Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.447
Filtrar
1.
Angle Orthod ; 94(5): 566-573, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39230015

RESUMO

OBJECTIVES: To investigate whether the inhibition of 12/15-lipoxygenase (12/15-LOX), one of the core enzymes of the arachidonic acid cascade, suppresses orthodontically induced root resorption (OIRR), and examine the involvement of the hyaline degeneration of periodontal ligament cells and odontoclast differentiation. MATERIALS AND METHODS: The left maxillary first molars of 10-week-old male Wistar rats were moved mesially for 14 days using a closed-coil spring (25 cN) inserted between the first molar and incisor. The rats were intraperitoneally administered with a 12/15-LOX specific inhibitor (ML-351; 0.05 mmol/kg) daily in the experimental group or vehicle (dimethyl sulfoxide) in the control group. Tooth movement was measured using microcomputed tomography on day 14. The appearance of OIRR, hyaline degeneration, osteoclasts, and odontoclasts was evaluated via histological analysis. Immunohistochemical staining for receptor-activated NF-kB ligand (RANKL) and osteoprotegerin was performed. RESULTS: OIRR observed on day 14 in the control group was strongly suppressed by ML-351 treatment. Hyaline degeneration observed on the compression side on day 3 and the appearance of osteoclasts and odontoclasts on days 3 and 14 were significantly suppressed by ML-351. RANKL expression on day 3 was significantly suppressed by ML-351. These key processes in OIRR were substantially suppressed by ML-351 treatment. CONCLUSIONS: Inhibition of 12/15-LOX reduced OIRR by suppressing hyaline degeneration and subsequent odontoclast differentiation.


Assuntos
Araquidonato 12-Lipoxigenase , Araquidonato 15-Lipoxigenase , Inibidores de Lipoxigenase , Osteoclastos , Ratos Wistar , Reabsorção da Raiz , Técnicas de Movimentação Dentária , Animais , Masculino , Técnicas de Movimentação Dentária/métodos , Reabsorção da Raiz/etiologia , Reabsorção da Raiz/prevenção & controle , Reabsorção da Raiz/patologia , Ratos , Araquidonato 15-Lipoxigenase/metabolismo , Araquidonato 12-Lipoxigenase/metabolismo , Inibidores de Lipoxigenase/farmacologia , Inibidores de Lipoxigenase/uso terapêutico , Osteoclastos/efeitos dos fármacos , Microtomografia por Raio-X , Ligante RANK/metabolismo , Diferenciação Celular/efeitos dos fármacos , Ligamento Periodontal/efeitos dos fármacos , Ligamento Periodontal/patologia , Osteoprotegerina/metabolismo , Dente Molar
2.
J Forensic Odontostomatol ; 42(2): 2-14, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39244762

RESUMO

BACKGROUND: The study evaluates the feasibility of employing the radiographic visibility of the root pulp and periodontal ligament in mandibular molars for age estimation, particularly focusing on the 18 years of age threshold. This study additionally investigates the potential of root canal width reduction in mandibular molars, as a reliable method for forensic age estimation in living individuals. MATERIALS AND METHODS: A cross-sectional study was conducted to assess the radiographic visibility of the root pulp (RPV) and the root canal width (RCW) of mandibular first, second, and third molars along with the radiographic visibility of the periodontal ligament (PLV) of mandibular third molars, in a sample of 403 individuals aged 16-25 years (220 males and 183 females). Data regarding age for different stages of RPV and PLV and various types of RCW were recorded and observed for sex-based differences. Results obtained were tabulated and descriptive statistics were applied to summarise the findings. RESULTS: Individuals over 18 years old were classified with higher accuracy using stage 3 of the RPV scoring system in all mandibular molars (first, second, and third) compared to stage 2, which was also effective for the second and third molars. This result held regardless of sex and side examined. Additionally, root canal width (RCW) assessment demonstrated that individuals with RCW types A, B, and C were more likely to be under 18 years old in both sexes. Conversely, individuals with RCW type U on the right side for males and the left side for females exhibited a higher likelihood of being above 18 years old. CONCLUSION: The study suggests that the assessment of mandibular molars could potentially serve as an auxiliary tool in age estimation methods, particularly for approximating individuals around the 18 years of age threshold. Further investigation is warranted to explore the potential application of root canal width measurements in forensic age estimation.


Assuntos
Determinação da Idade pelos Dentes , Mandíbula , Dente Molar , Humanos , Adolescente , Masculino , Feminino , Estudos Transversais , Dente Molar/diagnóstico por imagem , Adulto Jovem , Mandíbula/diagnóstico por imagem , Mandíbula/anatomia & histologia , Adulto , Determinação da Idade pelos Dentes/métodos , Ligamento Periodontal/diagnóstico por imagem , Ligamento Periodontal/crescimento & desenvolvimento , Ligamento Periodontal/anatomia & histologia , Cavidade Pulpar/diagnóstico por imagem , Cavidade Pulpar/anatomia & histologia , Polpa Dentária/diagnóstico por imagem , Polpa Dentária/anatomia & histologia
3.
Chin J Dent Res ; 27(3): 225-234, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39221983

