoso , Feminino , Pessoa de Meia-Idade , Transtornos Neurológicos da Marcha/etiologia , Transtornos Neurológicos da Marcha/tratamento farmacológico , Transtornos Neurológicos da Marcha/fisiopatologia , Estudos Longitudinais , Carbidopa/administração & dosagem , Carbidopa/farmacologia , Estudos Prospectivos , Antiparkinsonianos/administração & dosagem , Antiparkinsonianos/farmacologia
7.
CNS Drugs ; 38(5): 315-331, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38570412

RESUMO

The concept of a 'microbiota-gut-brain axis' has recently emerged as an important player in the pathophysiology of Parkinson disease (PD), not least because of the reciprocal interaction between gut bacteria and medications. The gut microbiota can influence levodopa kinetics, and conversely, drugs administered for PD can influence gut microbiota composition. Through a two-step enzymatic pathway, gut microbes can decarboxylate levodopa to dopamine in the small intestine and then dehydroxylate it to m-tyramine, thus reducing availability. Inhibition of bacterial decarboxylation pathways could therefore represent a strategy to increase levodopa absorption. Other bacterial perturbations common in PD, such as small intestinal bacterial overgrowth and Helicobacter pylori infection, can also modulate levodopa metabolism, and eradication therapies may improve levodopa absorption. Interventions targeting the gut microbiota offer a novel opportunity to manage disabling motor complications and dopa-unresponsive symptoms. Mediterranean diet-induced changes in gut microbiota composition might improve a range of non-motor symptoms. Prebiotics can increase levels of short-chain fatty acid-producing bacteria and decrease pro-inflammatory species, with positive effects on clinical symptoms and levodopa kinetics. Different formulations of probiotics showed beneficial outcomes on constipation, with some of them improving dopamine levels; however, the most effective dosage and duration and long-term effects of these treatments remain unknown. Data from faecal microbiota transplantation studies are preliminary, but show encouraging trends towards improvement in both motor and non-motor outcomes.This article summarises the most up-to-date knowledge in pharmacomicrobiomics in PD, and discusses how the manipulation of gut microbiota represents a potential new therapeutic avenue for PD.


Assuntos
Microbioma Gastrointestinal , Infecções por Helicobacter , Helicobacter pylori , Doença de Parkinson , Humanos , Doença de Parkinson/tratamento farmacológico , Microbioma Gastrointestinal/fisiologia , Levodopa/farmacologia , Dopamina
8.
Colloids Surf B Biointerfaces ; 238: 113908, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38677153

RESUMO

In response to the critical demand for advancements in coronary artery stents, this study addresses the challenges associated with arterial recoil and restenosis post-angioplasty and the imperative to encourage rapid re-endothelialization for minimizing thrombosis risks. We employed an innovative approach inspired by mussel adhesion, incorporating placental anticoagulant protein (AnnexinV) on stent design. The introduction of a post-translationally modified catecholic amino acid L-3,4-dihydroxyphenylalanine (L-Dopa), mimicking mussel characteristics, allowed for effective surface modification of Stainless steel stents through genetic code engineering in AnnexinV (AnxDopa). The efficacy of AnxDopa was analyzed through microscale thermophoresis and flow cytometry, confirming AnxDopa's exceptional binding with phosphatidylserine and activated platelets. AnxDopa coated stainless steel demonstrates remarkable bio-, hemo-, and immuno-compatibility, preventing smooth muscle cell proliferation, platelet adhesion, and fibrin formation. It acts as an interface between the stent and biological fluid, which facilitates the anticoagulation and rapid endothelialization. Surface modification of SS verified through XPS analysis and contact angle measurement attests to the efficacy of AnxDopa mediated surface modification. The hydrophilic nature of the AnxDopa-coated surface enhanced the endothelialization through increased protein absorption. This approach represents a significant stride in developing coronary stents with improved biocompatibility and reduced restenosis risks, offering valuable contributions to scientific and clinical realms alike.


