Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.431
Filtrar
1.
Genes (Basel) ; 15(7)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-39062672

RESUMO

In the present study, the mitochondrial genomic characteristics of Acanthopsetta nadeshnyi have been reported and have depicted the phylogenetic relationship among Pleuronectidae. Combined with a comparative analysis of 13 PCGs, the TN93 model was used to review the neutral evolution and habitat evolution catalysis of the mitogenome to verify the distancing and purification selectivity of the mitogenome in Pleuronectidae. At the same time, a species differentiation and classification model based on mitogenome analysis data was established. This study is expected to provide a new perspective on the phylogenetic relationship and taxonomic status of A. nadeshnyi and lay a foundation for further exploration of environmental and biological evolutionary mechanisms.


Assuntos
Evolução Molecular , Genoma Mitocondrial , Filogenia , Animais , Linguados/genética , Linguados/classificação
2.
Int J Mol Sci ; 25(14)2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39062879

RESUMO

DNA methylation is a key epigenetic mechanism orchestrating gene expression networks in many biological processes. Nonetheless, studying the role of specific gene methylation events in fish faces challenges. In this study, we validate the regulation of DNA methylation on empty spiracles homeobox 2 (emx2) expression with decitabine treatment in Chinese tongue sole testis cells. We used the emx2 gene as the target gene and developed a new DNA methylation editing system by fusing dnmt3a with catalytic dead Cas9 (dCas9) and demonstrated its ability for sequence-specific DNA methylation editing. Results revealed that utilizing dCas9-dnmt3a to target emx2 promoter region led to increased DNA methylation levels and decreased emx2 expression in Chinese tongue sole testis cells. More importantly, the DNA methylation editing significantly suppressed the expression of MYC proto-oncogene, bHLH transcription factor (myc), one target gene of emx2. Furthermore, we assessed the off-target effects of dCas9-dnmt3a and confirmed no significant impact on the predicted off-target gene expression. Taken together, we developed the first DNA methylation editing system in marine species and demonstrated its effective editing ability in Chinese tongue sole cells. This provides a new strategy for both epigenetic research and molecular breeding of marine species.


Assuntos
Metilação de DNA , Edição de Genes , Proteínas de Homeodomínio , Testículo , Animais , Masculino , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Testículo/metabolismo , Edição de Genes/métodos , Sistemas CRISPR-Cas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Linguados/genética , Regiões Promotoras Genéticas/genética , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , DNA Metiltransferase 3A
3.
Int J Mol Sci ; 25(14)2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39063205

RESUMO

Hsp40-Hsp70 typically function in concert as molecular chaperones, and their roles in post-infection immune responses are increasingly recognized. However, in the economically important fish species Scophthalmus maximus (turbot), there is still a lack in the systematic identification, interaction models, and binding site analysis of these proteins. Herein, 62 Hsp40 genes and 16 Hsp70 genes were identified in the turbot at a genome-wide level and were unevenly distributed on 22 chromosomes through chromosomal distribution analysis. Phylogenetic and syntenic analysis provided strong evidence in supporting the orthologies and paralogies of these HSPs. Protein-protein interaction and expression analysis was conducted to predict the expression profile after challenging with Aeromonas salmonicida. dnajb1b and hspa1a were found to have a co-expression trend under infection stresses. Molecular docking was performed using Auto-Dock Tool and PyMOL for this pair of chaperone proteins. It was discovered that in addition to the interaction sites in the J domain, the carboxyl-terminal domain of Hsp40 also plays a crucial role in its interaction with Hsp70. This is important for the mechanistic understanding of the Hsp40-Hsp70 chaperone system, providing a theoretical basis for turbot disease resistance breeding, and effective value for the prevention of certain diseases in turbot.


Assuntos
Doenças dos Peixes , Linguados , Proteínas de Choque Térmico HSP40 , Proteínas de Choque Térmico HSP70 , Filogenia , Animais , Linguados/imunologia , Linguados/genética , Linguados/microbiologia , Linguados/metabolismo , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Doenças dos Peixes/imunologia , Doenças dos Peixes/microbiologia , Doenças dos Peixes/genética , Doenças dos Peixes/metabolismo , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Proteínas de Peixes/imunologia , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/veterinária , Infecções por Bactérias Gram-Negativas/microbiologia , Infecções por Bactérias Gram-Negativas/genética , Simulação de Acoplamento Molecular , Aeromonas salmonicida/imunologia , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética
4.
Sci Data ; 11(1): 819, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39048589