RESUMO

OBJECTIVE: To reveal the role and mechanism of cannabinoid receptor 1 (CB1) and mitochondria in promoting osteogenic differentiation of periodontal ligament stem cells (PDLSCs) in the inflammatory microenvironment. METHODS: Bidirectional mitochondrial transfer was performed in bone mesenchymal stem cells (BMSCs) and PDLSCs. Laser confocal microscopy and quantitative flow cytometry were used to observe the mitochondrial transfer and quantitative mitochondrial transfer efficiency. Realtime reverse transcription polymerase chain reaction (RT-PCR) was employed to detect gene expression. Alkaline phosphatase (ALP) activity, alizarin red staining (ARS) and quantitative calcium ion analysis were used to evaluate the degree of osteogenic differentiation of PDLSCs. RESULTS: Bidirectional mitochondrial transfer was observed between BMSCs and PDLSCs. The indirect co-culture system could simulate intercellular mitochondrial transfer. Compared with the conditioned medium (CM) for BMSCs, that for HA-CB1 BMSCs could significantly enhance the mineralisation ability of PDLSCs. The mineralisation ability of PDLSCs could not be enhanced after removing the mitochondria in CM for HA-CB1 BMSCs. The expression level of HO-1, PGC-1α, NRF-1, ND1 and HK2 was significantly increased in HA-CB1 BMSCs. CONCLUSION: CM for HA-CB1 BMSCs could significantly enhance the damaged osteogenic differentiation ability of PDLSCs in the inflammatory microenvironment, and the mitochondria of CM played an important role. CB1 was related to the activation of the HO-1/PGC-1α/NRF-1 mitochondrial biogenesis pathway, and significantly increased the mitochondrial content in BMSCs.


Assuntos
Diferenciação Celular , Células-Tronco Mesenquimais , Mitocôndrias , Osteogênese , Ligamento Periodontal , Receptor CB1 de Canabinoide , Adolescente , Humanos , Células da Medula Óssea , Células Cultivadas , Técnicas de Cocultura , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Mitocôndrias/metabolismo , Osteogênese/fisiologia , Ligamento Periodontal/citologia , Receptor CB1 de Canabinoide/metabolismo , Receptor CB1 de Canabinoide/genética
4.
Sci Rep ; 14(1): 20587, 2024 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-39232133

RESUMO

This study aimed to compare the effects of photobiomodulation therapy (PBMT) with 660 and 980 nm diode lasers on differentiation of periodontal ligament mesenchymal stem cells (PDLMSCs). In this in vitro, experimental study, PDLMSCs were obtained from the Iranian Genetic Bank and cultured in osteogenic medium. They were then subjected to irradiation of 660 and 980 nm diode lasers, and their viability was assessed after one, two, and three irradiation cycles using the methyl thiazolyl tetrazolium (MTT) assay. The cells also underwent DAPI staining, cell apoptosis assay by using the Annexin V/PI, Alizarin Red staining, and real-time polymerase chain reaction (PCR) for assessment of the expression of osteogenic genes. Data were analyzed by two-way ANOVA. The two laser groups had no significant difference in cell apoptosis according to the results of DAPI staining. Both laser groups showed higher cell viability in the MTT assay at 4 and 6 days compared with the control group. Annexin V/PI results showed higher cell viability in both laser groups at 4 days compared with the control group. Rate of early and late apoptosis was lower in both laser groups than the control group at 4 days. Necrosis had a lower frequency in 980 nm laser group than the control group on day 6. Alizarin Red staining showed higher cell differentiation in both laser groups after 3 irradiation cycles than the control group. The highest expression of osteopontin (OPN), osteocalcin (OCN), and Runt-related transcription factor 2 (RUNX2) was noted in 660 nm laser group with 3 irradiation cycles at 14 days, compared with the control group. PBMT with 660 and 980 nm diode lasers decreased apoptosis and significantly increased PDLMSC differentiation after 3 irradiation cycles.


Assuntos
Apoptose , Diferenciação Celular , Sobrevivência Celular , Lasers Semicondutores , Terapia com Luz de Baixa Intensidade , Células-Tronco Mesenquimais , Osteogênese , Ligamento Periodontal , Ligamento Periodontal/efeitos da radiação , Ligamento Periodontal/citologia , Células-Tronco Mesenquimais/efeitos da radiação , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Diferenciação Celular/efeitos da radiação , Humanos , Terapia com Luz de Baixa Intensidade/métodos , Lasers Semicondutores/uso terapêutico , Sobrevivência Celular/efeitos da radiação , Apoptose/efeitos da radiação , Osteogênese/efeitos da radiação , Células Cultivadas , Osteocalcina/metabolismo , Osteocalcina/genética , Osteopontina/metabolismo , Osteopontina/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/genética
5.
Int J Nanomedicine ; 19: 8751-8768, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39220194

RESUMO

Purpose: Periodontitis is a chronic infectious disease characterized by progressive inflammation and alveolar bone loss. Forkhead box O1 (FoxO1), an important regulator, plays a crucial role in maintaining bone homeostasis and regulating macrophage energy metabolism and osteogenic differentiation of mesenchymal stem cells (MSCs). In this study, FoxO1 was overexpressed into small extracellular vesicles (sEV) using engineering technology, and effects of FoxO1-overexpressed sEV on periodontal tissue regeneration as well as the underlying mechanisms were investigated. Methods: Human periodontal ligament stem cell (hPDLSCs)-derived sEV (hPDLSCs-sEV) were isolated using ultracentrifugation. They were then characterized using transmission electron microscopy, Nanosight, and Western blotting analyses. hPDLSCs were treated with hPDLSCs-sEV in vitro after stimulation with lipopolysaccharide, and osteogenesis was evaluated. The effect of hPDLSCs-sEV on the polarization phenotype of THP-1 macrophages was also evaluated. In addition, we measured the reactive oxygen species (ROS) levels, adenosine triphosphate (ATP) production, mitochondrial characteristics, and metabolism of hPDLSCs and THP-1 cells. Experimental periodontitis was established in vivo in mice. HPDLSCs-sEV or phosphate-buffered saline (PBS) were injected into periodontal tissues for four weeks, and the maxillae were collected and assessed by micro-computed tomography, histological staining, and small animal in vivo imaging. Results: In vitro, FoxO1-overexpressed sEV promoted osteogenic differentiation of hPDLSCs in the inflammatory environment and polarized THP-1 cells from the M1 phenotype to the M2 phenotype. Furthermore, FoxO1-overexpressed sEV regulated the ROS level, ATP production, mitochondrial characteristics, and metabolism of hPDLSCs and THP-1 cells in the inflammatory environment. In the in vivo analyses, FoxO1-overexpressed sEV effectively promoted bone formation and inhibited inflammation. Conclusion: FoxO1-overexpressed sEV can regulate osteogenesis and immunomodulation. The ability of FoxO1-overexpressed sEV to regulate inflammation and osteogenesis can pave the way for the establishment of a therapeutic approach for periodontitis.


