Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 365
Filtrar
1.
Stem Cell Res Ther ; 15(1): 201, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38971839

RESUMO

BACKGROUND: Dysfunction or deficiency of corneal epithelium results in vision impairment or blindness in severe cases. The rapid and effective regeneration of corneal epithelial cells relies on the limbal stem cells (LSCs). However, the molecular and functional responses of LSCs and their niche cells to injury remain elusive. METHODS: Single-cell RNA sequencing was performed on corneal tissues from normal mice and corneal epithelium defect models. Bioinformatics analysis was performed to confirm the distinct characteristics and cell fates of LSCs. Knockdown of Creb5 and OSM treatment experiment were performed to determine their roles of in corneal epithelial wound healing. RESULTS: Our data defined the molecular signatures of LSCs and reconstructed the pseudotime trajectory of corneal epithelial cells. Gene network analyses characterized transcriptional landmarks that potentially regulate LSC dynamics, and identified a transcription factor Creb5, that was expressed in LSCs and significantly upregulated after injury. Loss-of-function experiments revealed that silencing Creb5 delayed the corneal epithelial healing and LSC mobilization. Through cell-cell communication analysis, we identified 609 candidate regeneration-associated ligand-receptor interaction pairs between LSCs and distinct niche cells, and discovered a unique subset of Arg1+ macrophages infiltrated after injury, which were present as the source of Oncostatin M (OSM), an IL-6 family cytokine, that were demonstrated to effectively accelerate the corneal epithelial wound healing. CONCLUSIONS: This research provides a valuable single-cell resource and reference for the discovery of mechanisms and potential clinical interventions aimed at ocular surface reconstruction.


Assuntos
Plasticidade Celular , Células-Tronco do Limbo , Limbo da Córnea , Cicatrização , Animais , Camundongos , Epitélio Corneano/metabolismo , Epitélio Corneano/patologia , Epitélio Corneano/lesões , Células-Tronco do Limbo/citologia , Células-Tronco do Limbo/metabolismo , Limbo da Córnea/metabolismo , Limbo da Córnea/citologia , Limbo da Córnea/patologia , Camundongos Endogâmicos C57BL , Nicho de Células-Tronco , Cicatrização/genética
2.
Sci Rep ; 14(1): 17407, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39075142

RESUMO

Currently, in vitro cultured corneal epithelial transplantation is effective in treating limbal stem cell dysfunction (LSCD). Selecting carriers is crucial for constructing the corneal epithelium through tissue engineering. In this study, the traditional amniotic membrane (AM) was modified, and mesenchymal stem cells (MSCs) were inoculated into the ultra-thin amniotic membrane (UAM) stroma to construct a novel UAM-MSC tissue-engineered corneal epithelial carrier, that could effectively simulate the limbal stem cells (LSCs) microenvironment. The structure of different carriers cultured tissue-engineered corneal epithelium and the managed rabbit LSCD model corneas were observed through hematoxylin-eosin staining. Cell phenotypes were evaluated through fluorescence staining, Western blotting, and RT-qPCR. Additionally, cell junction genes and expression markers related to anti-neovascularization were evaluated using RT-qPCR. Corneal epithelium cell junctions were observed via an electron microscope. The tissue-engineered corneal epithelium culture medium was analyzed through mass spectrometry. Tissue-engineered corneal epithelial cells expanded by LSCs on UAM-MSCs had good transparency. Simultaneously, progenitor cell (K14, PNCA, p63) and corneal epithelial (PAX6) gene expression in tissue-engineered corneal epithelium constructed using UAM-MSCs was higher than that in corneal epithelial cells amplified by UAM and de-epithelialized amniotic membrane. Electron microscopy revealed that corneal epithelial cells grafted with UAM-MSCs were closely connected. In conclusion, the UAM-MSCs vector we constructed could better simulate the limbal microenvironment; the cultured tissue-engineered corneal epithelium had better transparency, anti-neovascularization properties, closer intercellular connections, and closer resemblance to the natural corneal epithelial tissue phenotype.