RESUMO

Vibrio spp. are major pathogens responsible for mortality and disease in various marine aquaculture organisms. Effective disease control and genetic breeding strategies rely heavily on understanding host vibriosis resistance mechanisms. The Chinese tongue sole (Cynoglossus semilaevis) is economically vital but suffers from substantial mortalities due to vibriosis. Through continuous selective breeding, we have successfully obtained vibriosis-resistant families of this species. In this study, we conducted RNA-seq analysis on three organs, including liver, spleen and intestine from selected resistant and susceptible tongue soles. Additionally, we integrated these data with our previously published RNA-seq datasets of skin and gill, enabling the construction of organ-specific transcriptional profiles and a comprehensive gene co-expression network elucidating the differences in vibriosis resistance. Furthermore, we identified 12 modules with organ-specific functional implications. Overall, our findings provide a valuable resource for investigating the molecular basis of vibriosis resistance in fish, offering insights into target genes and pathways essential for molecular selection and genetic manipulation to enhance vibriosis resistance in fish breeding programs.


Assuntos
Resistência à Doença , Doenças dos Peixes , Linguados , Transcriptoma , Vibrioses , Vibrio , Animais , Vibrioses/veterinária , Vibrioses/genética , Doenças dos Peixes/microbiologia , Doenças dos Peixes/genética , Linguados/genética , Linguados/microbiologia , Resistência à Doença/genética , Redes Reguladoras de Genes , Fígado/metabolismo , Baço
5.
Fish Shellfish Immunol ; 152: 109755, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38981555

RESUMO

Complement factor H-related protein (CFHR) plays an important role in regulating complement activation and defensive responses. The function of CFHR2 (complement factor H related 2), a member of the CFHR family, in fish remains unclear. Here, we report the genetic relationship, expression characteristics and regulatory mechanism of cfhl5 (complement factor H like 5) gene, which encodes CFHR2 in Chinese tongue sole. We observed that the cfhl5 gene was widely expressed in several tissues, such as brain, heart and immune organs, and was most abundantly expressed in liver. After injection with Vibrio harveyi, the expression of cfhl5 was up-regulated significantly in liver, spleen and kidney at 12 or 24 hours post infection (hpi), suggesting an involvement of this gene in the acute immune response. Knockdown of cfhl5 in liver cells significantly up-regulated the expression of the pro-inflammatory cytokines tnf-α (tumor necrosis factor-alpha) and il1ß (interleukin-1beta), the immunomodulatory factor il10 (interleukin-10) and the lectin complement pathway gene masp1 (MBL-associated serine protease 1), and down-regulated the expression of complement components c3 (complement 3) and cfi (complement factor I). In our previous work, we found that cfhl5 gene was significantly higher methylated and lower expressed in the resistant family compared with the susceptible family. Therefore, we used dual-luciferase reporter system to determine the effect of DNA methylation on this gene and found that DNA methylation could inhibit the promoter activity to reduce its expression. These results demonstrated that the expression of cfhl5 is regulated by DNA methylation, and this gene might play an important role in the immune response by regulating the expression of cytokines and complement components genes in Chinese tongue sole.


Assuntos
Doenças dos Peixes , Proteínas de Peixes , Linguados , Regulação da Expressão Gênica , Imunidade Inata , Vibrioses , Vibrio , Animais , Vibrio/fisiologia , Doenças dos Peixes/imunologia , Vibrioses/imunologia , Vibrioses/veterinária , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Imunidade Inata/genética , Linguados/imunologia , Linguados/genética , Regulação da Expressão Gênica/imunologia , Perfilação da Expressão Gênica/veterinária , Filogenia
6.
Fish Shellfish Immunol ; 151: 109681, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38871142

RESUMO

The EGF-containing fibulin-like extracellular matrix protein 2 (EFEMP2) is involved in connective tissue development, elastic fiber formation, and tumor growth. In this study, we characterized the cDNA of EFEMP2 (PoEFEMP2), a member of the fibulin family of ECM proteins, in the olive flounder Paralichthys olivaceus. The coding region of PoEFEMP2 encodes a protein that contains six calcium-binding EGF-like (EGF-CA) domains and four complement Clr-like EGF-like (cEGF) domains. PoEFEMP2 shows 67.51-96.77 % similarities to orthologs in a variety of fish species. PoEFEMP2 mRNA was detected in all tissues examined; the highest levels of PoEFEMP2 mRNA expression were observed in the heart, testis, ovary and muscle. The PoEFEMP2 mRNA level increases during early development. In addition, the PoEFEMP2 mRNA level increased at 3 h post-infection (hpi) and decreased from 6 to 48 hpi in flounder Hirame natural embryo (HINAE) cells infected with viral hemorrhagic septicemia virus (VHSV). Disruption of PoEFEMP2 using the clustered regularly interspaced short palindromic repeats/CRISPR-associated-9 (CRISPR/Cas9) system resulted in a significant upregulation of VHSV G mRNA levels and immune-related genes expression in knockout cells. These findings implicate PoEFEMP2 in antiviral responses in P. olivaceus.