Assuntos
Materiais Revestidos Biocompatíveis , Stents , Humanos , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Vasos Coronários/efeitos dos fármacos , Adesividade Plaquetária/efeitos dos fármacos , Anticoagulantes/farmacologia , Anticoagulantes/química , Propriedades de Superfície , Proliferação de Células/efeitos dos fármacos , Aço Inoxidável/química , Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/citologia , Animais , Levodopa/química , Levodopa/farmacologia
9.
Neurobiol Dis ; 196: 106518, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38679112

RESUMO

Resting tremor is the most common presenting motor symptom in Parkinson's disease (PD). The supplementary motor area (SMA) is a main target of the basal-ganglia-thalamo-cortical circuit and has direct, facilitatory connections with the primary motor cortex (M1), which is important for the execution of voluntary movement. Dopamine potentially modulates SMA and M1 activity, and both regions have been implicated in resting tremor. This study investigated SMA-M1 connectivity in individuals with PD ON and OFF dopamine medication, and whether SMA-M1 connectivity is implicated in resting tremor. Dual-site transcranial magnetic stimulation was used to measure SMA-M1 connectivity in PD participants ON and OFF levodopa. Resting tremor was measured using electromyography and accelerometry. Stimulating SMA inhibited M1 excitability OFF levodopa, and facilitated M1 excitability ON levodopa. ON medication, SMA-M1 facilitation was significantly associated with smaller tremor than SMA-M1 inhibition. The current findings contribute to our understanding of the neural networks involved in PD which are altered by levodopa medication and provide a neurophysiological basis for the development of interventions to treat resting tremor.


Assuntos
Antiparkinsonianos , Eletromiografia , Levodopa , Córtex Motor , Doença de Parkinson , Estimulação Magnética Transcraniana , Tremor , Humanos , Levodopa/uso terapêutico , Levodopa/farmacologia , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/fisiopatologia , Masculino , Córtex Motor/efeitos dos fármacos , Córtex Motor/fisiopatologia , Feminino , Tremor/fisiopatologia , Tremor/tratamento farmacológico , Idoso , Pessoa de Meia-Idade , Estimulação Magnética Transcraniana/métodos , Antiparkinsonianos/uso terapêutico , Antiparkinsonianos/farmacologia , Vias Neurais/fisiopatologia , Vias Neurais/efeitos dos fármacos , Potencial Evocado Motor/efeitos dos fármacos , Potencial Evocado Motor/fisiologia
10.
J Physiol ; 602(10): 2253-2264, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38638084

RESUMO

Short- and long-latency afferent inhibition (SAI and LAI respectively) are phenomenon whereby the motor evoked potential induced by transcranial magnetic stimulation (TMS) is inhibited by a sensory afferent volley consequent to nerve stimulation. It remains unclear whether dopamine participates in the genesis or modulation of SAI and LAI. The present study aimed to determine if SAI and LAI are modulated by levodopa (l-DOPA). In this placebo-controlled, double-anonymized study Apo-Levocarb (100 mg l-DOPA in combination with 25 mg carbidopa) and a placebo were administered to 32 adult males (mean age 24 ± 3 years) in two separate sessions. SAI and LAI were evoked by stimulating the median nerve and delivering single-pulse TMS over the motor hotspot corresponding to the first dorsal interosseous muscle of the right hand. SAI and LAI were quantified before and 1 h following ingestion of drug or placebo corresponding to the peak plasma concentration of Apo-Levocarb. The results indicate that Apo-Levocarb increases SAI and does not significantly alter LAI. These findings support literature demonstrating increased SAI following exogenous dopamine administration in neurodegenerative disorders. KEY POINTS: Short- and long-latency afferent inhibition (SAI and LAI respectively) are measures of corticospinal excitability evoked using transcranial magnetic stimulation. SAI and LAI are reduced in conditions such as Parkinson's disease which suggests dopamine may be involved in the mechanism of afferent inhibition. 125 mg of Apo-Levocarb (100 mg dopamine) increases SAI but not LAI. This study increases our understanding of the pharmacological mechanism of SAI and LAI.