Assuntos
Âmnio , Epitélio Corneano , Células-Tronco Mesenquimais , Engenharia Tecidual , Âmnio/citologia , Engenharia Tecidual/métodos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Epitélio Corneano/citologia , Epitélio Corneano/metabolismo , Animais , Coelhos , Humanos , Células Cultivadas , Limbo da Córnea/citologia , Limbo da Córnea/metabolismo , Diferenciação Celular
3.
Stem Cell Reports ; 19(7): 1010-1023, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38942029

RESUMO

A comprehensive understanding of the human pluripotent stem cell (hPSC) differentiation process stands as a prerequisite for the development of hPSC-based therapeutics. In this study, single-cell RNA sequencing (scRNA-seq) was performed to decipher the heterogeneity during differentiation of three hPSC lines toward corneal limbal stem cells (LSCs). The scRNA-seq data revealed nine clusters encompassing the entire differentiation process, among which five followed the anticipated differentiation path of LSCs. The remaining four clusters were previously undescribed cell states that were annotated as either mesodermal-like or undifferentiated subpopulations, and their prevalence was hPSC line dependent. Distinct cluster-specific marker genes identified in this study were confirmed by immunofluorescence analysis and employed to purify hPSC-derived LSCs, which effectively minimized the variation in the line-dependent differentiation efficiency. In summary, scRNA-seq offered molecular insights into the heterogeneity of hPSC-LSC differentiation, allowing a data-driven strategy for consistent and robust generation of LSCs, essential for future advancement toward clinical translation.


Assuntos
Diferenciação Celular , Limbo da Córnea , Análise de Sequência de RNA , Análise de Célula Única , Humanos , Diferenciação Celular/genética , Análise de Célula Única/métodos , Limbo da Córnea/citologia , Limbo da Córnea/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Biomarcadores/metabolismo , Linhagem Celular , Células-Tronco/citologia , Células-Tronco/metabolismo , Perfilação da Expressão Gênica , Células-Tronco do Limbo
4.
Transl Vis Sci Technol ; 13(5): 3, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38696180

RESUMO

Purpose: The biosynthetic Symatix membrane (SM) was developed to replace fresh human amniotic membrane (hAM) in ocular surgical applications. The purpose of this study was to test the biocompatibility of the SM with human limbus-derived epithelial cells with regard to their physical and biological properties. Methods: Different physical properties of SM were tested ex vivo by simulation on human corneas. In vitro, primary limbal epithelial cells from limbal explants were used to test biological properties such as cell migration, proliferation, metabolic activity, and limbal epithelial cell markers on the SM, hAM, and freeze-dried amniotic membrane (FDAM). Results: The surgical handleability of the SM was equivalent to that of the hAM. Ultrastructural and histological studies demonstrated that epithelial cells on the SM had the typical tightly apposed, polygonal, corneal epithelial cell morphology. The epithelial cells were well stratified on the SM, unlike on the hAM and FDAM. Rapid wound healing occurred on the SM within 3 days. Immunofluorescence studies showed positive expression of CK-19, Col-1, laminin, ZO-1, FN, and p-63 on the SM, plastic, and FDAM compared to positive expression of ZO-1, Col-1, laminin, FN, and p63 and negative expression of CK-19 in the hAM. Conclusions: These results indicate that the SM is a better substrate for limbal epithelial cell migration, proliferation, and tight junction formation. Altogether, the SM can provide a suitable alternative to the hAM for surgical application in sight-restoring operations. Translational Relevance: The hAM, currently widely used in ocular surface surgery, has numerous variations and limitations. The biocompatibility of corneal epithelial cells with the SM demonstrated in this study suggests that it can be a viable substitute for the hAM.


Assuntos
Âmnio , Movimento Celular , Proliferação de Células , Humanos , Âmnio/metabolismo , Células Cultivadas , Limbo da Córnea/metabolismo , Limbo da Córnea/citologia , Epitélio Corneano/metabolismo , Epitélio Corneano/citologia , Cicatrização/fisiologia , Células Epiteliais/metabolismo , Procedimentos Cirúrgicos Oftalmológicos/métodos , Laminina/metabolismo , Proteína da Zônula de Oclusão-1/metabolismo
5.
Cells ; 12(21)2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37947602