Assuntos
Sequência de Aminoácidos , Proteínas da Matriz Extracelular , Proteínas de Peixes , Regulação da Expressão Gênica , Septicemia Hemorrágica Viral , Imunidade Inata , Novirhabdovirus , Filogenia , Animais , Novirhabdovirus/fisiologia , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/imunologia , Septicemia Hemorrágica Viral/imunologia , Septicemia Hemorrágica Viral/genética , Imunidade Inata/genética , Regulação da Expressão Gênica/imunologia , Alinhamento de Sequência/veterinária , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Perfilação da Expressão Gênica/veterinária , Linguados/imunologia , Linguados/genética
7.
Fish Shellfish Immunol ; 151: 109706, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38897310

RESUMO

The complement component 5a/complement component 5 receptor 1 (C5a/C5aR1) pathway plays a crucial role in the onset and development of inflammation, but relevant studies in fish are lacking. In this study, we successfully characterized the relationship between half-smooth tongue sole (Cynoglossus semilaevis) C5aR1 (CsC5aR1) and bacterial inflammation. First, we showed that the overexpression of CsC5aR1 significantly increased bacterial pathological damage in the liver and intestine, whereas inhibition attenuated the damage. The in vitro experiments suggested that CsC5aR1 was able to positively regulate the phagocytic activity and respiratory burst of tongue sole macrophages. In terms of both transcriptional and translational levels, overexpression/inhibition of CsC5aR1 was followed by a highly consistent up-regulation/decrease of its downstream canonical inflammatory factor interleukin-6 (CsIL-6). Furthermore, we stimulated macrophages by lipopolysaccharide (LPS) and lipoteichoic acid (LTA) and found a broad-spectrum response to bacterial infections by the C5a/C5aR1 complement pathway together with the downstream inflammatory factor CsIL-6. Subsequently, we directly elucidated that CsIL-6 is an indicator of C5a/C5aR1-mediated inflammation at different infection concentrations, different infectious bacteria (Vibrio anguillarum and Mycobacterium marinum), and different detection levels. These results might provide a new inflammation bio-marker for early warning of bacteria-induced hyperinflammation leading to fish mortality and a promising target for the treatment of bacterial inflammation in teleost.


Assuntos
Doenças dos Peixes , Proteínas de Peixes , Linguados , Interleucina-6 , Receptor da Anafilatoxina C5a , Animais , Linguados/imunologia , Linguados/genética , Receptor da Anafilatoxina C5a/genética , Receptor da Anafilatoxina C5a/imunologia , Doenças dos Peixes/imunologia , Doenças dos Peixes/microbiologia , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Interleucina-6/genética , Interleucina-6/imunologia , Interleucina-6/metabolismo , Vibrioses/veterinária , Vibrioses/imunologia , Vibrio/fisiologia , Inflamação/imunologia , Inflamação/veterinária , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética
8.
Fish Shellfish Immunol ; 151: 109711, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38901685

RESUMO

Aeromonas salmonicida is one of the most prevalent pathogens that causes huge economic losses to aquaculture. Effective vaccination is the first choice for preventing infection. Bacterial ghost (BG), an empty bacterial shell devoid of cytoplasm, is a promising vaccine antigen with distinct advantages. Herein, we established strategies for producing a substantial yield of A. salmonicida ghost (ASG) and investigated the immune-protective properties of it. As a result, 2.84 mg/ml NaOH was discovered to be capable of inducing considerable amounts of ASG. Furthermore, the ASG vaccine elicited adaptive immunity in turbots after rapid activation of innate immunity. Even though formalin-killed cells (FKC) produced a few more antibodies than ASG, ASG ultimately provided a much stronger immune protection effect because it strengthened cellular immunity, with a relative percentage survival (RPS) of 50.1 % compared to FKC. These findings demonstrated that ASG effectively activated cell-mediated immunity, which helped get rid of microorganisms inside cells. Therefore, this study presented novel perspectives for future research on furunculosis vaccine products based on ASG as an antigen.