Assuntos
Carbidopa , Potencial Evocado Motor , Levodopa , Estimulação Magnética Transcraniana , Humanos , Masculino , Levodopa/farmacologia , Adulto , Potencial Evocado Motor/efeitos dos fármacos , Estimulação Magnética Transcraniana/métodos , Carbidopa/farmacologia , Adulto Jovem , Inibição Neural/efeitos dos fármacos , Método Duplo-Cego , Dopaminérgicos/farmacologia , Dopamina/farmacologia , Combinação de Medicamentos , Nervo Mediano/fisiologia , Nervo Mediano/efeitos dos fármacos
11.
Parkinsonism Relat Disord ; 123: 106971, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38631081

RESUMO

INTRODUCTION: In BIPARK-1 and BIPARK-2, addition of once-daily opicapone to levodopa/carbidopa significantly reduced daily "OFF"-time relative to placebo in adults with Parkinson's disease (PD) and motor fluctuations. Diary data from these studies were pooled and analyzed post hoc to characterize "OFF"-times around nighttime sleep and to explore the effects of opicapone 50 mg. METHODS: "OFF" before sleep (OBS), "OFF during the nighttime sleep period" (ODNSP), early morning "OFF" (EMO), and duration of nighttime sleep and awake periods were analyzed descriptively at baseline. Mean changes from baseline to Week 14/15 (end of double-blind treatment) were analyzed using two-sided t-tests in participants with data for both visits. RESULTS: At baseline, 88.3 % (454/514) of participants reported having OBS (34.0 %), ODNSP (17.1 %), or EMO (79.6 %). Those with ODNSP had substantially shorter mean duration of uninterrupted sleep (4.4 h) than the overall pooled population (7.1 h). At Week 14/15, mean decrease from baseline in ODNSP duration was significantly greater with opicapone than with placebo (-0.9 vs. -0.4 h, P < 0.05). In participants with ODNSP at baseline, the decrease in total time spent awake during the night-time sleep period was significantly greater with opicapone than with placebo (-1.0 vs. -0.4 h, P < 0.05), as was the reduction in percent time spent awake during the night-time sleep period (-12.8 % vs. -4.5 %, P < 0.05). CONCLUSION: "OFF"-times around nighttime sleep were common in BIPARK-1 and BIPARK-2. Opicapone may improve sleep by decreasing the amount of time spent awake during the night in patients with PD who have night-time sleep period "OFF" episodes.


Assuntos
Antiparkinsonianos , Levodopa , Oxidiazóis , Doença de Parkinson , Sono , Humanos , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/fisiopatologia , Doença de Parkinson/complicações , Masculino , Feminino , Método Duplo-Cego , Pessoa de Meia-Idade , Idoso , Sono/efeitos dos fármacos , Sono/fisiologia , Antiparkinsonianos/uso terapêutico , Antiparkinsonianos/administração & dosagem , Antiparkinsonianos/farmacologia , Levodopa/farmacologia , Levodopa/administração & dosagem , Oxidiazóis/farmacologia , Oxidiazóis/administração & dosagem , Oxidiazóis/uso terapêutico , Carbidopa/farmacologia , Carbidopa/administração & dosagem , Combinação de Medicamentos , Vigília/efeitos dos fármacos , Vigília/fisiologia
12.
Biomed Pharmacother ; 175: 116664, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38678966