RESUMO

Epithelial and stromal/mesenchymal limbal stem cells contribute to corneal homeostasis and cell renewal. Extracellular vesicles (EVs), including exosomes (Exos), can be paracrine mediators of intercellular communication. Previously, we described cargos and regulatory roles of limbal stromal cell (LSC)-derived Exos in non-diabetic (N) and diabetic (DM) limbal epithelial cells (LECs). Presently, we quantify the miRNA and proteome profiles of human LEC-derived Exos and their regulatory roles in N- and DM-LSC. We revealed some miRNA and protein differences in DM vs. N-LEC-derived Exos' cargos, including proteins involved in Exo biogenesis and packaging that may affect Exo production and ultimately cellular crosstalk and corneal function. Treatment by N-Exos, but not by DM-Exos, enhanced wound healing in cultured N-LSCs and increased proliferation rates in N and DM LSCs vs. corresponding untreated (control) cells. N-Exos-treated LSCs reduced the keratocyte markers ALDH3A1 and lumican and increased the MSC markers CD73, CD90, and CD105 vs. control LSCs. These being opposite to the changes quantified in wounded LSCs. Overall, N-LEC Exos have a more pronounced effect on LSC wound healing, proliferation, and stem cell marker expression than DM-LEC Exos. This suggests that regulatory miRNA and protein cargo differences in DM- vs. N-LEC-derived Exos could contribute to the disease state.


Assuntos
Diabetes Mellitus , Exossomos , Limbo da Córnea , MicroRNAs , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Limbo da Córnea/metabolismo , Córnea , Diabetes Mellitus/metabolismo , Células Epiteliais/metabolismo , Células Estromais , Comunicação Celular
6.
PLoS Biol ; 21(10): e3002336, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37856539

RESUMO

The transparent corneal epithelium in the eye is maintained through the homeostasis regulated by limbal stem cells (LSCs), while the nontransparent epidermis relies on epidermal keratinocytes for renewal. Despite their cellular similarities, the precise cell fates of these two types of epithelial stem cells, which give rise to functionally distinct epithelia, remain unknown. We performed a multi-omics analysis of human LSCs from the cornea and keratinocytes from the epidermis and characterized their molecular signatures, highlighting their similarities and differences. Through gene regulatory network analyses, we identified shared and cell type-specific transcription factors (TFs) that define specific cell fates and established their regulatory hierarchy. Single-cell RNA-seq (scRNA-seq) analyses of the cornea and the epidermis confirmed these shared and cell type-specific TFs. Notably, the shared and LSC-specific TFs can cooperatively target genes associated with corneal opacity. Importantly, we discovered that FOSL2, a direct PAX6 target gene, is a novel candidate associated with corneal opacity, and it regulates genes implicated in corneal diseases. By characterizing molecular signatures, our study unveils the regulatory circuitry governing the LSC fate and its association with corneal opacity.


Assuntos
Opacidade da Córnea , Epitélio Corneano , Limbo da Córnea , Humanos , Limbo da Córnea/metabolismo , Córnea/metabolismo , Epitélio Corneano/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Diferenciação Celular/genética , Opacidade da Córnea/metabolismo
7.
Cells ; 12(19)2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37830548

RESUMO

(1) Background: Owing to its ready availability and ease of acquisition, developing chick corneal tissue has long been used for research purposes. Here, we seek to ascertain the three-dimensional microanatomy and spatiotemporal interrelationships of the cells (epithelial and stromal), extracellular matrix, and vasculature at the corneo-scleral limbus as the site of the corneal stem cell niche of the chicken eye. (2) Methods: The limbus of developing (i.e., embryonic days (E) 16 and 18, just prior to hatch) and mature chicken eyes was imaged using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and the volume electron microscopy technique, serial-block face SEM (SBF-SEM), the latter technique allowing us to generate three-dimensional reconstructions from data sets of up to 1000 serial images; (3) Results: Data revealed that miniature limbal undulations of the embryonic basement membrane, akin to Palisades of Vogt (PoV), matured into distinct invaginations of epithelial cells that extended proximally into a vascularized limbal stroma. Basal limbal epithelial cells, moreover, occasionally exhibited a high nuclear:cytoplasmic ratio, which is a characteristic feature of stem cells. SBF-SEM identified direct cell-cell associations between corneal epithelial and stromal cells at the base of structures akin to limbal crypts (LCs), with cord-like projections of extracellular matrix extending from the basal epithelial lamina into the subjacent stroma, where they made direct contact with stomal cells in the immature limbus. (4) Conclusion: Similarities with human tissue suggest that the corneal limbus of the mature chicken eye is likely the site of a corneal stem cell niche. The ability to study embryonic corneas pre-hatch, where we see characteristic niche-like features emerge, thus provides an opportunity to chart the development of the limbal stem cell niche of the cornea.