Assuntos
Aeromonas salmonicida , Vacinas Bacterianas , Doenças dos Peixes , Linguados , Infecções por Bactérias Gram-Negativas , Aeromonas salmonicida/imunologia , Animais , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/administração & dosagem , Doenças dos Peixes/prevenção & controle , Doenças dos Peixes/imunologia , Doenças dos Peixes/microbiologia , Linguados/imunologia , Infecções por Bactérias Gram-Negativas/veterinária , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/prevenção & controle , Furunculose/prevenção & controle , Furunculose/imunologia , Furunculose/microbiologia , Imunidade Inata , Imunidade Adaptativa , Imunidade Celular , Vacinação/veterinária
9.
Mol Biol Rep ; 51(1): 709, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824265

RESUMO

BACKGROUND: Cystatin is a protease inhibitor that also regulates genes expression linked to inflammation and plays a role in defense and regulation. METHODS AND RESULTS: Cystatin 10 (Smcys10) was cloned from Scophthalmus maximus and encodes a 145 amino acid polypeptide. The results of qRT-PCR showed that Smcys10 exhibited tissue-specific expression patterns, and its expression was significantly higher in the skin than in other tissues. The expression level of Smcys10 was significantly different in the skin, gill, head kidney, spleen and macrophages after Vibrio anguillarum infection, indicating that Smcys10 may play an important role in resistance to V. anguillarum infection. The recombinant Smcys10 protein showed binding and agglutinating activity in a Ca2+-dependent manner against bacteria. rSmcys10 treatment upregulated the expression of IL-10, TNF-α and TGF-ß in macrophages of turbot and hindered the release of lactate dehydrogenase (LDH) from macrophages after V. anguillarum infection, which confirmed that rSmcys10 reduced the damage to macrophages by V. anguillarum. The NF-κB pathway was suppressed by Smcys10, as demonstrated by dual-luciferase analysis. CONCLUSIONS: These results indicated that Smcys10 is involved in the host antibacterial immune response.


Assuntos
Cistatinas , Doenças dos Peixes , Proteínas de Peixes , Linguados , Macrófagos , Vibrio , Animais , Linguados/imunologia , Linguados/genética , Linguados/metabolismo , Vibrio/patogenicidade , Cistatinas/genética , Cistatinas/metabolismo , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Proteínas de Peixes/imunologia , Macrófagos/metabolismo , Macrófagos/imunologia , Doenças dos Peixes/imunologia , Doenças dos Peixes/genética , Doenças dos Peixes/microbiologia , Vibrioses/imunologia , Vibrioses/veterinária , Vibrioses/genética , NF-kappa B/metabolismo , Clonagem Molecular/métodos , Regulação da Expressão Gênica
10.
Virus Res ; 347: 199428, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38942295

RESUMO

In China, a novel pathogen within the genus Circovirus has been identified as a causative agent of the 'novel acute hemorrhage syndrome' (NAHS) in aquacultured populations of turbot (Scophthalmus maximus L.). Histopathological examination using light microscopy revealed extensive necrosis within the cardiac, splenic, and renal tissues of the afflicted fish. Utilizing transmission electron microscopy (TEM), we detected the presence of circovirus particles within the cytoplasm of these cells, with the virions consistently exhibiting a spherical morphology of 20-40 nm in diameter. TEM inspections confirmed the predominance of these virions in the heart, spleen, and kidney. Subsequent molecular characterization through polymerase chain reaction (PCR) analysis corroborated the TEM findings, with positive signals in the aforementioned tissues, in stark contrast to the lack of detection in gill, fin, liver, and intestinal tissues. The TEM observations, supported by PCR electrophoresis data, strongly suggest that the spleen and kidney are the primary targets of the viral infection. Further characterization using biophysical, biochemical assays, and genomic sequencing confirmed the viral classification within the genus Circovirus, resulting in the nomenclature of turbot circovirus (TurCV). The current research endeavors to shed light on the pathogenesis of this pathogen, offering insights into the infection mechanisms of TurCV in this novel piscine host, thereby contributing to the broader understanding of its impact on turbot health and aquaculture.


Assuntos
Infecções por Circoviridae , Circovirus , Doenças dos Peixes , Linguados , Genoma Viral , Filogenia , Animais , Circovirus/genética , Circovirus/classificação , Circovirus/isolamento & purificação , China , Infecções por Circoviridae/veterinária , Infecções por Circoviridae/virologia , Infecções por Circoviridae/patologia , Doenças dos Peixes/virologia , Linguados/virologia , Microscopia Eletrônica de Transmissão , Genômica , Rim/virologia , Rim/patologia , Baço/virologia , Baço/patologia
11.
Viruses ; 16(5)2024 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-38793587