RESUMO

Mitochondrial dysmorphology/dysfunction follow global cerebral ischemia-reperfusion (GCI/R) injury, leading to neuronal death. Our previous researches demonstrated that Levodopa (L-DOPA) improves learning and memory impairment in GCI/R rats by increasing synaptic plasticity of hippocampal neurons. This study investigates if L-DOPA, used in Parkinson's disease treatment, alleviates GCI/R-induced cell death by enhancing mitochondrial quality. Metabolomics and transcriptomic results showed that GCI/R damage affected the Tricarboxylic acid (TCA) cycle in the hippocampus. The results of this study show that L-DOPA stabilized mitochondrial membrane potential and ultrastructure in hippocampus of GCI/R rats, increased dopamine level in hippocampus, decreased succinic acid level, and stabilized Ca2+ level in CA1 subregion of hippocampus. As a precursor of dopamine, L-DOPA is presumed to improves mitochondrial function in hippocampus of GCI/R rats. However, dopamine cannot cross the blood-brain barrier, so L-DOPA is used in clinical therapy to supplement dopamine. In this investigation, OGD/R models were established in isolated mouse hippocampal neurons (HT22) and primary rat hippocampal neurons. Notably, dopamine exhibited a multifaceted impact, demonstrating inhibition of mitochondrial reactive oxygen species (mitoROS) production, stabilization of mitochondrial membrane potential and Ca2+ level, facilitation of TCA circulation, promotion of aerobic respiratory metabolism, and downregulation of succinic acid-related gene expression. Consistency between in vitro and in vivo results underscores dopamine's significant neuroprotective role in mitigating mitochondrial dysfunction following global cerebral hypoxia and ischemia injury. Supplement dopamine may represent a promising therapy to the cognitive impairment caused by GCI/R injury.


Assuntos
Hipocampo , Levodopa , Potencial da Membrana Mitocondrial , Mitocôndrias , Ratos Sprague-Dawley , Traumatismo por Reperfusão , Animais , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Levodopa/farmacologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/patologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Masculino , Camundongos , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/metabolismo , Ratos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Dopamina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/patologia , Respiração Celular/efeitos dos fármacos , Ciclo do Ácido Cítrico/efeitos dos fármacos , Cálcio/metabolismo , Fármacos Neuroprotetores/farmacologia
13.
Behav Pharmacol ; 35(4): 185-192, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38563661

RESUMO

LY-404,039 is an orthosteric agonist at metabotropic glutamate 2 and 3 (mGlu 2/3 ) receptors, with a possible additional agonist effect at dopamine D 2 receptors. LY-404,039 and its pro-drug, LY-2140023, have previously been tested in clinical trials for psychiatric indications and could therefore be repurposed if they were shown to be efficacious in other conditions. We have recently demonstrated that the mGlu 2/3 orthosteric agonist LY-354,740 alleviated L-3,4-dihydroxyphenylalanine (L-DOPA)-induced abnormal involuntary movements (AIMs) in the 6-hydroxydopamine (6-OHDA)-lesioned rat without hampering the anti-parkinsonian action of L-DOPA. Here, we seek to take advantage of a possible additional D 2 -agonist effect of LY-404,039 and see if an anti-parkinsonian benefit might be achieved in addition to the antidyskinetic effect of mGlu 2/3 activation. To this end, we have administered LY-404,039 (vehicle, 0.1, 1 and 10 mg/kg) to 6-OHDA-lesioned rats, after which the severity of axial, limbs and oro-lingual (ALO) AIMs was assessed. The addition of LY-404,039 10 mg/kg to L-DOPA resulted in a significant reduction of ALO AIMs over 60-100 min (54%, P  < 0.05). In addition, LY-404,039 significantly enhanced the antiparkinsonian effect of L-DOPA, assessed through the cylinder test (76%, P  < 0.01). These results provide further evidence that mGlu 2/3 orthosteric stimulation may alleviate dyskinesia in PD and, in the specific case of LY-404,039, a possible D 2 -agonist effect might also make it attractive to address motor fluctuations. Because LY-404,039 and its pro-drug have been administered to humans, they could possibly be advanced to Phase IIa trials rapidly for the treatment of motor complications in PD.