Assuntos
Vesículas Extracelulares , Proteína Forkhead Box O1 , Mitocôndrias , Osteogênese , Ligamento Periodontal , Periodontite , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Osteogênese/efeitos dos fármacos , Animais , Humanos , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O1/genética , Mitocôndrias/metabolismo , Periodontite/terapia , Periodontite/metabolismo , Camundongos , Ligamento Periodontal/citologia , Células THP-1 , Espécies Reativas de Oxigênio/metabolismo , Inflamação/metabolismo , Masculino , Diferenciação Celular/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Macrófagos/metabolismo , Regeneração , Células Cultivadas
6.
J Nanobiotechnology ; 22(1): 532, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39223550

RESUMO

The recent development of nanobiomaterials has shed some light on the field of periodontal tissue regeneration. Laponite (LAP), an artificially synthesized two-dimensional (2D) disk-shaped nanosilicate, has garnered substantial attention in regenerative biomedical applications owing to its distinctive structure, exceptional biocompatibility and bioactivity. This study endeavors to comprehensively evaluate the influence of LAP on periodontal regeneration. The effects of LAP on periodontal ligament cells (PDLCs) on osteogenesis, cementogenesis and angiogenesis were systematically assessed, and the potential mechanism was explored through RNA sequencing. The results indicated that LAP improved osteogenic and cementogenic differentiation of PDLCs, the regulatory effects of LAP on PDLCs were closely correlated with activation of PI3K-AKT signaling pathway. Moreover, LAP enhanced angiogenesis indirectly via manipulating paracrine of PDLCs. Then, LAP was implanted into rat periodontal defect to confirm its regenerative potential. Both micro-CT and histological analysis indicated that LAP could facilitate periodontal tissue regeneration in vivo. These findings provide insights into the bioactivity and underlying mechanism of LAP on PDLCs, highlighting it might be a potential therapeutic option in periodontal therapy.


Assuntos
Diferenciação Celular , Osteogênese , Ligamento Periodontal , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Ratos Sprague-Dawley , Regeneração , Transdução de Sinais , Silicatos , Ligamento Periodontal/citologia , Ligamento Periodontal/metabolismo , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ratos , Osteogênese/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Silicatos/farmacologia , Silicatos/química , Humanos , Diferenciação Celular/efeitos dos fármacos , Masculino , Células Cultivadas , Cementogênese
7.
BMC Oral Health ; 24(1): 1070, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39261847

RESUMO

BACKGROUND: Periodontitis is a dental disease characterized by inflammation of periodontal tissues and loss of the periodontal ligaments and alveolar bone. Exosomes are a class of extracellular vesicles that are involved in a variety of diseases by releasing active substances. In this study, we aimed to investigate the effect and mechanism of exosomes from M2 polarized macrophages (M2-exos) on osteogenic differentiation in human periodontal ligament stem cells (hPDLSCs). METHODS: M2-exos were isolated from IL-4-induced RAW264.7 cells (M2 macrophages) and then treated on hPDLSCs. Osteogenic differentiation was assessed by alkaline phosphatase (ALP) staining, alizarin red S (ARS) staining, measurement of osteogenic differentiation-related genes and proteins, and inflammation was evaluated by measuring the levels of inflammatory factors. The mechanism of M2-exo was confirmed through qPCR, western blot, ALP and ARS staining. RESULTS: Results suggested that M2-exo improved osteogenic differentiation and inhibited inflammation in LPS-induced hPDLSCs. CXCL12 expression was elevated in M2 macrophages, but decreased in LPS-induced hPDLSCs. Moreover, the effect of M2-exo on osteogenic differentiation and inflammation in LPS-induced hPDLSCs was reversed by CXCL12 knockdown. CONCLUSION: We demonstrated that M2-exo facilitated osteogenic differentiation and suppressed inflammation in LPS-induced hPDLSCs through promotion of CXCL12 expression. These results suggested the potential of M2-exo in the treatment of periodontitis, which may provide a new theoretical basis for M2-exo treatment of periodontitis.


Assuntos
Diferenciação Celular , Quimiocina CXCL12 , Exossomos , Inflamação , Macrófagos , Osteogênese , Ligamento Periodontal , Células-Tronco , Ligamento Periodontal/citologia , Ligamento Periodontal/metabolismo , Humanos , Exossomos/metabolismo , Macrófagos/metabolismo , Células-Tronco/metabolismo , Quimiocina CXCL12/metabolismo , Inflamação/metabolismo , Camundongos , Animais , Células Cultivadas , Periodontite/metabolismo , Células RAW 264.7
8.
BMC Oral Health ; 24(1): 1090, 2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39277707