RESUMO

A massive mortality event concerning farmed Chinese tongue soles occurred in Tianjin, China, and the causative agent remains unknown. Here, a novel Cynoglossus semilaevis papillomavirus (CsPaV) and parvovirus (CsPV) were simultaneously isolated and identified from diseased fish via electron microscopy, virus isolation, genome sequencing, experimental challenges, and fluorescence in situ hybridization (FISH). Electron microscopy showed large numbers of virus particles present in the tissues of diseased fish. Viruses that were isolated and propagated in flounder gill cells (FG) induced typical cytopathic effects (CPE). The cumulative mortality of fish given intraperitoneal injections reached 100% at 7 dpi. The complete genomes of CsPaV and CsPV comprised 5939 bp and 3663 bp, respectively, and the genomes shared no nucleotide sequence similarities with other viruses. Phylogenetic analysis based on the L1 and NS1 protein sequences revealed that CsPaV and CsPV were novel members of the Papillomaviridae and Parvoviridae families. The FISH results showed positive signals in the spleen tissues of infected fish, and both viruses could co-infect single cells. This study represents the first report where novel papillomavirus and parvovirus are identified in farmed marine cultured fish, and it provides a basis for further studies on the prevention and treatment of emerging viral diseases.


Assuntos
Doenças dos Peixes , Linguados , Genoma Viral , Papillomaviridae , Infecções por Parvoviridae , Parvovirus , Filogenia , Animais , Doenças dos Peixes/virologia , Doenças dos Peixes/mortalidade , China , Linguados/virologia , Infecções por Parvoviridae/veterinária , Infecções por Parvoviridae/virologia , Parvovirus/genética , Parvovirus/isolamento & purificação , Parvovirus/classificação , Papillomaviridae/genética , Papillomaviridae/isolamento & purificação , Papillomaviridae/classificação , Infecções por Papillomavirus/virologia , Infecções por Papillomavirus/veterinária , Hibridização in Situ Fluorescente
12.
Front Immunol ; 15: 1352469, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38711504

RESUMO

Vibriosis, caused by Vibrio, seriously affects the health of fish, shellfish, and shrimps, causing large economic losses. Teleosts are represent the first bony vertebrates with both innate and adaptive immune responses against pathogens. Aquatic animals encounter hydraulic pressure and more pathogens, compared to terrestrial animals. The skin is the first line of defense in fish, constituting the skin-associated lymphoid tissue (SALT), which belongs to the main mucosa-associated lymphoid tissues (MALT). However, little is known about the function of immunity related proteins in fish. Therefore, this study used iTRAQ (isobaric tags for relative and absolute quantitation) to compare the skin proteome between the resistant and susceptible families of Cynoglossus semilaevis. The protein integrin beta-2, the alpha-enolase isoform X1, subunit B of V-type proton ATPase, eukaryotic translation initiation factor 6, and ubiquitin-like protein ISG15, were highly expressed in the resistant family. The 16S sequencing of the skin tissues of the resistant and susceptible families showed significant differences in the microbial communities of the two families. The protein-microbial interaction identified ten proteins associated with skin microbes, including immunoglobulin heavy chain gene (IGH), B-cell lymphoma/leukemia 10 (BCL10) and pre-B-cell leukemia transcription factor 1 isoform X2 (PBX2). This study highlights the interaction between skin proteins and the microbial compositions of C. semilaevis and provides new insights into understanding aquaculture breeding research.


Assuntos
Resistência à Doença , Doenças dos Peixes , Proteínas de Peixes , Linguados , Microbiota , Pele , Vibrioses , Vibrio , Animais , Pele/imunologia , Pele/microbiologia , Pele/metabolismo , Doenças dos Peixes/imunologia , Doenças dos Peixes/microbiologia , Resistência à Doença/imunologia , Vibrioses/imunologia , Vibrioses/veterinária , Linguados/imunologia , Linguados/microbiologia , Microbiota/imunologia , Vibrio/imunologia , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Proteínas de Peixes/imunologia , Proteoma , Proteômica/métodos
13.
Fish Physiol Biochem ; 50(4): 1483-1494, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38814520

RESUMO

Fish growth and health are predominantly governed by dietary nutrient supply. Although the beneficial effects of omega-3 polyunsaturated fatty acids supplementation have been shown in a number of fish species, the underlying mechanisms are still mostly unknown. In this study, we conducted an investigation into the effects of EPA and DHA on cell proliferation, nutrient sensing signaling, and branched-chain amino acids (BCAA) transporting in primary turbot muscle cells. The findings revealed that EPA and DHA could stimulate cell proliferation, promote protein synthesis and inhibit protein degradation through activation of target of rapamycin (TOR) signaling pathway, a pivotal nutrient-sensing signaling cascade. While downregulating the expression of myogenin and myostatin, EPA and DHA increased the level of myogenic regulatory factors, such as myoD and follistatin. Furthermore, we observed a significant increase in the concentrations of intracellular BCAAs following treatment with EPA or DHA, accompanied by an upregulation of the associated amino acid transporters. Our study providing valuable insights into the mechanisms underlying the growth-promoting effects of omega-3 fatty acids in fish.