Assuntos
Discinesia Induzida por Medicamentos , Transtornos Parkinsonianos , Receptores de Glutamato Metabotrópico , Animais , Masculino , Ratos , Aminoácidos/farmacologia , Antiparkinsonianos/farmacologia , Compostos Bicíclicos com Pontes/farmacologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Discinesia Induzida por Medicamentos/tratamento farmacológico , Agonistas de Aminoácidos Excitatórios/farmacologia , Levodopa/farmacologia , Oxidopamina , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/tratamento farmacológico , Ratos Sprague-Dawley , Ratos Wistar , Receptores de Glutamato Metabotrópico/agonistas , Receptores de Glutamato Metabotrópico/metabolismo
14.
J Neurol ; 271(6): 3625-3630, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38607429

RESUMO

BACKGROUND: Sleep disorders negatively impact quality of life in Parkinson's disease (PD), yet the role of antiparkinsonian drugs on sleep quality is still unclear. We aimed to explore the correlation between sleep dysfunction and dopaminergic therapy in a large cohort of advanced PD patients. METHODS: Patients consecutively evaluated for device-aided therapies eligibility were evaluated by means of the PD Sleep Scale (PDSS-2; score ≥ 18 indicates poor sleep quality), and the Epworth Sleepiness Scale (ESS score ≥ 10 indicates excessive daytime sleepiness-EDS). Binary logistic regression analysis, adjusting for age, sex, disease duration, motor impairment, and sleep drugs, was employed to evaluate the association between dopaminergic therapy and PDSS-2 and ESS scores. Analysis of covariance assessed differences in PDSS-2 and ESS scores between patients without DA, and between patients treated with low or high doses of DA (cut-off: DA-LEDD = 180 mg). RESULTS: In a cohort of 281 patients, 66.2% reported poor sleep quality, and 34.5% reported EDS. DA treatment demonstrated twofold lower odds of reporting relevant sleep disturbances (OR 0.498; p = 0.035), while DA-LEDD, levodopa-LEDD, total LEDD, and extended-release levodopa were not associated with disturbed sleep. EDS was not influenced by dopaminergic therapy. Patients with DA intake reported significant lower PDSS-2 total score (p = 0.027) and "motor symptoms at night" domain score (p = 0.044). Patients with higher doses of DA showed lower PDSS-2 total score (p = 0.043). CONCLUSION: Our study highlights the positive influence of DA add-on treatment on sleep quality in this group of advanced fluctuating PD patients.


Assuntos
Antiparkinsonianos , Dopaminérgicos , Doença de Parkinson , Qualidade do Sono , Transtornos do Sono-Vigília , Humanos , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/complicações , Doença de Parkinson/fisiopatologia , Masculino , Feminino , Idoso , Pessoa de Meia-Idade , Dopaminérgicos/administração & dosagem , Dopaminérgicos/farmacologia , Antiparkinsonianos/administração & dosagem , Antiparkinsonianos/uso terapêutico , Transtornos do Sono-Vigília/etiologia , Transtornos do Sono-Vigília/tratamento farmacológico , Levodopa/administração & dosagem , Levodopa/farmacologia , Estudos de Coortes , Índice de Gravidade de Doença
15.
Psychophysiology ; 61(7): e14571, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38679809

RESUMO

Given experience in cluttered but stable visual environments, our eye-movements form stereotyped routines that sample task-relevant locations, while not mixing-up routines between similar task-settings. Both dopamine signaling and mindfulness have been posited as factors that influence the formation of such routines, yet quantification of their impact remains to be tested in healthy humans. Over two sessions, participants searched through grids of doors to find hidden targets, using a gaze-contingent display. Within each session, door scenes appeared in either one of two colors, with each color signaling a differing set of likely target locations. We derived measures for how well target locations were learned (target-accuracy), how routine were sets of eye-movements (stereotypy), and the extent of interference between the two scenes (setting-accuracy). Participants completed two sessions, where they were administered either levodopa (dopamine precursor) or placebo (vitamin C), under double-blind counterbalanced conditions. Dopamine and trait mindfulness (assessed by questionnaire) interacted to influence both target-accuracy and stereotypy. Increasing dopamine improved accuracy and reduced stereotypy for high mindfulness scorers, but induced the opposite pattern for low mindfulness scorers. Dopamine also disrupted setting-accuracy invariant to mindfulness. Our findings show that mindfulness modulates the impact of dopamine on the target-accuracy and stereotypy of eye-movement routines, whereas increasing dopamine promotes interference between task-settings, regardless of mindfulness. These findings provide a link between non-human and human models regarding the influence of dopamine on the formation of task-relevant eye-movement routines and provide novel insights into behavior-trait factors that modulate the use of experience when building adaptive repertoires.