RESUMO

The present study aimed to compare the effect of photobiomodulation with different energy densities on the angiogenic differentiation of human periodontal ligament stem cells (hPDLSCs) and stem cells from human exfoliated deciduous teeth (SHED). Photobiomodulation therapy with a 660 nm diode laser (2.4 J/cm2 and 3.9 J/cm2) on two consecutive days post-culture was applied to two types of stem cells (hPDLSCs and SHED). The Quantitative Real-time Polymerase Chain Reaction (RT-qPCR) test was undertaken to investigate Vascular Endothelial Growth Factor-A (VEGF-A) and Angiopoietin I (ANG-I) genes on days 1, 3, 5, 7, and 10 after the first session of laser application. The 4',6-diamidino-2-phenylindole (DAPI) staining and Methyl Thiazolyl Tetrazolium (MTT) test were conducted on days 1, 3, and 5 after the first session of laser application, to assess the cell viability. The Two-way ANOVA with Tukey post hoc test was used to analyze the outcomes of the MTT and RT-qPCR tests. The results of the MTT and DAPI convergently illustrated that the groups receiving photobiomodulation with 2.4 J/cm2 had higher cell viability compared to 3.9 J/cm2. All experimental groups showed an upregulation of VEGF-A and ANG-I gene expression from day 1 to 5, followed by a downregulation from day 5 to 10. The groups with cultured hPDLSCs and SHED receiving photobiomodulation using 2.4 J/cm2 had the most amounts of VEGF-A and ANG-I gene expression on day 5, respectively. In conclusion, the 660 nm mediated photobiomodulation therapy of cultured SHED and hPDLSCs with 2.4 J/cm2 energy density may be associated with higher angiogenic differentiation (the expression of VEGF-A and ANG-I) as well as higher cell viability compared to the photobiomodulation therapy with 3.9 J/cm2.


Assuntos
Diferenciação Celular , Terapia com Luz de Baixa Intensidade , Ligamento Periodontal , Células-Tronco , Dente Decíduo , Fator A de Crescimento do Endotélio Vascular , Humanos , Diferenciação Celular/efeitos da radiação , Terapia com Luz de Baixa Intensidade/métodos , Ligamento Periodontal/citologia , Ligamento Periodontal/efeitos da radiação , Fator A de Crescimento do Endotélio Vascular/metabolismo , Células-Tronco/efeitos da radiação , Dente Decíduo/citologia , Neovascularização Fisiológica/efeitos da radiação , Reação em Cadeia da Polimerase em Tempo Real , Angiopoietina-1 , Sobrevivência Celular/efeitos da radiação , Lasers Semicondutores/uso terapêutico , Técnicas In Vitro , Células Cultivadas
9.
J Clin Pediatr Dent ; 48(5): 154-165, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39275833

RESUMO

Sodium fluoride-polyvinyl alcohol (NaF-PVA) tape was developed to deliver fluoride to teeth by adding fluoride to polymer tape. Previous studies have demonstrated that tapes are effective and have antimicrobial properties. This study aimed to evaluate the cytotoxicity of two fluoride-releasing adhesive tapes. We investigated two polyvinyl alcohol (PVA) tapes: (i) a fluoride-PVA (F-PVA) tape, and (ii) a pullulan-incorporated F-PVA (PF-PVA) tape. The cytotoxicity test was conducted on human gingival fibroblasts (HGF) and human periodontal ligament (PDL) cells. Using an adhesive tape containing fluoride, we performed the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay on these cells. Genetic analysis of the cells was performed to conduct a stability test on humans. In the MTT assay, PF-PVA had 66% greater cytotoxicity than control by PDL and 69% by HGF. F-PVA showed less cytotoxicity than PF-PVA by 29% in PDL and 33% in HGF. Gene ontology (GO) analysis and gene set enrichment analysis (GSEA) were performed as gene expression analyses. GO analysis indicated that PF-PVA displayed more expression changes of genes related to cytotoxicity than F-PVA. In addition, GSEA found more inflammatory response associations in PF-PVA than in F-PVA. MTT and genetic testing yielded comparable results.


Assuntos
Fibroblastos , Gengiva , Ligamento Periodontal , Fluoreto de Sódio , Humanos , Fibroblastos/efeitos dos fármacos , Gengiva/citologia , Gengiva/efeitos dos fármacos , Ligamento Periodontal/efeitos dos fármacos , Ligamento Periodontal/citologia , Álcool de Polivinil , Células Cultivadas , Teste de Materiais , Sobrevivência Celular/efeitos dos fármacos
10.
Int J Mol Sci ; 25(17)2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39273524

RESUMO

Human dental tissue mesenchymal stem cells (DT-MSCs) constitute an attractive alternative to bone marrow-derived mesenchymal stem cells (BM-MSCs) for potential clinical applications because of their accessibility and anti-inflammatory capacity. We previously demonstrated that DT-MSCs from dental pulp (DP-MSCs), periodontal ligaments (PDL-MSCs), and gingival tissue (G-MSCs) show immunosuppressive effects similar to those of BM, but to date, the DT-MSC-mediated immunoregulation of T lymphocytes through the purinergic pathway remains unknown. In the present study, we compared DP-MSCs, PDL-MSCs, and G-MSCs in terms of CD26, CD39, and CD73 expression; their ability to generate adenosine (ADO) from ATP and AMP; and whether the concentrations of ADO that they generate induce an immunomodulatory effect on T lymphocytes. BM-MSCs were included as the gold standard. Our results show that DT-MSCs present similar characteristics among the different sources analyzed in terms of the properties evaluated; however, interestingly, they express more CD39 than BM-MSCs; therefore, they generate more ADO from ATP. In contrast to those produced by BM-MSCs, the concentrations of ADO produced by DT-MSCs from ATP inhibited the proliferation of CD3+ T cells and promoted the generation of CD4+CD25+FoxP3+CD39+CD73+ Tregs and Th17+CD39+ lymphocytes. Our data suggest that DT-MSCs utilize the adenosinergic pathway as an immunomodulatory mechanism and that this mechanism is more efficient than that of BM-MSCs.