Assuntos
Proliferação de Células , Ácidos Docosa-Hexaenoicos , Ácido Eicosapentaenoico , Linguados , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Serina-Treonina Quinases TOR , Animais , Ácidos Docosa-Hexaenoicos/farmacologia , Ácido Eicosapentaenoico/farmacologia , Proliferação de Células/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células Musculares/efeitos dos fármacos , Células Musculares/metabolismo , Proteínas Quinases S6 Ribossômicas/metabolismo , Proteínas de Peixes/metabolismo
14.
Sci Total Environ ; 942: 173427, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-38797400

RESUMO

The recurring appearance of Ulva prolifera green tides has become a pressing environmental issue, especially for marine transportation, tourism, and aquaculture in the stage of decomposition. An abundance of decaying U. prolifera leads to water acidification, hypoxia and pathogenic microorganism proliferation, threatening marine germplasm resources, particularly benthic organisms with weak escape ability. Epigenetic modification is considered to be one of the molecular mechanisms involved in the plastic adaptive response to environmental changes. However, few studies concerning the specific impact of decaying green tide on benthic animals at the epigenetic level. In this study, decomposing algal effluents of U. prolifera, sediments containing uncorrupted U. prolifera, pathogenic microorganism were considered as impact factors, to reveal the effect of decaying U. prolifera on marine economic benthic species, Paralichthys olivaceus, using both field and laboratory simulation experiments. Field simulation experiment showed higher mortality rates and serious histopathological damage than the laboratory simulation experiment. And both the decaying U. prolifera and the sediment containing U. prolifera were harmful to P. olivaceus. Genome-wide DNA methylation and transcription correlation analyses showed that the response of P. olivaceus to green tide stress and bacterial infection was mainly mediated by immune signaling pathways such as PI3K-Akt signaling pathway. DNA methylation regulates the expression of immune-related genes involved in the PI3K-Akt signaling pathway, which enables P. olivaceus to adapt to the adverse environmental stresses by resisting apoptosis. In summary, this research analyzed the potential role of P. olivaceus in decaying U. prolifera, which is of great significance for understanding the impact of decaying green tide on marine commercial fish and also provides some theoretical guidance for the proliferation and release of fish seedlings.


Assuntos
Metilação de DNA , Ulva , Animais , Linguados/genética , Expressão Gênica , Doenças dos Peixes/microbiologia
15.
Gen Comp Endocrinol ; 354: 114546, 2024 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-38719062

RESUMO

The reproductive failure of Senegalese sole (Solea senegalensis) cultured males (reared entirely in captivity from egg through to adult) that do not participate in reproductive behaviours to fertilise spawns, results in a problem to achieve reproductive control in captivity. However, cohabitation with wild males has led to an increase in the involvement of cultured males in reproductive behaviour, although their contribution to fertilised spawning is still lower than that of wild breeders. This study aimed to examine the effect of different social conditions, on the reproductive behaviour and spawning success of cultured breeders over three reproductive seasons. Before starting this study, different social learning opportunities were provided to the breeders from the juvenile to the pubertal stages of the individuals. Behaviour and spawning were evaluated in four experimental groups of cultured breeders: two groups (W1 and W2) that prior to this study were reared during the juvenile stage with wild breeders that fertilized spawns, a Culture breeder group (CB) that was previously reared with cultured breeders that spawned unfertile eggs, and a negative control group (CN) that was reared in isolation from adult fish. During the three reproductive seasons, spawning was obtained from all groups. Generally, the first year had the highest egg production and the third year the lowest. However, fertilised eggs were only obtained from W1 in the first year. A total of eight fertilised spawns were collected with a fertilisation rate of 28.02 ± 13.80 % and a hatching rate of 15.04 ± 10.40 %. The mean number of larvae obtained per spawn was 7,683 ± 5,947 and the total number of larvae from all eight spawns was 61,468. The paternity analysis assigned 64.3 % of larvae to a single couple of breeders, while 34.3 % of larvae were not assigned to any single family, but inconclusively to more than three parents. The highest locomotor activity was observed in W1, while no significant differences were observed in the number of movements within W2, CB and CN. In all groups, during the peak of locomotor activity (19h00-20h00), the main reproductive behaviours observed were Rest the Head and Follow, while the Guardian behaviour was low and Coupled behaviour was only observed in W1. Over time, the reproductive behaviours decreased, except for Follow. The social learning opportunities provided by cohabitation with wild fish during juvenile stages prior to spawning in W1, increased activity and fertilised spawning. However, the number of successful spawns was low and over time stopped in association with a decrease in reproductive behaviour. This suggests that other mechanisms of behavioural learning could be involved in reproductive success, such as reproductive dominance, environmental conditions or hormonal interactions that could affect physiological processes in the reproduction of captive breeders.