Assuntos
Epitélio Corneano , Limbo da Córnea , Humanos , Animais , Galinhas , Epitélio Corneano/metabolismo , Nicho de Células-Tronco , Limbo da Córnea/metabolismo , Células-Tronco/metabolismo
8.
Exp Eye Res ; 236: 109667, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37758156

RESUMO

A simple and reproducible method is necessary to generate reliable animal models of limbal stem cell deficiency (LSCD) for assessing the safety and efficacy of new therapeutic modalities. This study aimed to develop and validate a rabbit model of LSCD through mechanical injury. The corneal and limbal epithelium of New Zealand White rabbits (n = 18) were mechanically debrided using an ophthalmic burr (Algerbrush II) with a 1.0-mm rotating head after 360° conjunctival peritomy. The debrided eyes were serially evaluated for changes in corneal opacity, neo-vascularization, epithelial defect and corneal thickness using clinical photography, slit lamp imaging, fluorescein staining, and anterior segment optical coherence tomography scanning (AS-OCT). Following this, an assessment of histopathology and phenotypic marker expression of the excised corneas was conducted. The experimental eyes were grouped as mild (n = 4), moderate (n = 10), and severe (n = 4) based on the grade of LSCD. The moderate group exhibited abnormal epithelium, cellular infiltration in the stroma, and vascularization in the central, peripheral, and limbal regions of the cornea. The severe group demonstrated central epithelial edema, peripheral epithelial thinning with sparse goblet cell population, extensive cellular infiltration in the stroma, and dense vascularization in the limbal region of the cornea. A significant decrease in the expression of K12 and p63 (p < 0.0001) was observed, indicating the loss of corneal epithelium and limbal epithelial stem cells in the LSCD cornea. This study demonstrates that the Alger brush-induced mechanical debridement model provides a reliable model of LSCD with comprehensive clinic-pathological features and that is well suited for evaluating novel therapeutic and regenerative approaches.


Assuntos
Doenças da Córnea , Epitélio Corneano , Limbo da Córnea , Coelhos , Animais , Limbo da Córnea/metabolismo , Desbridamento , Células-Tronco do Limbo , Córnea/metabolismo , Epitélio Corneano/metabolismo , Doenças da Córnea/patologia
9.
Adv Healthc Mater ; 12(29): e2301396, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37449943

RESUMO

A functional limbal epithelial stem cells (LSC) niche is a vital element in the regular renewal of the corneal epithelium by LSCs and maintenance of good vision. However, little is known about its unique structure and mechanical properties on LSC regulation, creating a significant gap in development of LSC-based therapies. Herein, the effect of mechanical and architectural elements of the niche on human pluripotent derived LSCs (hPSC-LSC) phenotype and growth is investigated in vitro. Specifically, three formulations of polyacrylamide gels with different controlled stiffnesses are used for culture and characterization of hPSC-LSCs from different stages of differentiation. In addition, limbal mimicking topography in polydimethylsiloxane is utilized for culturing hPSC-LSCs at early time point of differentiation. For comparison, the expression of selected key proteins of the corneal cells is analyzed in their native environment through whole mount staining of human donor corneas. The results suggest that mechanical response and substrate preference of the cells is highly dependent on their developmental stage. In addition, data indicate that cells may carry possible mechanical memory from previous culture matrix, both highlighting the importance of mechanical design of a functional in vitro limbus model.


Assuntos
Limbo da Córnea , Células-Tronco , Humanos , Limbo da Córnea/metabolismo , Córnea , Fenótipo , Diferenciação Celular
10.
Exp Eye Res ; 234: 109599, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37488009

RESUMO

Limbal epithelial stem cells are not only critical for corneal epithelial homeostasis but also have the capacity to change from a relatively quiescent mitotic phenotype to a rapidly proliferating cell in response to population depletion following corneal epithelial wounding. Pax6+/- mice display many abnormalities including corneal vascularization and these aberrations are consistent with a limbal stem cell deficiency (LSCD) phenotype. FoxC1 has an inhibitory effect on corneal avascularity and a positive role in stem cell maintenance in many tissues. However, the role of FoxC1 in limbal epithelial stem cells remains unknown. To unravel FoxC1's role(s) in limbal epithelial stem cell homeostasis, we utilized an adeno-associated virus (AAV) vector to topically deliver human FOXC1 proteins into Pax6 +/- mouse limbal epithelium. Under unperturbed conditions, overexpression of FOXC1 in the limbal epithelium had little significant change in differentiation (PAI-2, Krt12) and proliferation (BrdU, Ki67). Conversely, such overexpression resulted in a marked increase in the expression of putative limbal epithelial stem cell markers, N-cadherin and Lrig1. After corneal injuries in Pax6 +/- mice, FOXC1 overexpression enhanced the behavior of limbal epithelial stem cells from quiescence to a highly proliferative status. Overall, the treatment of AAV8-FOXC1 may be beneficial to the function of limbal epithelial stem cells in the context of a deficiency of Pax6 function.


Assuntos
Doenças da Córnea , Epitélio Corneano , Limbo da Córnea , Animais , Humanos , Camundongos , Córnea , Doenças da Córnea/metabolismo , Desbridamento , Células Epiteliais , Epitélio Corneano/metabolismo , Limbo da Córnea/metabolismo , Células-Tronco
11.
Cells ; 12(3)2023 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-36766742

RESUMO

Paired box 6 (PAX6), a nuclear transcription factor, determines the fate of limbal epithelial progenitor cells (LEPC) and maintains epithelial cell identity. However, the expression of PAX6 in limbal niche cells, primarily mesenchymal stromal cells (LMSC), and melanocytes is scarce and not entirely clear. To distinctly assess the PAX6 expression in limbal niche cells, fresh and organ-cultured human corneoscleral tissues were stained immunohistochemically. Furthermore, the expression of PAX6 in cultured limbal cells was investigated. Immunostaining revealed the presence of PAX6-negative cells which were positive for vimentin and the melanocyte markers Melan-A and human melanoma black-45 in the basal layer of the limbal epithelium. PAX6 staining was not observed in the limbal stroma. Moreover, the expression of PAX6 was observed by Western blot in cultured LEPC but not in cultured LMSC or LM. These data indicate a restriction of PAX6 expression to limbal epithelial cells at the limbal stem cell niche. These observations warrant further studies for the presence of other PAX isoforms in the limbal stem cell niche.


Assuntos
Epitélio Corneano , Limbo da Córnea , Humanos , Adulto , Epitélio Corneano/metabolismo , Células-Tronco do Limbo , Limbo da Córnea/metabolismo , Células-Tronco/metabolismo , Fatores de Transcrição/metabolismo , Fator de Transcrição PAX6/genética , Fator de Transcrição PAX6/metabolismo
12.
Exp Eye Res ; 229: 109337, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36702232

RESUMO

Limbal epithelial stem/progenitor cells (LSCs) are adult stem cells located at the limbus, tightly regulated by their close microenvironment. It has been shown that Wnt signaling pathway is crucial for LSCs regulation. Previous differential gene profiling studies confirmed the preferential expression of specific Wnt ligands (WNT2, WNT6, WNT11, WNT16) and Wnt inhibitors (DKK1, SFRP5, WIF1, FRZB) in the limbal region compared to the cornea. Among all frizzled receptors, frizzled7 (Fzd7) was found to be preferentially expressed in the basal limbal epithelium. However, the exact localization of Wnt signaling molecules-producing cells in the limbus remains unknown. The current study aims to evaluate the in situ spatial expression of these 4 Wnt ligands, 4 Wnt inhibitors, and Fzd7. Wnt ligands, DKK1, and Fzd7 expression were scattered within the limbal epithelium, at a higher abundance in the basal layer than the superficial layer. SFRP5 expression was diffuse among the limbal epithelium, whereas WIF1 and FRZB expression was clustered at the basal limbal epithelial layer corresponding to the areas of high levels of Fzd7 expression. Quantitation of the fluorescence intensity showed that all 4 Wnt ligands, 3 Wnt inhibitors (WIF1, DKK1, FRZB), and Fzd7 were highly expressed at the basal layer of the limbus, then in a decreasing gradient toward the superficial layer (P < 0.05). The expression levels of all 4 Wnt ligands, FRZB, and Fzd7 in the basal epithelial layer were higher in the limbus than the central cornea (P < 0.05). All 4 Wnt ligands, 4 Wnt inhibitors, and Fzd7 were also highly expressed in the limbal stroma immediately below the epithelium but not in the corneal stroma (P < 0.05). In addition, Fzd7 had a preferential expression in the superior limbus compared to other limbal quadrants (P < 0.05). Taken together, the unique expression patterns of the Wnt molecules in the limbus suggests the involvement of both paracrine and autocrine effects in LSCs regulation, and a fine balance between Wnt activators and inhibitors to govern LSC fate.


Assuntos
Epitélio Corneano , Limbo da Córnea , Adulto , Humanos , Via de Sinalização Wnt/fisiologia , Epitélio Corneano/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Limbo da Córnea/metabolismo , Córnea/fisiologia
13.
Eur J Ophthalmol ; 33(4): 1536-1552, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36604831

RESUMO

The limbal stem cells niche (LSCN) is an optimal microenvironment that provides the limbal epithelial stem cells (LESCs) and strictly regulates their proliferation and differentiation. Disturbing the LSCN homeostasis can lead to limbal stem cell dysfunction (LSCD) and subsequent ocular surface aberrations, such as corneal stromal inflammation, persistent epithelial defects, corneal neovascularisation, lymphangiogenesis, corneal opacification, and conjunctivalization. As ocular surface disorders are considered the second main cause of blindness, it becomes crucial to explore different therapeutic strategies for restoring the functions of the LSCN. A major limitation of corneal transplantation is the current shortage of donor tissue to meet the requirements worldwide. In this context, it becomes mandatory to find an alternative regenerative medicine, such as using cultured limbal epithelial/stromal stem cells, inducing the production of corneal like cells by using other sources of stem cells, and using tissue engineering methods aiming to produce the three-dimensional (3D) printed cornea. Limbal epithelial stem cells have been considered the magic potion for eye treatment. Epithelial and stromal stem cells in the limbal niche hold the responsibility of replenishing the corneal epithelium. These stem cells are being used for transplantation to maintain corneal epithelial integrity and ultimately sustain optimal vision. In this review, we summarised the characteristics of the LSCN and their current and future roles in restoring corneal homeostasis in eyes with LSCD.


Assuntos
Doenças da Córnea , Epitélio Corneano , Limbo da Córnea , Humanos , Medicina Regenerativa , Limbo da Córnea/metabolismo , Córnea , Células-Tronco , Homeostase , Doenças da Córnea/cirurgia , Transplante de Células-Tronco/métodos
14.
Eur J Ophthalmol ; 33(3): NP18-NP22, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-35139684

RESUMO

PURPOSE: To report the case of persistent corneal epithelial defect in total limbal stem cell deficiency (LSCD) after severe firework-related ocular burn treated with autologous Platelet-Rich Plasma (PRP). CASE DESCRIPTION: A young patient, victim of fireworks trauma, presented with a large persistent epithelial defect affecting the central cornea of his left eye and progressing to stromal melting, in the context of grade VI ocular surface burn with 12 h limbal involvement. Impression cytology to the cornea confirmed a complete LSCD. Assessment of corneal sensitivity by Cochet Bonnet esthesiometer revealed complete corneal anesthesia. Based on progressive clinical worsening under conventional therapy, the patient was started on very pure autologous PRP eye drops obtained using the Hy-Tissue PRP® technology. Six times a day eye drops administration for 30 days was scheduled in the affected eye. At the end of treatment, the epithelial defect had disappeared being replaced by advancing conjunctiva. CONCLUSION: Our findings provide information on management of ocular burns from fireworks, a subject of current interest and concern. Autologous PRP eye drops prepared using the Hy-Tissue PRP® system and administered in the presence of total LSCD and complete corneal anesthesia, prevented corneal stromal melting to progress and allowed the ocular surface epithelial coverage to re-establish. This paved the way for later successful restorative and reconstructive intervention. Also, first description of the Hy-tissue PRP procedure for ophthalmological use is reported.


Assuntos
Doenças da Córnea , Epitélio Corneano , Queimaduras Oculares , Oftalmopatias , Deficiência Límbica de Células-Tronco , Limbo da Córnea , Humanos , Células-Tronco do Limbo , Limbo da Córnea/metabolismo , Córnea , Transplante Autólogo , Doenças da Córnea/etiologia , Doenças da Córnea/terapia , Transplante de Células-Tronco
15.
Stem Cell Res ; 64: 102936, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36242878

RESUMO

Pterygium pathogenesis is often attributed to a population of altered limbal stem cells, which initiate corneal invasion and drive the hyperproliferation and fibrosis associated with the disease. These cells are thought to undergo epithelial to mesenchymal transition (EMT) and to contribute to subepithelial stromal fibrosis. In this study, the presence of the novel limbal stem cell marker ABCB5 in clusters of basal epithelial pterygium cells co-expressing with P63α and P40 is reported. ABCB5-positive pterygium cells also express EMT-associated fibrosis markers including vimentin and α-SMA while their ß-catenin expression is reduced. By using a novel in vitro model of two-dose UV-induced EMT activation on limbal epithelial cells, we could observe the dysregulation of EMT-related proteins including an increase of vimentin and α-SMA as well as downregulation of ß-catenin in epithelial cells correlating to downregulation of ABCB5. The sequential irradiation of limbal fibroblasts also induced an increase in vimentin and α-SMA. Taken together, these data demonstrate for the first time the expression of ABCB5 in pterygium stem cell activity and EMT-related events while the involvement of limbal stem cells in pterygium pathogenesis is exhibited via sequential irradiation of limbal epithelial cells. The later in vitro approach can be used to further study the involvement of limbal epithelium UV-induced EMT in pterygium pathogenesis and help identify novel treatments against pterygium growth and recurrence.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP , Limbo da Córnea , Pterígio , Raios Ultravioleta , Humanos , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , beta Catenina/metabolismo , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal/efeitos da radiação , Epitélio , Fibrose/genética , Fibrose/metabolismo , Limbo da Córnea/metabolismo , Pterígio/etiologia , Pterígio/metabolismo , Pterígio/patologia , Vimentina/genética , Vimentina/metabolismo , Raios Ultravioleta/efeitos adversos
16.
Exp Eye Res ; 225: 109252, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36150543

RESUMO

Cells migrate from the limbus to the corneal epithelium following a centripetal pathway. Corneal epithelial cells tend to orientate in spiral or vortex patterns. However, when cultured in-vitro, limbal derived corneal epithelia do not tend to align or migrate in a spiral pattern. Here, we used soft lithography to create silk fibroin substrates with spiral topographies that direct the human limbal-derived immortalized corneal epithelial cells (hTCEpi) to form a spiral orientation. The impact of this topography on the cells was then characterized. The spiral patterns affected cytoskeletal organization, cell spreading, and nuclei shapes. Spiral width and numbers had a significant impact on proliferation of cells, their focal adhesion, their chromatin condensation, and number of actin filaments. Immunocytochemical staining showed that the spiral pattern enhanced the expression of markers associated with limbal stem cells. The current work illustrates micro spiral patterns can serve to control the nature of limbal derived epithelial cells by providing relevant biophysical cues.


Assuntos
Epitélio Corneano , Limbo da Córnea , Humanos , Limbo da Córnea/metabolismo , Epitélio Corneano/metabolismo , Células-Tronco , Células Epiteliais , Adesão Celular
17.
Tissue Eng Part A ; 28(23-24): 977-989, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36066335

RESUMO

Tissue-engineered corneal epithelium transplantation is effective treatment for severe limbal stem cell deficiency (LSCD), while epithelial terminal differentiation, tans-differentiation, and insufficient stem cell during construction affect the quality of tissue-engineered corneal epithelium. In this study, we applied SB203580 in the culture medium to downregulate the p38 mitogen-activated protein kinase (MAPK) signaling pathway during construction of tissue-engineered corneal epithelium. With application of SB203580, tissue-engineered corneal epithelium showed enhanced strength and condensed structure. The expression of progenitor cell markers ATP-binding cassette sub-family G member 2, tumor protein p63, keratin 14, and Wnt family member 7A was increased, differentiation markers keratin 12, paired box 6, keratin 10, and keratin 13 and trans-differentiation markers actin alpha 2, smooth muscle and snail family transcriptional repressor 1 was decreased, while cell junction markers claudin 1 and cadherin 1 was increased in the tissue-engineered corneal epithelium. The Wnt/catenin beta 1 signaling pathway was upregulated in the epithelium after p38 MAPK inhibition. Transplantation of tissue-engineered corneal epithelium treated with SB203580 to rabbit LSCD model showed faster wound healing and improved epithelial quality. We conclude that downregulation of p38 MAPK signaling pathway helps maintain the stemness and prevent terminal differentiation and abnormal differentiation of corneal epithelial cells during epithelium construction process, and thus can improve the quality of tissue-engineered corneal epithelium. Impact statement Downregulation of p38 MAPK signaling pathway helps maintain the self-renewal of limbal stem cells and prevents terminal differentiation and abnormal differentiation of corneal epithelial cells. Small molecules modulating p38 MAPK signaling pathway ameliorate tissue-engineered corneal epithelium.


Assuntos
Epitélio Corneano , Limbo da Córnea , Animais , Coelhos , Limbo da Córnea/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/análise , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Regulação para Baixo , Transdução de Sinais
18.
Cell Rep ; 40(6): 111166, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35947947

RESUMO

The corneal epithelium is renowned for high regenerative potential, which is dependent on the coordinated function of its diverse progenitor subpopulations. However, the molecular pathways governing corneal epithelial progenitor differentiation are incompletely understood. Here, we identify a highly proliferative limbal epithelial progenitor subpopulation characterized by expression of basal cell adhesion molecule (BCAM) that is capable of holocone formation and corneal epithelial sheet generation. BCAM-positive cells can be found among ABCB5-positive limbal stem cells (LSCs) as well as among ABCB5-negative limbal epithelial cell populations. Mechanistically, we show that BCAM is functionally required for cellular migration and differentiation and that its expression is regulated by the transcription factor p63. In aggregate, our study identifies limbal BCAM expression as a marker of highly proliferative corneal epithelial progenitor cells and defines the role of BCAM as a critical molecular mediator of corneal epithelial differentiation.


Assuntos
Epitélio Corneano , Limbo da Córnea , Diferenciação Celular , Células Cultivadas , Córnea , Células Epiteliais/metabolismo , Limbo da Córnea/metabolismo , Células-Tronco/metabolismo
19.
Stem Cell Reports ; 17(4): 864-878, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35364008

RESUMO

Culture of limbal epithelial cells (LECs) provides the principal source of transplanted limbal stem cells (LESCs) for treatment of limbal-stem-cell deficiency. Optimization of the culture conditions for in-vitro-expanded LECs will help to create a graft with an optimized quality and quantity of LESCs. This study aimed to investigate the effects of WNT16B on LECs and corneal wound healing and the underlying mechanism. Treatment with exogenous WNT16B increased the proliferative capacity and self-renewal of LECs in the cultures. We further revealed that C-X-C chemokine receptor type 4 (CXCR4) was vital for the effects of WNT16B, and activation of CXCR4/MEK/ERK signaling was pivotal in mediating the effects of WNT16B on LECs enriched for LESCs. The stimulatory effect of WNT16B on corneal epithelial repair was confirmed in a mouse corneal-wound-healing model. In summary, WNT16B enhances proliferation and self-renewal of LECs via the CXCR4/MEK/ERK signaling cascade and accelerates corneal-epithelial wound healing.


Assuntos
Epitélio Corneano , Limbo da Córnea , Receptores CXCR4 , Proteínas Wnt , Animais , Proliferação de Células/fisiologia , Células Cultivadas , Células Epiteliais/metabolismo , Epitélio Corneano/metabolismo , Limbo da Córnea/metabolismo , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Receptores CXCR4/metabolismo , Proteínas Wnt/metabolismo , Cicatrização/fisiologia
20.
Stem Cell Reports ; 17(4): 849-863, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35334220

RESUMO

Severe ocular surface diseases can lead to limbal stem cell deficiency (LSCD), which is accompanied by defective healing. We aimed to evaluate the role of the substance P (SP)/neurokinin-1 receptor (NK1R) pathway in corneal epithelium wound healing in a pre-clinical model of LSCD. SP ablation or NK1R blockade significantly increased epithelial wound healing (p < 0.001) and corneal transparency (p < 0.001), compared with wild type (WT). In addition, a reduced number of infiltrating goblet and conjunctival cells (p < 0.05) and increased number of epithelial stem cells (p < 0.01), which also expressed NK1R, was observed. The mammalian target of rapamycin (mTOR) pathway was significantly inhibited (p < 0.05) and expression of γH2AX was significantly reduced (p < 0.05) after SP ablation. These results suggest that excessive expression of SP is associated with LSCD and results in accelerated senescence and exhaustion of residual stem cells. Topical treatment with NK1R antagonist ameliorates clinical signs associated with LSCD and could be used as an adjuvant treatment in LSCD.


Assuntos
Doenças da Córnea , Epitélio Corneano , Limbo da Córnea , Senescência Celular , Doenças da Córnea/metabolismo , Doenças da Córnea/terapia , Humanos , Limbo da Córnea/metabolismo , Receptores da Neurocinina-1/genética , Receptores da Neurocinina-1/metabolismo , Células-Tronco , Substância P/metabolismo , Serina-Treonina Quinases TOR/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...