Assuntos
5'-Nucleotidase , Adenosina , Apirase , Polpa Dentária , Células-Tronco Mesenquimais , Ligamento Periodontal , Linfócitos T , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/imunologia , Humanos , Adenosina/metabolismo , Polpa Dentária/citologia , Polpa Dentária/imunologia , Polpa Dentária/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , 5'-Nucleotidase/metabolismo , Apirase/metabolismo , Ligamento Periodontal/citologia , Ligamento Periodontal/metabolismo , Trifosfato de Adenosina/metabolismo , Células Cultivadas , Gengiva/citologia , Gengiva/metabolismo , Gengiva/imunologia , Antígenos CD/metabolismo , Imunomodulação , Diferenciação Celular , Proliferação de Células , Dipeptidil Peptidase 4/metabolismo , Transdução de Sinais , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Proteínas Ligadas por GPI
11.
Stem Cell Res Ther ; 15(1): 284, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39243052

RESUMO

BACKGROUND: Periodontal ligament stem cells (PDLSCs) are important seed cells in tissue engineering and clinical applications. They are the priority receptor cells for sensing various mechanical stresses. Yes-associated protein (YAP) is a recognized mechanically sensitive transcription factor. However, the role of YAP in regulating the fate of PDLSCs under tension stress (TS) and its underlying mechanism is still unclear. METHODS: The effects of TS on the morphology and fate of PDLSCs were investigated using fluorescence staining, transmission electron microscopy, flow cytometry and quantitative real-time polymerase chain reaction (qRT-PCR). Then qRT-PCR, western blotting, immunofluorescence staining and gene knockdown experiments were performed to investigate the expression and distribution of YAP and its correlation with PDLSCs proliferation. The effects of cytoskeleton dynamics on YAP nuclear translocation were subsequently explored by adding cytoskeleton inhibitors. The effect of cytoskeleton dynamics on the expression of the LINC complex was proved through qRT-PCR and western blotting. After destroying the LINC complex by adenovirus, the effects of the LINC complex on YAP nuclear translocation and PDLSCs proliferation were investigated. Mitochondria-related detections were then performed to explore the role of mitochondria in YAP nuclear translocation. Finally, the in vitro results were verified by constructing orthodontic tooth movement models in Sprague-Dawley rats. RESULTS: TS enhanced the polymerization and stretching of F-actin, which upregulated the expression of the LINC complex. This further strengthened the pull on the nuclear envelope, enlarged the nuclear pore, and facilitated YAP's nuclear entry, thus enhancing the expression of proliferation-related genes. In this process, mitochondria were transported to the periphery of the nucleus along the reconstructed microtubules. They generated ATP to aid YAP's nuclear translocation and drove F-actin polymerization to a certain degree. When the LINC complex was destroyed, the nuclear translocation of YAP was inhibited, which limited PDLSCs proliferation, impeded periodontal tissue remodeling, and hindered tooth movement. CONCLUSIONS: Our study confirmed that appropriate TS could promote PDLSCs proliferation and periodontal tissue remodeling through the mechanically driven F-actin/LINC complex/YAP axis, which could provide theoretical guidance for seed cell expansion and for promoting healthy and effective tooth movement in clinical practice.


Assuntos
Citoesqueleto , Membrana Nuclear , Ligamento Periodontal , Células-Tronco , Animais , Humanos , Masculino , Ratos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proliferação de Células , Células Cultivadas , Citoesqueleto/metabolismo , Membrana Nuclear/metabolismo , Ligamento Periodontal/metabolismo , Ligamento Periodontal/citologia , Células-Tronco/metabolismo , Células-Tronco/citologia , Estresse Mecânico , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas de Sinalização YAP/metabolismo
12.
Mol Med Rep ; 30(5)2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39301638

RESUMO

Periodontitis, a common oral disease characterized by the progressive infiltration of bacteria, is a leading cause of adult tooth loss. Periodontal stem cells (PDLSCs) possess good self­renewal and multi­potential differentiation abilities to maintain the integrity of periodontal support structure and repair defects. The present study aimed to analyze the roles of Wnt7B and frizzled4 (FZD4) in the osteogenic differentiation and macrophage polarization during periodontitis using an in vitro cell model. First, Wnt7B expression in the periodontitis­affected gingival tissue of patients and lipopolysaccharide (LPS)­stimulated PDLSCs was assessed using the GSE23586 dataset and western blot analysis, respectively. In Wnt7B­overexpressing PDLSCs exposed to LPS, the capacity of osteogenic differentiation was evaluated by detecting alkaline phosphatase activity, the level of Alizarin Red S staining and the expression of genes related to osteogenic differentiation. Subsequently, conditioned medium from PDLSCs overexpressing Wnt7B was used for M0 macrophage culture. The expression of CD86 and INOS was examined using immunofluorescence staining and western blot analysis. In addition, reverse transcription­quantitative PCR was employed to examine the expression of TNF­α, IL­6 and IL­1ß in macrophages. The binding between Wnt7B and FZD4 was estimated using co­immunoprecipitation. In addition, FZD4 was silenced to perform the rescue experiments to elucidate the regulatory mechanism between Wnt7B and FZD4. The results demonstrated a decreased expression of Wnt7B in periodontitis­affected gingival tissue and in LPS­exposed PDLSCs. Wnt7B overexpression promoted the osteogenic differentiation of LPS­exposed PDLSCs and suppressed the M1 polarization of macrophages. Additionally, Wnt7B bound to FZD4 and upregulated FZD4 expression. FZD4 silencing reversed the effects of Wnt7B overexpression on the osteogenic differentiation in LPS­exposed PDLSCs and the M1 polarization of macrophages. In summary, Wnt7B plays an anti­periodontitis role by binding FZD4 to strengthen the osteogenic differentiation of LPS­stimulated PDLSCs and suppress the M1 polarization of macrophages.


Assuntos
Diferenciação Celular , Receptores Frizzled , Lipopolissacarídeos , Macrófagos , Osteogênese , Ligamento Periodontal , Células-Tronco , Proteínas Wnt , Humanos , Receptores Frizzled/metabolismo , Receptores Frizzled/genética , Osteogênese/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Ligamento Periodontal/citologia , Ligamento Periodontal/metabolismo , Proteínas Wnt/metabolismo , Proteínas Wnt/genética , Células-Tronco/metabolismo , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Periodontite/metabolismo , Periodontite/patologia , Células Cultivadas , Adulto , Ligação Proteica
13.
Braz Oral Res ; 38: e079, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39258632

RESUMO

Periodontal regeneration is a challenge, and tissue engineering based on periodontal ligament stem cells (PDLSCs) has been shown to be a promising alternative to this process. However, the need for scaffolds has limited the therapeutic use of PDLSCs. In this context, scaffold-free tissue engineering using the cell sheet (CS) technique has been developed as an alternative approach to improve tissue regeneration. Previously, we showed that Protease-activated receptor-1 (PAR1) can regulate PDLSCs. Herein, we evaluate whether PAR1 influences osteogenesis in CSs produced from PDLSCs, without the use of scaffolds. PDLSCs were isolated and immunophenotyped. Then, CSs were obtained by supplementing the culture medium with ascorbic acid (50 µg/mL), and PAR1 was activated through its agonist peptide (100 nM). Scaffold-free 3D CSs were successfully produced from PDLSCs, and they showed higher proliferation potential than isolated PDLSCs. Also, PAR1 activation decreased senescence and improved osteogenic differentiation of CSs by increasing mineralized nodule deposition and alkaline phosphatase concentration; PAR1 also modulated osteogenic markers at the gene and protein levels. We further demonstrated that this effect was regulated by Wnt, TGF-ßI, MEK, p38 MAPK, and FGF/VEGF signaling pathways in PDLSCs (p < 0.05%). Overall, PAR1 activation increased osteogenic activity in CSs, emerging as a promising scaffold-free therapeutic approach for periodontal regeneration.


Assuntos
Diferenciação Celular , Proliferação de Células , Osteogênese , Ligamento Periodontal , Receptor PAR-1 , Células-Tronco , Engenharia Tecidual , Ligamento Periodontal/citologia , Osteogênese/efeitos dos fármacos , Osteogênese/fisiologia , Humanos , Diferenciação Celular/efeitos dos fármacos , Células-Tronco/fisiologia , Células-Tronco/efeitos dos fármacos , Células Cultivadas , Proliferação de Células/efeitos dos fármacos , Engenharia Tecidual/métodos , Fosfatase Alcalina/análise , Fosfatase Alcalina/metabolismo , Reprodutibilidade dos Testes , Adolescente , Fatores de Tempo , Reação em Cadeia da Polimerase em Tempo Real , Imunofenotipagem , Análise de Variância
14.
Acta Odontol Scand ; 83: 486-492, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39258954

RESUMO

Signal regulatory protein alpha (SIRPα) is mainly expressed by cells of myeloid origin. This membrane glycoprotein is shown to be involved in regulation of different inflammatory conditions, such as colitis and arthritis. However, SIRPα has not been investigated in relationship to periodontitis, an inflammatory condition affecting the tooth supporting tissues. We aim to investigate if resident cells in the periodontium express SIRPα and whether a possible expression is affected by inflammatory conditions. Primary human keratinocytes, fibroblasts, periodontal ligament cells, and osteoblasts were cultured with or without the pro-inflammatory cytokines tumor necrosis factor alpha (TNF-α) or interleukin-1-beta (IL-1ß). All different periodontal cell types showed a basal mRNA expression of SIRPα. Pro-inflammatory cytokines induced a 2-3-fold significant increase in SIRPα expression in both cultured human gingival fibroblasts and osteoblasts but neither in keratinocytes nor in periodontal ligament cells. Tissue sections from human gingival tissue biopsies were histochemically stained for SIRPα. Epithelial keratinocytes and gingival fibroblasts stained positive in sections from periodontally healthy as well as in sections from periodontitis. In periodontitis sections, infiltrating leukocytes stained positive for SIRPα. We highlight our finding that oral keratinocytes, gingival fibroblasts, and periodontal ligament cells do express SIRPα, as this has not been presented before. The fact that inflammatory stimulation of gingival fibroblasts increased the expression of SIRPα, while an increased expression by gingival fibroblasts in periodontitis tissue in situ could not be detected, is indeed contradictory.


Assuntos
Receptores Imunológicos , Humanos , Receptores Imunológicos/metabolismo , Células Cultivadas , Periodonto/metabolismo , Periodonto/patologia , Ligamento Periodontal/citologia , Ligamento Periodontal/metabolismo , Antígenos de Diferenciação/metabolismo , Queratinócitos/metabolismo , Periodontite/metabolismo , Fibroblastos/metabolismo
15.
PeerJ ; 12: e18064, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39308808

RESUMO

Background: Periodontal ligament cells (PDLCs) are a major component of the periodontal ligament and have an important role in the regeneration of periodontal tissue and maintenance of homeostasis. High glucose can affect the activity and function of PDLCs in a variety of ways; therefore, it is particularly important to find ways to alleviate the effects of high glucose on PDLCs. Annexin A2 (ANXA2) is a calcium- and phospholipid-binding protein involved in a variety of cellular functions and processes, including cellular cytokinesis, cytophagy, migration, and proliferation. Aim: The aim of this study was to exploring whether ANXA2 attenuates the deleterious effects of high glucose on PDLCs and promotes osteogenic differentiation capacity. Methods and results: Osteogenic differentiation potential, cellular senescence, oxidative stress, and cellular autophagy were detected. Culturing PDLCs with medium containing different glucose concentrations (CTRL, 8 mM, 10 mM, 25 mM, and 40 mM) revealed that high glucose decreased the protein expression of ANXA2 (p < 0.0001). In addition, high glucose decreased the osteogenic differentiation potential of PDLCs as evidenced by decreased calcium deposition (p = 0.0003), lowered ALP activity (p = 0.0010), and a decline in the expression of osteogenesis-related genes (p = 0.0008). Moreover, ß-Galactosidase staining and expression of p16, p21 and p53 genes showed that it increased cellular senescence in PDLCs (p < 0.0001). Meanwhile high glucose increased oxidative stress in PDLCs as shown by ROS (p < 0.0001). However, these damages caused by high glucose were inhibited after the addition of 1 µM recombinant ANXA2 (rANXA2), and we found that rANXA2 enhanced autophagy in PDLCs under high glucose conditions. Conclusions and discussion: Therefore, our present study demonstrates that alterations in ANXA2 under high glucose conditions may be a factor in the decreased osteogenic differentiation potential of PDLCs. Meanwhile, ANXA2 is associated with autophagy, oxidative stress, and cellular senescence under high glucose conditions.


Assuntos
Anexina A2 , Diferenciação Celular , Senescência Celular , Glucose , Osteogênese , Ligamento Periodontal , Anexina A2/metabolismo , Anexina A2/genética , Senescência Celular/efeitos dos fármacos , Ligamento Periodontal/citologia , Ligamento Periodontal/efeitos dos fármacos , Ligamento Periodontal/metabolismo , Humanos , Osteogênese/efeitos dos fármacos , Glucose/farmacologia , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Estresse Oxidativo/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Adolescente
16.
Front Immunol ; 15: 1438726, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39221238

RESUMO

Mechanical forces affect periodontal health through multiple mechanisms. Normally, mechanical forces can boost soft and hard tissue metabolism. However, excessive forces may damage the periodontium or result in irreversible inflammation, whereas absence of occlusion forces also leads to tissue atrophy and bone resorption. We systemically searched the PubMed and Web of Science databases and found certain mechanisms of mechanical forces on immune defence, extracellular matrix (ECM) metabolism, specific proteins, bone metabolism, characteristic periodontal ligament stem cells (PDLSCs) and non-coding RNAs (ncRNAs) as these factors contribute to periodontal homeostasis. The immune defence functions change under forces; genes, signalling pathways and proteinases are altered under forces to regulate ECM metabolism; several specific proteins are separately discussed due to their important functions in mechanotransduction and tissue metabolism. Functions of osteocytes, osteoblasts, and osteoclasts are activated to maintain bone homeostasis. Additionally, ncRNAs have the potential to influence gene expression and thereby, modify tissue metabolism. This review summarizes all these mechanisms of mechanical forces on periodontal homeostasis. Identifying the underlying causes, this review provides a new perspective of the mechanisms of force on periodontal health and guides for some new research directions of periodontal homeostasis.


Assuntos
Homeostase , Mecanotransdução Celular , Ligamento Periodontal , Periodonto , Humanos , Periodonto/metabolismo , Animais , Ligamento Periodontal/metabolismo , Matriz Extracelular/metabolismo , Estresse Mecânico , Doenças Periodontais/metabolismo , Doenças Periodontais/imunologia , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Células-Tronco/metabolismo
17.
Arch Oral Biol ; 168: 106066, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39190957

RESUMO

OBJECTIVE: This study investigated the clinical importance of long noncoding RNA myocardial infarction-associated transcript (MIAT) in periodontitis and its impact on the functional regulation of human periodontal ligament fibroblasts (hPDLFs). METHODS: Ninety-eight periodontitis patients and 74 healthy controls were enrolled. In vitro cellular models were created using Porphyromonas gingivalis lipopolysaccharide (Pg-LPS) to stimulate hPDLFs. Real-time quantitative polymerase chain reaction was used to measure mRNA levels of MIAT and osteogenic factors. Inflammation factor concentration was assessed using an enzyme-linked immunosorbent assay. Cell viability and apoptosis were examined by cell counting kit -8 and flow cytometry assay. The targeting relationship was verified by the dual-luciferase reporter and RNA Immunoprecipitation assay. RESULTS: Highly expressed MIAT and Dicckopf-1 (DDK1), and lowly expressed miR-204-5p were found in the gingival crevicular fluid of periodontitis patients and Pg-LPS induced hPDLFs. MIAT has a sensitivity of 76.53 % and a specificity of 86.49 % for identifying patients with periodontitis among healthy individuals. MIAT acts as a sponge for miR-204-5p and upregulates DDK1 mRNA expression. Silencing of MIAT diminished the promotion of apoptosis and inflammation in hPDLFs by Pg-LPS and enhanced osteogenic differentiation. However, a miR-204-5p inhibitor significantly reversed the effect of silenced MIAT. CONCLUSIONS: MIAT may act as a promising biomarker for periodontitis. It modulates apoptosis, inflammation, and osteogenic differentiation of PDLFs by focusing on the miR-204-5p/DKK1 axis, indicating its potential as a new therapeutic target for treating periodontitis.


Assuntos
Fibroblastos , Peptídeos e Proteínas de Sinalização Intercelular , MicroRNAs , Ligamento Periodontal , Periodontite , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/metabolismo , RNA Longo não Codificante/genética , Ligamento Periodontal/citologia , Ligamento Periodontal/metabolismo , MicroRNAs/metabolismo , Periodontite/metabolismo , Masculino , Fibroblastos/metabolismo , Feminino , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Adulto , Apoptose , Reação em Cadeia da Polimerase em Tempo Real , Ensaio de Imunoadsorção Enzimática , Pessoa de Meia-Idade , Porphyromonas gingivalis , Líquido do Sulco Gengival/metabolismo , Células Cultivadas , Sobrevivência Celular , Estudos de Casos e Controles , Lipopolissacarídeos/farmacologia , Citometria de Fluxo
18.
Ann Anat ; 256: 152325, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39197665

RESUMO

BACKGROUND: The aim of this study was to determine the effect of root canal filling using different obturation materials combined with apicoectomy in upper central incisors under loading with 1 N and 100 N. The effect of incomplete root formation was also investigated. METHODS: Based on a CBCT-scan, a model of an upper central incisor was created. The model was altered to simulate different clinical situations: root canal treatment, apicoectomy at two different lengths and with different obturation protocols, and immature root formation after trauma. In each model the tooth was loaded with 1 and 100 N, and peak Von Mises stress of bone and tooth, elastic strain of the periodontal ligament, as well as rotation and displacement of the tooth were measured. RESULTS: Periapical surgery increases stress in dentin and the surrounding bone. Different obturation materials only produce minor differences in a coronally intact tooth. CONCLUSIONS: Interincisal angle or loading direction strongly affects all measured values and needs to be considered when planning periapical surgery or comparing finite element analysis. Immature roots show the highest stress values in this study, reaching half the yield strength of dentine.


Assuntos
Análise de Elementos Finitos , Incisivo , Obturação do Canal Radicular , Humanos , Obturação do Canal Radicular/métodos , Ligamento Periodontal/fisiologia , Tomografia Computadorizada de Feixe Cônico , Apicectomia/métodos , Materiais Restauradores do Canal Radicular , Raiz Dentária/crescimento & desenvolvimento , Raiz Dentária/diagnóstico por imagem , Dentina , Estresse Mecânico , Maxila/cirurgia
19.
Arch Oral Biol ; 168: 106069, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39208712

RESUMO

OBJECTIVE: Periodontal regeneration poses challenges due to the periodontium's complexity, relying on mesenchymal cells from the periodontal ligament (hPDLSCs) to regenerate hard tissues like bone and cementum. While some hPDLSCs have high regeneration potential (HOP-hPDLSCs), most are low potential (LOP-hPDLSCs). This study analyzed hPDLSCs from a single donor to minimize inter-individual variability and focus on key differences in differentiation potentials. DESIGN: This study used RNA-seq, genomic databases, and bioinformatics tools to explore signaling pathways (SPs), biological processes (BPs), and molecular functions (MFs) guiding HOP cells to mineralized matrix production. It also investigated limitations of LOP cells and strategies for enhancing their osteo/cementogenesis. RESULTS: In basal conditions, HOP exhibited a multifunctional gene network with higher expression of genes related to osteo/cementogenesis, cell differentiation, immune modulation, stress response, and hormonal regulation. In contrast, LOP focused on steroid hormone biosynthesis and nucleic acid maintenance. During osteo/cementogenic induction, HOP showed strong modulation of genes related to angiogenesis, cell division, mesenchymal differentiation, and extracellular matrix production. LOP demonstrated neural synaptic-related processes and preserved cellular cytoskeleton integrity. CCKR map signaling and G-protein receptor bindings gained significance during osteo/cementogenesis in HOP-hPDLSCs. Both HOP and LOP shared common BPs related to gastrointestinal and reproductive system development. CONCLUSION: The osteo/cementogenic differentiation of HOP cells may be regulated by CCKR signaling, G-protein bindings, and specific hormonal regulation. LOP cells seem committed to neural mechanisms. This study sheds light on hPDLSCs' complex characteristics, offering a deeper understanding of their differentiation potential for future periodontal regeneration research and therapies.


Assuntos
Diferenciação Celular , Osteogênese , Ligamento Periodontal , Transdução de Sinais , Humanos , Ligamento Periodontal/citologia , Ligamento Periodontal/metabolismo , Transdução de Sinais/fisiologia , Osteogênese/fisiologia , Células-Tronco Mesenquimais/metabolismo , Cemento Dentário/metabolismo , Cemento Dentário/citologia , Regeneração/fisiologia
20.
J Dent Res ; 103(10): 1008-1016, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39185630

RESUMO

In vitro models are invaluable tools for deconstructing the biological complexity of the periodontal ligament (PDL). Model systems that closely reproduce the 3-dimensional (3D) configuration of cell-cell and cell-matrix interactions in native tissue can deliver physiologically relevant insights. However, 3D models of the PDL that incorporate mechanical loading are currently lacking. Hence, we developed a model where periodontal tissue constructs (PTCs) are made by casting PDL cells in a collagen gel suspended between a pair of slender, silicone posts for magnetic tensile loading. Specifically, one of the posts was rigid and the other was flexible with a magnet embedded in its tip so that PTCs could be subjected to tensile loading with an external magnet. Additionally, the deflection of the flexible post could be used to measure the contractile force of PDL cells in the PTCs. Prior to tensile loading, second harmonics generation analysis of collagen fibers in PTCs revealed that incorporation of PDL cells resulted in collagen remodeling. Biomechanical testing of PTCs by tensile loading revealed an elastic response at 4 h, permanent deformation by 1 d, and creep elongation by 1 wk. Subsequently, contractile forces of PDL cells were substantially lower for PTCs under tensile loading. Immunofluorescence analysis revealed that tensile loading caused PDL cells to increase in number, express higher levels of F-actin and α-smooth muscle actin, and become aligned to the tensile axis. Second harmonics generation analysis indicated that collagen fibers in PTCs progressively remodeled over time with tensile loading. Gene expression analysis also confirmed tension-mediated upregulation of the F-actin/Rho pathway and osteogenic genes. Our model is novel in demonstrating the mechanobiological behavior that results in cell-mediated remodeling of the PDL tissue in a 3D context. Hence, it can be a valuable tool to develop therapeutics for periodontitis, periodontal regeneration, and orthodontics.


Assuntos
Ligamento Periodontal , Resistência à Tração , Engenharia Tecidual , Ligamento Periodontal/citologia , Ligamento Periodontal/fisiologia , Engenharia Tecidual/métodos , Humanos , Fenômenos Biomecânicos , Colágeno , Estresse Mecânico , Células Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...