Assuntos
Linguados , Reprodução , Animais , Masculino , Linguados/fisiologia , Linguados/crescimento & desenvolvimento , Reprodução/fisiologia , Feminino , Comportamento Reprodutivo
16.
Fish Shellfish Immunol ; 149: 109578, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38670413

RESUMO

MicroRNAs are increasingly recognized for their pivotal role in the immune system, yet the specific regulatory functions of fish-derived microRNAs remain largely unexplored. In this research, we discovered a novel miRNA, Cse-miR-144, in the Chinese tongue sole (Cynoglossus semilaevis), characterized by a 73-base pair precursor and a 21-nucleotide mature sequence. Our findings revealed that the expression of Cse-miR-144 was notably inhibited by various Vibrio species. Utilizing bioinformatics and dual-luciferase assay techniques, we established that the pro-inflammatory cytokine gene CsMAPK6 is a direct target of Cse-miR-144. Subsequent in vitro and in vivo western blotting analyses confirmed that Cse-miR-144 can effectively reduce the protein levels of CsMAPK6 post-transcriptionally. Moreover, CsMAPK6 is known to be involved in the activation of the Nuclear Factor kappa-light-chain-enhancer of activated B cells (NF-kB). Additional investigations using qPCR and ELISA demonstrated that suppression of Cse-miR-144 leads to an upsurge in the liver mRNA levels of various immune genes (including MYD88, TRAF6, NF-κB, TRAF2, TRAF3, and TNF), alongside a marked increase in the production and secretion of pro-inflammatory cytokines (IL-1ß, IL-6, and IL-8) in the bloodstream of C. semilaevis. These findings collectively underscore the potential of Cse-miR-144 as a key inhibitor of CsMAPK and its crucial role in modulating the immune and inflammatory responses in teleost fish. Compared to the siRNA, miRNA is a better tool in controlling the expression of target gene with a lower cost.


Assuntos
Doenças dos Peixes , Proteínas de Peixes , Linguados , Regulação da Expressão Gênica , Imunidade Inata , MicroRNAs , Vibrioses , Vibrio , Animais , MicroRNAs/genética , MicroRNAs/imunologia , Linguados/imunologia , Linguados/genética , Doenças dos Peixes/imunologia , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Vibrio/fisiologia , Imunidade Inata/genética , Regulação da Expressão Gênica/imunologia , Vibrioses/imunologia , Vibrioses/veterinária , Inflamação/imunologia , Inflamação/veterinária , Inflamação/genética , Citocinas/genética , Citocinas/imunologia , Citocinas/metabolismo
17.
J Fish Biol ; 105(1): 141-152, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38653715

RESUMO

Ocean acidification could modify the bioavailability and chemical properties of trace elements in seawater, which could affect their incorporation into the calcareous structures of marine organisms. Fish otoliths, biomineralized ear stones made by aragonite, are suspended within the endolymph fluid of teleosts, indicating that the elemental incorporation of otoliths might also be susceptible to ocean acidification. In this study, we evaluated the combined effects of CO2-induced ocean acidification (pH 8.10, 7.70, and 7.30, corresponding to ocean acidification scenarios under the representative concentration pathway 8.5 model as projected by the Intergovernmental Panel on Climate Change) and water elemental concentrations of strontium (Sr) and barium (Ba; low, medium, and high) on elemental incorporation into otoliths of the flounder Paralichthys olivaceus at early life stages. Our results revealed that the elemental incorporation of Sr and Ba into otoliths was principally dependent on the corresponding water elemental concentrations rather than on ocean acidification. Moreover, the partition coefficients (DMe) of Sr and Ba may stabilize after dynamic equilibrium is reached as the water elemental concentration increases, but are not affected by ocean acidification. Therefore, the incorporation of Sr and Ba into otoliths of the flounder at early life stages may not serve as an effective indicator of ocean acidification. In other words, the findings suggest that ocean acidification does not impact the incorporation of Sr and Ba incorporation into otoliths when tracing the temperature or salinity experiences of the flounder. Our findings will provide new knowledge for understanding the potential ecological effects of ocean acidification on the recruitment dynamics of fish species.