Assuntos
Dopamina , Atenção Plena , Humanos , Masculino , Feminino , Adulto , Adulto Jovem , Dopamina/metabolismo , Levodopa/farmacologia , Levodopa/administração & dosagem , Método Duplo-Cego , Movimentos Oculares/fisiologia , Percepção Visual/fisiologia , Dopaminérgicos/farmacologia , Atenção/fisiologia , Desempenho Psicomotor/fisiologia
16.
Mol Brain ; 17(1): 21, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38685105

RESUMO

Dopamine plays important roles in cognitive function and inflammation and therefore is involved in the pathogenesis of neurodegenerative diseases, including Alzheimer's disease (AD). Drugs that increase or maintain dopamine levels in the brain could be a therapeutic strategy for AD. However, the effects of dopamine and its precursor levodopa (L-DOPA) on Aß/tau pathology in vivo and the underlying molecular mechanisms have not been studied in detail. Here, we investigated whether L-DOPA treatment alters neuroinflammation, Aß pathology, and tau phosphorylation in 5xFAD mice, a model of AD. We found that L-DOPA administration significantly reduced microgliosis and astrogliosis in 5xFAD mice. In addition, L-DOPA treatment significantly decreased Aß plaque number by upregulating NEP and ADAM17 levels in 5xFAD mice. However, L-DOPA-treated 5xFAD mice did not exhibit changes in tau hyperphosphorylation or tau kinase levels. These data suggest that L-DOPA alleviates neuroinflammatory responses and Aß pathology but not tau pathology in this mouse model of AD.


Assuntos
Proteína ADAM17 , Doença de Alzheimer , Peptídeos beta-Amiloides , Modelos Animais de Doenças , Levodopa , Camundongos Transgênicos , Doenças Neuroinflamatórias , Proteínas tau , Animais , Levodopa/farmacologia , Doença de Alzheimer/patologia , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Proteína ADAM17/metabolismo , Peptídeos beta-Amiloides/metabolismo , Proteínas tau/metabolismo , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/patologia , Doenças Neuroinflamatórias/metabolismo , Fosforilação/efeitos dos fármacos , Placa Amiloide/patologia , Placa Amiloide/metabolismo , Camundongos , Encéfalo/patologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo
17.
Cell Signal ; 118: 111125, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38432574