Assuntos
Bário , Linguado , Membrana dos Otólitos , Água do Mar , Estrôncio , Animais , Estrôncio/análise , Membrana dos Otólitos/química , Membrana dos Otólitos/crescimento & desenvolvimento , Bário/análise , Água do Mar/química , Linguado/crescimento & desenvolvimento , Concentração de Íons de Hidrogênio , Dióxido de Carbono , Linguados/crescimento & desenvolvimento , Linguados/metabolismo , Mudança Climática , Acidificação dos Oceanos
18.
Commun Biol ; 7(1): 253, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429383

RESUMO

Flatfish undergo a remarkable metamorphosis from symmetrical pelagic larvae to fully asymmetrical benthic juveniles. The most distinctive features of this transformation is the migration of one eye. The molecular role of thyroid hormone in the metamorphosis process in flatfishes is well established. However, the regulatory network that facilitates eye movement remains enigmatic. This paper presents a morphological investigation of the metamorphic process in turbot eyes, using advanced imaging techniques and a global view of gene expression. The study covers migrant and non-migrant eyes and aims to identify the genes that are active during ocular migration. Our transcriptomic analysis shows a significant up-regulation of immune-related genes. The analysis of eye-specific genes reveals distinct patterns during the metamorphic process. Myosin is highlighted in the non-migrant eye, while ependymin is highlighted in the migrant eye, possibly involved in optic nerve regeneration. Furthermore, a potential association between the alx3 gene and cranial restructuring has been identified. Additionally, it confirmed simultaneous adaptation to low light in both eyes, as described by changes in opsins expression during the metamorphic process. The study also revealed that ocular migration activates systems asynchronously in both eyes, providing insight into multifaceted reorganization processes during metamorphosis of flatfish.


Assuntos
Linguados , Animais , Linguados/genética , Metamorfose Biológica/genética , Olho , Hormônios Tireóideos/genética , Perfilação da Expressão Gênica
19.
Mar Biotechnol (NY) ; 26(2): 230-242, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38502428

RESUMO

Antibiotics are widely used in aquaculture to treat the bacterial diseases. However, the improper use of antibiotics could lead to environmental pollution and development of resistance. As a safe and eco-friendly alternative, antimicrobial peptides (AMPs) are commonly explored as therapeutic agents. In this study, a mutant strain of Tetraselmis subcordiformis containing AMP NZ2114 was developed and used as an oral drug delivery system to reduce the use of antibiotics in turbot (Scophthalmus maximus) aquaculture. The gut, kidney, and liver immune-related genes and their effects on gut digestion and bacterial communities in turbot fed with NZ2114 were evaluated in an 11-day feeding experiment. The results showed that compared with the group fed with wild-type T. subcordiformis, the group fed with T. subcordiformis transformants containing NZ2114 was revealed with decreased levels of both pro-inflammatory factors (TNF-α and IL-1ß), inhibitory effect on Staphylococcus aureus, Vibrio parahaemolyticus, and Vibrio splendidus demonstrated by the in vitro simulation experiments, and increased richness and diversity of the gut microbiota of turbot. In conclusion, our study provided a novel, beneficial, and low-cost method for controlling bacteria in turbot culture through the oral drug delivery systems.


Assuntos
Linguados , Microalgas , Animais , Linguados/imunologia , Linguados/genética , Linguados/microbiologia , Administração Oral , Peptídeos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos/genética , Microbioma Gastrointestinal/efeitos dos fármacos , Aquicultura , Clorófitas , Vibrio/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/administração & dosagem , Fígado/metabolismo , Fígado/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos
20.
Fish Shellfish Immunol ; 148: 109492, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38467321

RESUMO

Annexin A2 (AnxA2), belonging to the annexin family, plays a crucial role in immune responses. In this study, the cDNA of the AnxA2 gene was identified in half-smooth tongue sole, Cynoglossus semilaevis. The transcript of AnxA2 gene in C. semilaevis (CsAnxA2) showed broad tissue distribution, with the highest expression level observed in the gut. CsAnxA2 expression was significantly up-regulated in the intestine, spleen, and kidney tissues following exposure to Shewanella algae. Immunohistochemical staining revealed that CsAnxA2 was predominantly expressed in epithelial cells and significantly elevated after S. algae challenge. Subcellular localization showed that CsAnxA2 was primarily localized in the cytoplasmic compartment. Moreover, proinflammatory cytokines (IL-6, IL-8 and IL-1ß) exhibited significant upregulation after CsAnxA2 was overexpressed in vivo. One hundred and fifty-eight CsAnxA2-interacting proteins were captured in the intestinal tissue, showing the top two normalized abundance observed for actin beta (ACTB) and protein S100-A10 (p11). Fifty-four high abundance CsAnxA2-interacting proteins (HIPs) were primary enriched in ten pathways, with the top three significantly enriched pathways being Salmonella infection, glycolysis/gluconeogenesis, and peroxisome proliferator-activated receptor (PPAR) signaling pathway. These results provide valuable information for further investigation into the functional mechanism of AnxA2 in C. semilaevis.


Assuntos
Anexina A2 , Linguados , Linguado , Animais , Anexina A2/genética , Anexina A2/metabolismo , Linguado/metabolismo , Proteínas de Peixes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...