RESUMO

BACKGROUND: Parkinson's disease patients on chronic levodopa often suffer from motor complications, which tend to reduce their quality of life. Levodopa-induced dyskinesia (LID) is one of the most prevalent motor complications, often characterized by abnormal involuntary movements, and the pathogenesis of LID is still unclear but recent studies have suggested the involvement of autophagy. METHODS: The onset of LID was mimicked by chronic levodopa treatment in a unilateral 6-hydroxydopamine (6-OHDA) -lesion rat model. Overexpression of ΔFosB in HEK293 cells to mimic the state of ΔFosB accumulation. The modulation of the AMP-activated protein kinase (AMPK)-mediated autophagy pathway using by metformin, AICAR (an AMPK activator), Compound C (an AMPK inhibitor) and chloroquine (an autophagy pathway inhibitor). The severity of LID was assessed by axial, limb, and orofacial (ALO) abnormal involuntary movements (AIMs) score and in vivo electrophysiology. The activity of AMPK pathway as well as autophagy markers and FosB-ΔFosB levels were detected by western blotting. RT-qPCR was performed to detect the transcription level of FosB-ΔFosB. The mechanism of autophagy dysfunction was further explored by immunofluorescence and transmission electron microscopy. RESULTS: In vivo experiments demonstrated that chronic levodopa treatment reduced AMPK phosphorylation, impaired autophagosome-lysosomal fusion and caused FosB-ΔFosB accumulation in the striatum of PD rats. Long-term metformin intervention improved ALO AIMs scores as well as reduced the mean power of high gamma (hγ) oscillations and the proportion of striatal projection neurons unstable in response to dopamine for LID rats. Moreover, the intervention of metformin promoted AMPK phosphorylation, ameliorated the impairment of autophagosome-lysosomal fusion, thus, promoting FosB-ΔFosB degradation to attenuate its accumulation in the striatum of LID rats. However, the aforementioned roles of metformin were reversed by Compound C and chloroquine. The results of in vitro studies demonstrated the ability of metformin and AICAR to attenuate ΔFosB levels by promoting its degradation, while Compound C and chloroquine could block this effect. CONCLUSIONS: In conclusion, our results suggest that long-term metformin treatment could promote ΔFosB degradation and thus attenuate the development of LID through activating the AMPK-mediated autophagy pathway. Overall, our results support the AMPK-mediated autophagy pathway as a novel therapeutic target for LID and also indicate that metformin is a promising therapeutic candidate for LID.


Assuntos
Discinesia Induzida por Medicamentos , Metformina , Humanos , Ratos , Animais , Levodopa/farmacologia , Levodopa/uso terapêutico , Antiparkinsonianos/farmacologia , Proteínas Quinases Ativadas por AMP , Células HEK293 , Qualidade de Vida , Discinesia Induzida por Medicamentos/tratamento farmacológico , Discinesia Induzida por Medicamentos/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Oxidopamina/uso terapêutico , Autofagia , Cloroquina/farmacologia , Cloroquina/uso terapêutico , Metformina/farmacologia , Modelos Animais de Doenças
18.
Pediatr Neurol ; 154: 66-69, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38547557

RESUMO

BACKGROUND: GTP-cyclohydrolase 1-deficient dopa-responsive dystonia (GTPCH1-deficient DRD) typically presents in childhood with dystonic posture of the lower extremities, gait impairment, and a significant response to levodopa. We performed three-dimensional gait analysis (3DGA) to quantitatively assess the gait characteristics and changes associated with levodopa treatment in patients with GTPCH1-deficient DRD. METHODS: Three levodopa-treated patients with GTPCH1-deficient DRD underwent 3DGA twice, longitudinally. Changes were evaluated for cadence; gait speed; step length; gait deviation index; kinematic data of the pelvis, hip, knee, and ankle joints; and foot progression angle. RESULTS: Levodopa treatment increased the cadence and gait speed in one of three patients and increased the gait deviation index in two of three patients. The kinematic data for each joint exhibited different characteristics, with some improvement observed in each of the three patients. There was consistent marked improvement in the abnormal foot progression angle; one patient had excessive external rotation of one foot, another had excessive bilateral internal rotation, and the other had excessive internal rotation of one foot and excessive external rotation of the opposite foot, all of which improved. CONCLUSION: The 3DGA findings demonstrate that the gait pathology and recovery process in GTPCH1-deficient DRD vary from case to case. Changes in the foot progression angle and gait deviation index can enable the effects of treatment to be more easily evaluated.


Assuntos
Distúrbios Distônicos , Levodopa , Humanos , Levodopa/farmacologia , Levodopa/uso terapêutico , GTP Cicloidrolase/genética , Análise da Marcha , Distúrbios Distônicos/tratamento farmacológico , Distúrbios Distônicos/genética , Biomarcadores
19.
Nat Commun ; 15(1): 2699, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538636

RESUMO

Even after successful extinction, conditioned fear can return. Strengthening the consolidation of the fear-inhibitory safety memory formed during extinction is one way to counteract return of fear. In a previous study, we found that post-extinction L-DOPA administration improved extinction memory retrieval 24 h later. Furthermore, spontaneous post-extinction reactivations of a neural activation pattern evoked in the ventromedial prefrontal cortex (vmPFC) during extinction predicted extinction memory retrieval, L-DOPA increased the number of these reactivations, and this mediated the effect of L-DOPA on extinction memory retrieval. Here, we conducted a preregistered replication study of this work in healthy male participants. We confirm that spontaneous post-extinction vmPFC reactivations predict extinction memory retrieval. This predictive effect, however, was only observed 90 min after extinction, and was not statistically significant at 45 min as in the discovery study. In contrast to our previous study, we find no evidence that L-DOPA administration significantly enhances retrieval and that this is mediated by enhancement of the number of vmPFC reactivations. However, additional non-preregistered analyses reveal a beneficial effect of L-DOPA on extinction retrieval when controlling for the trait-like stable baseline levels of salivary alpha-amylase enzymatic activity. Further, trait salivary alpha-amylase negatively predicts retrieval, and this effect is reduced by L-DOPA treatment. Importantly, the latter findings result from non-preregistered analyses and thus further investigation is needed.


Assuntos
Dopamina , alfa-Amilases Salivares , Humanos , Masculino , Dopamina/farmacologia , Levodopa/farmacologia , alfa-Amilases Salivares/farmacologia , Extinção Psicológica/fisiologia , Memória , Córtex Pré-Frontal/fisiologia
20.
Clin Auton Res ; 34(1): 117-124, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38429568

RESUMO

PURPOSE: We investigated the effect of levodopa on postural blood pressure changes in individuals with Parkinson disease (PD) with (PD+OH) and without neurogenic OH (PD-OH). METHODS: We performed a prospective randomized crossover study with autonomic testing performed ON and OFF levodopa. The primary outcome was the change in systolic blood pressure (SBP) from supine to 70° tilt at 3 min (ΔSBP-3'). Secondary outcomes included indices of baroreflex function and blood pressure and heart rate during tilt. RESULTS: We enrolled 40 individuals with PD (21 PD+OH, 19 PD-OH), mean age (SD) 73.2 years (7.9), 13 women (32.5%)). There was no difference in age, sex, disease duration, and severity between PD+OH and PD-OH. Mean difference in ΔSBP-3' ON versus OFF levodopa in the whole study population was - 3.20 mmHg [- 7.36 to 0.96] (p = 0.14). Mean difference in ΔSBP-3' was - 2.14 mmHg [- 7.55 to 3.28] (p = 0.45) in PD+OH and - 5.14 mmHg [- 11.63 to 1.35] (p = 0.14) in PD-OH. Mean difference in ΔSBP ON versus OFF levodopa was greater at 7 and 10 min (- 7.52 mmHg [- 11.89 to - 3.15], p = 0.002, and - 7.82 mmHg [- 14.02 to - 1.67], p = 0.02 respectively). Levodopa was associated with lower absolute values of blood pressure in both PD+OH and PD-OH and cardiovascular noradrenergic baroreflex impairment. CONCLUSION: Levodopa decreases blood pressure in both PD with and without autonomic failure, but it does not cause a greater fall in blood pressure from supine to standing at 3 min. Levodopa-induced baroreflex sympathetic noradrenergic impairment may contribute to lower blood pressure. Lower standing blood pressure with levodopa may increase the risks of fall and syncope.


Assuntos
Hipotensão Ortostática , Doença de Parkinson , Humanos , Feminino , Idoso , Levodopa/farmacologia , Levodopa/uso terapêutico , Doença de Parkinson/complicações , Pressão Sanguínea/fisiologia , Estudos Cross-Over , Hipotensão Ortostática/complicações , Estudos Prospectivos , Norepinefrina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA