Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.088
Filtrar
1.
Mikrochim Acta ; 191(8): 500, 2024 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-39088046

RESUMO

Detecting lipopolysaccharide (LPS) using electrochemical methods is significant because of their exceptional sensitivity, simplicity, and user-friendliness. Two-dimensional metal-organic framework (2D-MOF) that merges the benefits of MOF and 2D nanostructure has exhibited remarkable performance in constructing electrochemical sensors, notably surpassing traditional 3D-MOFs. In this study, Cu[tetrakis(4-carboxylphenyl)porphyrin] (Cu-TCPP) and Cu(tetrahydroxyquinone) (Cu-THQ) 2D nanosheets were synthesized and applied on a glassy carbon electrode (GCE). The 2D-MOF nanosheets, which serve as supporting layers, exhibit improved electron transfer and electronic conductivity characteristics. Subsequently, the modified electrode was subjected to electrodeposition with Au nanostructures, resulting in the formation of Au/Cu-TCPP/GCE and Au/Cu-THQ/GCE. Notably, the Au/Cu-THQ/GCE demonstrated superior electrochemical activity because of the 2D morphology, redox ligand, dense Cu sites, and improved deposition of flower-like Au nanostructure based on Cu-THQ. The electron transfer specific surface area was increased by the improved deposition of Au nanostructures, which facilitates enriched binding of LPS aptamer and significantly improved the detection performance of Apt/Au/Cu-THQ/GCE electrochemical aptasensor. The limit of detection for LPS reached 0.15 fg/mL with a linear range of 1 fg/mL - 100 pg/mL. The proposed aptasensor demonstrated the ability to detect LPS in serum samples with satisfactory accuracy, indicating significant potential for clinical diagnosis.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Cobre , Técnicas Eletroquímicas , Ouro , Limite de Detecção , Lipopolissacarídeos , Estruturas Metalorgânicas , Estruturas Metalorgânicas/química , Ouro/química , Cobre/química , Técnicas Eletroquímicas/métodos , Lipopolissacarídeos/análise , Lipopolissacarídeos/sangue , Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , Nanopartículas Metálicas/química , Eletrodos , Nanoestruturas/química , Porfirinas/química , Humanos
2.
Anal Methods ; 16(31): 5475-5481, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39037397

RESUMO

Tuberculosis (TB) represents a major public health threat, with millions of new cases reported worldwide each year. A major hurdle to curtailing the spread of this disease is the need for low-cost, point-of-care (PoC) diagnostics. Mannose-capped lipoarabinomannan, a significant component of the Mycobacterium tuberculosis bacillus, has been heavily studied as a biomarker for TB, but with little success due to its complexation with endogenous components of body fluids in a manner that sterically interferes with its detection by ELISA and other immunoassays. Recent work by our group and others has shown that complexation can be disrupted with protein-denaturing protocols. By way of followup, we recently described an enzymatic digestion (Proteinase K) sample pretreatment that enables quantitative recovery of ManLAM spiked into healthy human control serum. Herein, we report on the transfer of our benchtop sample pretreatment methodology to an automated microfluidic platform. We show that this platform can be configured to: (1) carry out the pretreatment process with very little user interaction and, (2) yield recoveries for ManLAm spiked into control serum which are statistically indistinguishable from those achieved by the benchtop process. Plans to integrate this device with a portable sample reader as a possible basis for a PoC TB diagnostic system and analyze patient samples are briefly discussed.


Assuntos
Biomarcadores , Lipopolissacarídeos , Manose , Tuberculose , Humanos , Lipopolissacarídeos/sangue , Biomarcadores/sangue , Tuberculose/sangue , Tuberculose/diagnóstico , Manose/química , Manose/sangue , Mycobacterium tuberculosis/isolamento & purificação , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos
3.
Nutrients ; 16(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732600

RESUMO

BACKGROUND: Exercise and the consumption of sugars result in a dysfunction of the intestinal barrier (IB). Here, we determined the effect of sugar in a natural matrix on the intestinal barrier after moderate (A) and intensive endurance exercise (B). METHOD: The IB function was determined before (pre) and after running (post), and 120 and 180 min after consuming the drink by measuring serum endotoxin concentrations (lipopolysaccharides-LPS), IL-6, CD14, and i-FABP. In study A, nonspecifically trained participants (n = 24, males and females, age 26 ± 4) ran for one hour at 80% of their individual anaerobic threshold (IAT). After finishing, the runners consumed, in a crossover setup, either 500 mL of water, diluted cloudy apple juice (test drink), or an identical drink (placebo) without the fruit juice matrix (FJM). In study B, the participants (n = 30, males and females, age 50 ± 9) completed an ultra-marathon run, were divided into groups, and consumed one of the above-mentioned drinks. RESULTS: Study A: Exercise resulted in a significant increase in serum LPS, i-FABP, and IL-6, which decreased fast after finishing. No impact of the different drinks on LPS i-FABP, or IL-6 could be observed, but there was an impact on CD14. Study B: The ultra-marathon resulted in a strong increase in serum LPS, which decreased fast after finishing in the water and test drink groups, but not in the placebo group. CONCLUSIONS: The consumed drinks did not affect the kinetics of IB regeneration after moderate exercise, but impacted CD14 serum concentrations, indicating possible beneficial effects of the FJM on the immune system. After an ultra-marathon, IB function regenerates very fast. The intake of sugar (placebo) seems to have had a negative impact on IB regeneration, which was diminished by the presence of the FJM.


Assuntos
Estudos Cross-Over , Sucos de Frutas e Vegetais , Interleucina-6 , Receptores de Lipopolissacarídeos , Malus , Corrida de Maratona , Resistência Física , Polifenóis , Humanos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Polifenóis/farmacologia , Polifenóis/administração & dosagem , Resistência Física/efeitos dos fármacos , Resistência Física/fisiologia , Interleucina-6/sangue , Receptores de Lipopolissacarídeos/sangue , Corrida de Maratona/fisiologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Lipopolissacarídeos/sangue , Proteínas de Ligação a Ácido Graxo/sangue , Corrida/fisiologia , Adulto Jovem
4.
J Thromb Thrombolysis ; 57(5): 842-851, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38643439

RESUMO

It is unknown whether elevated gut-derived serum lipopolysaccharide (LPS) can affect thrombin generation, fibrinolysis, and fibrin clot properties in atrial fibrillation (AF). We aimed to evaluate associations of circulating LPS with prothrombotic markers in AF patients. A total of 157 (women, 57.3%) ambulatory anticoagulant-naïve AF patients aged from 42 to 86 years were recruited. Clinical data together with serum LPS, inflammation, endothelial injury, coagulation and fibrinolysis markers, including fibrin clot permeability (Ks) and clot lysis time (CLT), were analyzed. A median LPS concentration was 73.0 (58.0-100.0) pg/mL and it showed association with CLT (r = 0.31, p < 0.001) and plasminogen activator inhibitor-1 (PAI-1, r = 0.57, p < 0.001), but not other fibrinolysis proteins, thrombin generation, inflammatory markers, or Ks. There were weak associations of LPS with von Willebrand factor (vWF, r = 0.2, p = 0.013), cardiac troponin I (r = 0.16, p = 0.045), and growth differentiation factor-15 (r = 0.27, p < 0.001). No associations of LPS and CHA2DS2-VASc or other clinical variables were observed. Multivariable regression adjusted for potential confounders showed that serum LPS ≥ 100 pg/mL was an independent predictor of prolonged CLT. This study is the first to demonstrate antifibrinolytic effects of elevated LPS in AF patients largely driven by enhanced PAI-1 release.


Assuntos
Fibrilação Atrial , Fibrinólise , Lipopolissacarídeos , Humanos , Fibrilação Atrial/sangue , Feminino , Masculino , Pessoa de Meia-Idade , Idoso , Lipopolissacarídeos/sangue , Adulto , Idoso de 80 Anos ou mais , Biomarcadores/sangue , Inibidor 1 de Ativador de Plasminogênio/sangue , Tempo de Lise do Coágulo de Fibrina
5.
Nature ; 629(8013): 893-900, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38632402

RESUMO

The blood-brain barrier (BBB) protects the central nervous system from infections or harmful substances1; its impairment can lead to or exacerbate various diseases of the central nervous system2-4. However, the mechanisms of BBB disruption during infection and inflammatory conditions5,6 remain poorly defined. Here we find that activation of the pore-forming protein GSDMD by the cytosolic lipopolysaccharide (LPS) sensor caspase-11 (refs. 7-9), but not by TLR4-induced cytokines, mediates BBB breakdown in response to circulating LPS or during LPS-induced sepsis. Mice deficient in the LBP-CD14 LPS transfer and internalization pathway10-12 resist BBB disruption. Single-cell RNA-sequencing analysis reveals that brain endothelial cells (bECs), which express high levels of GSDMD, have a prominent response to circulating LPS. LPS acting on bECs primes Casp11 and Cd14 expression and induces GSDMD-mediated plasma membrane permeabilization and pyroptosis in vitro and in mice. Electron microscopy shows that this features ultrastructural changes in the disrupted BBB, including pyroptotic endothelia, abnormal appearance of tight junctions and vasculature detachment from the basement membrane. Comprehensive mouse genetic analyses, combined with a bEC-targeting adeno-associated virus system, establish that GSDMD activation in bECs underlies BBB disruption by LPS. Delivery of active GSDMD into bECs bypasses LPS stimulation and opens the BBB. In CASP4-humanized mice, Gram-negative Klebsiella pneumoniae infection disrupts the BBB; this is blocked by expression of a GSDMD-neutralizing nanobody in bECs. Our findings outline a mechanism for inflammatory BBB breakdown, and suggest potential therapies for diseases of the central nervous system associated with BBB impairment.


Assuntos
Barreira Hematoencefálica , Encéfalo , Células Endoteliais , Gasderminas , Inflamação , Animais , Feminino , Humanos , Masculino , Camundongos , Membrana Basal/metabolismo , Membrana Basal/ultraestrutura , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Barreira Hematoencefálica/ultraestrutura , Barreira Hematoencefálica/virologia , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/ultraestrutura , Caspases Iniciadoras/metabolismo , Dependovirus , Células Endoteliais/metabolismo , Células Endoteliais/ultraestrutura , Gasderminas/antagonistas & inibidores , Gasderminas/metabolismo , Inflamação/patologia , Inflamação/metabolismo , Klebsiella pneumoniae/fisiologia , Receptores de Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/sangue , Lipopolissacarídeos/farmacologia , Camundongos Endogâmicos C57BL , Piroptose , Sepse/metabolismo , Sepse/patologia , Sepse/microbiologia , Análise de Célula Única , Junções Íntimas/metabolismo , Junções Íntimas/ultraestrutura
6.
J Headache Pain ; 25(1): 23, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38369488

RESUMO

OBJECTIVE: Medication overuse headache (MOH) was recently shown to be associated with leaky gut in rodents. We aimed to investigate whether chronic migraine (CM) patients with MOH have elevated lipopolysaccharide levels and inflammatory molecules in blood circulation. MATERIALS AND METHODS: The study included women participants (40 CM patients with NSAID overuse headache, 35 episodic migraine (EM) patients, and 20 healthy non-headache sufferers). Migraine duration, monthly migraine headache days, MigSCog, HADS-D, HADS-A, and HIT-6 scores were recorded. Serum samples were collected to measure circulating LPS, LPS binding protein (LBP), tight junction protein occludin, adherens junction protein vascular endothelial cadherin (VE-cadherin), CGRP, HMGB1, HIF-1α, IL-6, and IL-17 levels. RESULTS: Serum LPS, VE-Cadherin, CGRP, HIF-1α, and IL-6 levels were significantly higher in the CM + MOH group compared to the EM group and healthy controls while serum LBP and HMGB1 were higher in the CM + MOH group compared to healthy controls. IL-17 and occludin levels were comparable between the three groups. Serum HMGB1 levels in EM patients were higher compared to the control group. Mig-SCog and HIT-6 scores were higher in the CM + MOH group compared to EM patients. HADS-A and HADS-D scores were significantly higher in the CM + MOH group compared to EM patients and healthy controls, and they were also higher in EM patients compared to healthy subjects. LPS levels were correlated with VE-cadherin and occludin levels. The number of monthly migraine headache days was positively correlated with serum LPS, HIF-1α, VE-cadherin, and IL-6 levels, HADS-A, HADS-D, HIT-6, and MigSCog scores. CONCLUSION: We have evidence for the first time that CM + MOH is associated with elevated serum LPS and LBP levels suggestive of LPS leak into the systemic circulation. Higher levels of nociceptive and/or pro-inflammatory molecules such as HMGB1, HIF-1α, IL-6, and CGRP may play a role in trigeminal sensitization and neurobiology of MOH. Intestinal hyperpermeability and consequent inflammatory response should be considered as a potential contributory factor in patients with MOH.


Assuntos
Antígenos CD , Caderinas , Proteína HMGB1 , Transtornos da Cefaleia Secundários , Transtornos de Enxaqueca , Feminino , Humanos , Antígenos CD/sangue , Caderinas/sangue , Peptídeo Relacionado com Gene de Calcitonina/sangue , Transtornos da Cefaleia Secundários/sangue , Proteína HMGB1/sangue , Inflamação/complicações , Interleucina-17/sangue , Interleucina-6/sangue , Lipopolissacarídeos/sangue , Transtornos de Enxaqueca/sangue , Ocludina/sangue
7.
J Asthma ; 61(8): 883-888, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38289083

RESUMO

BACKROUND: Endotoxin, in lipopolysaccharide structure (LPS), is the main component of the outer membrane of gram negative bacteria. LPS levels were associated with inflammatory disease. Asthma is a chronic inflammatory disease involving many different cell types and cellular elements. The association between LPS serum levels and the asthma is not well known. The aim of this study was to investigate the association between the LPS serum levels and the severity of asthma, demographic data and laboratory parameters. METHODOLOGY: The study included 67 patients aged >18 years with a diagnosis of asthma, and 15 healthy volunteers with no history of chronic disease as a control group. The Asthma Control Test (ACT), Respiratory Function Tests (RFTs), fractional exhaled nitric oxide (FeNO), and endotoxin levels were measured and compared between the groups. The endotoxin measurements were performed using the ELISA method. RESULTS: The mild-moderate asthma group included 33 patients and the severe asthma group, 34 patients. The endotoxin level was measured as 17.78 (range 3.59 to 304.55) EU/ml in the patient group and 15 (range 4.01 to 74.06) EU/ml in the control group with no statistically significant difference determined between the groups. In the subgroups, the endotoxin level was measured as 15.21 (range 3.69 to 304.55) EU/ml in the mild-moderate group and 14.46 (range 3.59 to 278.86) EU/ml in the severe asthma group with no statistically significant difference determined between the groups. CONCLUSION: The results of this study showed no relationship between serum endotoxin level and asthma or asthma severity.


Assuntos
Asma , Endotoxinas , Índice de Gravidade de Doença , Humanos , Asma/sangue , Asma/imunologia , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Endotoxinas/sangue , Óxido Nítrico/sangue , Inflamação/sangue , Inflamação/imunologia , Lipopolissacarídeos/sangue , Testes de Função Respiratória , Adulto Jovem , Estudos de Casos e Controles , Idoso
8.
Adv Biol (Weinh) ; 7(12): e2300220, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37607110

RESUMO

Sepsis is a syndrome with poor prognosis. Nucleotide-binding domain-like receptor family pyrin domain containing 3 (NLRP3) inflammasome and T helper 17 (Th17) cells are involved in the pathogenesis of inflammatory diseases. This study aims to explore their roles and underlying mechanisms in sepsis. The blood and bronchoalveolar lavage fluid are collected from sepsis patients and healthy donors. A sepsis mice model is established by cecal ligation puncture (CLP). The contents of cytokines are detected by ELISA. The amounts of Th17 cells, IL-17A, IL-1ß, IL-18, and lipopolysaccharide is significantly elevated in sepsis patients. The increased differentiation of Th17 cells can promote lung cell pyroptosis and induce hyperpermeability via activating NLRP3 inflammasome and p38 pathway. The inhibitors targeting Th17 cells, NLRP3 inflammasome, and p38 pathway can significantly alleviate lung injury in sepsis mice. Th17 cells can secrete IL-17A to activate NLRP3 inflammasome via p38 signaling pathway, which contributes to the development of sepsis-induced acute lung injury.


Assuntos
Células Epiteliais Alveolares , Inflamassomos , Sepse , Células Th17 , Humanos , Sepse/imunologia , Sepse/metabolismo , Sepse/patologia , Células Th17/imunologia , Células Th17/patologia , Lipopolissacarídeos/sangue , Interleucina-17/sangue , Interleucina-1beta/sangue , Interleucina-18/sangue , Piroptose , Permeabilidade da Membrana Celular , Transdução de Sinais , Células A549 , Inflamassomos/metabolismo , Animais , Camundongos , Modelos Animais de Doenças , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/patologia
9.
Adv Healthc Mater ; 12(11): e2202161, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36623263

RESUMO

Atherosclerosis accounts for major mortality of cardiac-cerebral vascular diseases worldwide. Pathologically, persistent inflammation dominates the progression of atherosclerosis, which can be accelerated by a high-fat diet (HFD), possibly through triggering local intestinal oxidative stress and ensuing gut barrier dysfunction. Current pharmacotherapy has been disappointing, ascribed to limited therapeutic efficacy and undesirable side effects. Hence it is compelling to explore novel efficient anti-atherosclerotic drugs with minimal toxicity. Herein, two fullerene-based therapies with exceptional antioxidant capacity, in the form of water-soluble injectable fullerene nanoparticles (IFNPs) and oral fullerene tablets (OFTs), are demonstrated to retard HFD-fueled atherosclerosis in ApoE-/- mice with favorable biosafety. Especially, OFTs afford robust anti-atherosclerotic therapeutic even against advanced plaques, besides stabilizing plaques with less lipid deposition and improved collagen expression. Specifically, it is identified that OFTs can ameliorate HFD-induced dysregulated intestinal redox homeostasis and restore gut barrier integrity, thereby restraining the translocation of luminal lipopolysaccharide (LPS) into the bloodstream. Furthermore, significantly reduced circulating LPS after OFTs treatment contributes to down-regulated LPS/TLR4/NF-κB signaling in aortic focal, which further mitigates local inflammation and disease development. Overall, this study confirms the universal anti-atherosclerotic effect of fullerenes and provides a novel therapeutic mechanism via modulating intestinal barrier to attenuate atherosclerosis.


Assuntos
Aterosclerose , Fulerenos , Animais , Camundongos , Aterosclerose/tratamento farmacológico , Aterosclerose/etiologia , Dieta Hiperlipídica/efeitos adversos , Fulerenos/uso terapêutico , Inflamação/tratamento farmacológico , Inflamação/patologia , Lipopolissacarídeos/sangue , Camundongos Endogâmicos C57BL , Resultado do Tratamento , Camundongos Knockout para ApoE , Masculino
10.
Arthritis Rheumatol ; 74(2): 227-236, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34423918

RESUMO

OBJECTIVE: To test the hypothesis that an altered gut microbiota (dysbiosis) plays a role in obesity-associated osteoarthritis (OA). METHODS: Stool and blood samples were collected from 92 participants with a body mass index (BMI) ≥30 kg/m2 , recruited from the Johnston County Osteoarthritis Project. OA patients (n = 50) had hand and knee OA (Kellgren/Lawrence [K/L] grade ≥2 or arthroplasty). Controls (n = 42) had no hand OA and a K/L grade of 0-1 for the knees. Compositional analysis of stool samples was carried out by 16S ribosomal RNA amplicon sequencing. Alpha- and beta-diversity and differences in taxa relative abundances were determined. Blood samples were used for multiplex cytokine analysis and measures of lipopolysaccharide (LPS) and LPS binding protein. Germ-free mice were gavaged with patient- or control-pooled fecal samples and fed a 40% fat, high-sucrose diet for 40 weeks. Knee OA was evaluated histologically. RESULTS: On average, OA patients were slightly older than the controls, consisted of more women, and had a higher mean BMI, higher mean Western Ontario and McMaster Universities Osteoarthritis Index pain score, and higher mean K/L grade. There were no significant differences in α- or ß-diversity or genus level composition between patients and controls. Patients had higher plasma levels of osteopontin (P = 0.01) and serum LPS (P < 0.0001) compared to controls. Mice transplanted with patient or control microbiota exhibited a significant difference in α-diversity (P = 0.02) and ß-diversity, but no differences in OA severity were observed. CONCLUSION: The lack of differences in the gut microbiota, but increased serum LPS levels, suggest the possibility that increased intestinal permeability allowing for greater absorption of LPS, rather than a dysbiotic microbiota, may contribute to the development of OA associated with obesity.


Assuntos
Disbiose/complicações , Lipopolissacarídeos/sangue , Obesidade/complicações , Osteoartrite do Joelho/sangue , Osteoartrite do Joelho/etiologia , Animais , Fezes/microbiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
11.
Nutrients ; 13(12)2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34960024

RESUMO

A western diet and increased intestinal permeability may contribute to systemic inflammation and the development of cardio-metabolic alterations. The aim of this study was to assess the relationship between diet, biomarkers of intestinal permeability, and chronic low-grade inflammation on the cardiometabolic profile. A cross-sectional study was carried out in 238 young subjects aged 18-29 years, divided into two groups: with <3 cardiometabolic risk factors (CRF) and ≥3 risk factors. Anthropometric parameters, biochemical profile, and serum levels of zonulin, lipopolysaccharide (LPS), and high-sensitivity C-reactive protein (hs-CRP) were measured, and the macronutrient intake was evaluated. Interaction models showed elevated glucose levels in the presence of high biomarker levels: zonulin ≥51.6 ng/mL plus LPS ≥ 1.35 EU/mL (ß = 1.1, p = 0.006), and LPS ≥1.35 EU/mL plus hs-CRP ≥ 4.3 mg/L (ß = 1.2, p = 0.007). In addition, triglyceride levels increased in the presence of LPS ≥ 1.35 EU/mL and hs-CRP ≥ 4.3 mg/L (ß = 3.9, p = 0.01). Despite having increased biomarker levels, a higher consumption of water (≥2100 mL), polyunsaturated fatty acids (≥6.0 g), or fiber (≥30 g) decreased triglyceride (ß = -9.6, p = 0.03), total cholesterol (ß = -5.1, p = 0.01), and LDL-C levels (ß = -7.7, p = 0.01). These findings suggest that the increased consumption of water, PUFA and fiber may improve lipid profile in subjects with intestinal permeability dysfunction or low-grade systemic inflammation.


Assuntos
Proteína C-Reativa/metabolismo , Fatores de Risco Cardiometabólico , Dieta , Lipopolissacarídeos/sangue , Precursores de Proteínas/sangue , Adolescente , Adulto , Feminino , Haptoglobinas , Humanos , Inflamação/sangue , Inflamação/metabolismo , Masculino , Adulto Jovem
12.
Arch Biochem Biophys ; 714: 109080, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34742934

RESUMO

Alisol B 23-acetate (AB23A) is a natural triterpenoid isolated from Rhizoma alisamatis that has been widely used as a traditional Chinese medicine (TCM). Previous studies have documented the beneficial effect of AB23A on non-alcoholic fatty liver disease (NAFLD), but the functional interactions between gut microbiota and the anti-NAFLD effect of AB23A remain unclear. In this study, we investigated the benefits of experimental treatment with AB23A on gut microbiota dysbiosis in NAFLD with an obesity model. C57BL/6J mice were administrated a high-fat diet (HFD) with or without AB23A for 12 weeks. AB23A significantly improved metabolic phenotype in the HFD-fed mice. Moreover, results of 16S rRNA gene-based amplicon sequencing in each group reveled that AB23A not only reduced the abundance of the Firmicutes/Bacteroidaeota ratio and Actinobacteriota/Bacteroidaeota ratio, but regulated the abundance of the top 10 genera, including norank_f__Muribaculaceae, Lactobacillus, Ileibacterium, Turicibacter, Faecalibaculum, the Lachnospiraceae_NK4A136_group, unclassified_f__Lachnospiraceae, and norank_f__Lachnospiraceae. AB23A significantly reduced the serum levels of lipopolysaccharide and branched-chain amino acids, which are positively correlated with the abundances of Ileibacterium and Turicibacter. Moreover, AB23A led to remarkable reductions in the activation of TLR4, NF-κB, and mTOR, and upregulated the expression of tight junction proteins, including ZO-1 and occludin. These results revealed that AB23A displayed a prebiotic capacity in HFD-fed NAFLD mice.


Assuntos
Aminoácidos de Cadeia Ramificada/sangue , Colestenonas/farmacologia , Dieta Hiperlipídica , Lipopolissacarídeos/sangue , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Probióticos , Animais , Peso Corporal/efeitos dos fármacos , Microbioma Gastrointestinal , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Hepatopatia Gordurosa não Alcoólica/sangue , Hepatopatia Gordurosa não Alcoólica/metabolismo , RNA Ribossômico 16S/genética , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , Receptor 4 Toll-Like/antagonistas & inibidores , Receptor 4 Toll-Like/metabolismo , Aumento de Peso/efeitos dos fármacos
13.
Microbiol Spectr ; 9(2): e0004221, 2021 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-34612696

RESUMO

The complication of type 2 diabetes (T2D) exacerbates brain infarction in acute ischemic stroke (AIS). Because butyrate-producing bacteria are decreased in T2D and butyrate has been reported to be associated with attenuated brain injury in AIS, we hypothesize that administering butyrate could ameliorate T2D-associated exacerbation of brain infarction in AIS. Therefore, we first validated that Chinese AIS patients with T2D comorbidity have significantly lower levels of fecal butyrate-producing bacteria and butyrate than AIS patients without T2D. Then, we performed a 4-week intervention in T2D mice receiving either sodium butyrate (SB) or sodium chloride (NaCl) and found that SB improved the diabetic phenotype, altered the gut microbiota, and ameliorated brain injury after stroke. Fecal samples were collected from T2D mice after SB or NaCl treatment and were transplanted into antibiotic-treated C57BL/6 mice. After 2 weeks of transplantation, the gut microbiota profile and butyrate level of recipient mice were tested, and then the recipient mice were subjected to ischemic stroke. Stroke mice that received gut microbiota from SB-treated mice had a smaller cerebral infarct volume than mice that received gut microbiota from NaCl-treated mice. This protection was also associated with improvements in gut barrier function, reduced serum levels of lipopolysaccharide (LPS), LPS binding protein (LBP), and proinflammatory cytokines, and improvements in the blood-brain barrier. IMPORTANCE Ischemic stroke is a major global health burden, and T2D is a well-known comorbidity that aggravates brain injury after ischemic stroke. However, the underlying mechanism by which T2D exacerbates stroke injury has not been completely elucidated. A large amount of evidence suggests that the gut microbiota composition affects stroke outcomes. Our results showed that the gut microbiota of T2D aggravated brain injury after ischemic stroke and could be modified by SB to afford neuroprotection against stroke injury. These findings suggest that supplementation with SB is a potential therapeutic strategy for T2D patients with ischemic stroke.


Assuntos
Infarto Encefálico/tratamento farmacológico , Lesões Encefálicas/tratamento farmacológico , Ácido Butírico/uso terapêutico , Diabetes Mellitus Tipo 2/patologia , Transplante de Microbiota Fecal , AVC Isquêmico/tratamento farmacológico , Animais , Infarto Encefálico/patologia , Citocinas/sangue , Feminino , Microbioma Gastrointestinal/fisiologia , Humanos , AVC Isquêmico/patologia , Lipopolissacarídeos/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pessoa de Meia-Idade
14.
Int Immunopharmacol ; 100: 108125, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34543980

RESUMO

Mucosal barrier alterations may play a role in the pathogenesis of several diseases, including COVID-19. In this study we evaluate the association between bacterial translocation markers and systemic inflammation at the earliest time-point after hospitalization and at the last 72 h of hospitalization in survivors and non-survivors COVID-19 patients. Sixty-six SARS-CoV-2 RT-PCR positive patients and nine non-COVID-19 pneumonia controls were admitted in this study. Blood samples were collected at hospital admission (T1) (Controls and COVID-19 patients) and 0-72 h before hospital discharge (T2, alive or dead) to analyze systemic cytokines and chemokines, lipopolysaccharide (LPS) concentrations and soluble CD14 (sCD14) levels. THP-1 human monocytic cell line was incubated with plasma from survivors and non-survivors COVID-19 patients and their phenotype, activation status, TLR4, and chemokine receptors were analyzed by flow cytometry. COVID-19 patients presented higher IL-6, IFN-γ, TNF-α, TGF-ß1, CCL2/MCP-1, CCL4/MIP-1ß, and CCL5/RANTES levels than controls. Moreover, LPS and sCD14 were higher at hospital admission in SARS-CoV-2-infected patients. Non-survivors COVID-19 patients had increased LPS levels concomitant with higher IL-6, TNF-α, CCL2/MCP-1, and CCL5/RANTES levels at T2. Increased expression of CD16 and CCR5 were identified in THP-1 cells incubated with the plasma of survivor patients obtained at T2. The incubation of THP-1 with T2 plasma of non-survivors COVID-19 leads to higher TLR4, CCR2, CCR5, CCR7, and CD69 expression. In conclusion, the coexistence of increased microbial translocation and hyperinflammation in patients with severe COVID-19 may lead to higher monocyte activation, which may be associated with worsening outcomes, such as death.


Assuntos
COVID-19/imunologia , Inflamação/etiologia , Lipopolissacarídeos/sangue , Monócitos/fisiologia , SARS-CoV-2 , Idoso , Idoso de 80 Anos ou mais , Translocação Bacteriana , COVID-19/mortalidade , Feminino , Hospitalização , Humanos , Mediadores da Inflamação/sangue , Masculino , Pessoa de Meia-Idade , Índice de Gravidade de Doença , Células THP-1
15.
Nutrients ; 13(9)2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34579018

RESUMO

BACKGROUND: High-fat diet (HFD) consumption induced gut dysbiosis, inflammation, obese-insulin resistance. Perilla seed oil (PSO) is a rich source of omega-3 polyunsaturated fatty acids with health promotional effects. However, the effects of PSO on gut microbiota/inflammation and metabolic disturbance in HFD-induced obesity have not been investigated. Therefore, we aimed to compare the effects of different doses of PSO and metformin on gut microbiota/inflammation, and metabolic parameters in HFD-fed rats. METHODS: Thirty-six male Wistar rats were fed either a normal diet or an HFD for 24 weeks. At week 13, HFD-fed rats received either 50, 100, and 500 mg/kg/day of PSO or 300 mg/kg/day metformin for 12 weeks. After 24 weeks, the metabolic parameters, gut microbiota, gut barrier, inflammation, and oxidative stress were determined. RESULTS: HFD-fed rats showed gut dysbiosis, gut barrier disruption with inflammation, increased oxidative stress, metabolic endotoxemia, and insulin resistance. Treatment with PSO and metformin not only effectively attenuated gut dysbiosis, but also improved gut barrier integrity and decreased gut inflammation. PSO also decreased oxidative stress, metabolic endotoxemia, and insulin resistance in HFD-fed rats. Metformin had greater benefits than PSO. CONCLUSION: PSO and metformin had the beneficial effect on attenuating gut inflammation and metabolic disturbance in obese-insulin resistance.


Assuntos
Disbiose/tratamento farmacológico , Ácido alfa-Linolênico/uso terapêutico , Animais , Western Blotting , Dieta Hiperlipídica/efeitos adversos , Microbioma Gastrointestinal/efeitos dos fármacos , Hiperlipidemias/tratamento farmacológico , Resistência à Insulina , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Lipopolissacarídeos/sangue , Masculino , Metformina/uso terapêutico , Estresse Oxidativo , Óleos de Plantas/uso terapêutico , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase Via Transcriptase Reversa
16.
PLoS One ; 16(9): e0257214, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34506568

RESUMO

Our earlier studies in tuberculosis (TB) patients indicate that in those where the process evolves to a larger pulmonary involvement, the immune endocrine response may promote an unfavorable environment. Chronic infectious diseases, and their persistent proinflammatory response, may affect mucosal barriers integrity favoring the translocation of gastrointestinal bacteria, leading to an increase of circulating lipopolysaccharides (LPS). Consequently, we quantified LPS levels in TB patients, with different degrees of pulmonary involvement, and controls (Co) and analyzed the possible relationship between LPS and inflammatory mediators i.e., C reactive protein (CRP), interleukin 6 (IL-6) and Interferon-gamma (IFN-γ), Erythrocyte Sedimentation Rate (ESR), steroid hormones (Cortisol and Dehydroepiandrosterone, DHEA), and inflammatory transcripts from peripheral blood mononuclear cells (IL-1ß, IL-6, IFN-γ). LPS was assessed by the Limulus amoebocyte lysate assay and the ELISA technique was used to quantify hormones and cytokines in the plasma samples. Cytokine transcripts from PBMC were evaluated by qRT-PCR. Non-parametric tests were used. LPS levels were increased in TB patients, as did levels of CRP, IL-6, IFN-γ, cortisol and ESR. Severe patients had the highest amounts of circulating LPS; with moderate and severe cases showing much higher levels of CRP, ESR, IL-6, IFN-γ and cortisol/DHEA ratio, as an endocrine imbalance. Only in PBMC from severe cases was mRNA for IL-1ß increased. Correlation analysis showed that levels of LPS from severe patients were positively associated with IL-6 and IFN-γ plasma concentrations and with IL-1ß transcripts, while IL-6 had a positive correlation with the cortisol/DHEA ratio. The higher levels of circulating LPS during progressive TB may emerge as a contributing factor for the persistence of the greater immune endocrine imbalance distinctive of advanced disease, which might suggest a vicious cycle among LPS, inflammation and endocrine imbalance.


Assuntos
Lipopolissacarídeos/sangue , Tuberculose/sangue , Adolescente , Adulto , Idoso , Proteína C-Reativa/metabolismo , Humanos , Interferon gama/sangue , Interleucina-1beta/sangue , Interleucina-6/sangue , Leucócitos Mononucleares/metabolismo , Pessoa de Meia-Idade , Mycobacterium tuberculosis/metabolismo , Adulto Jovem
17.
Microvasc Res ; 138: 104235, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34453991

RESUMO

Electroacupuncture (EA) intervention has a remarkable cardioprotection against myocardial ischemia reperfusion injury (MIRI). Recently, it has been suggested that the gut microbiota plays an important role in regulating the progression and prognosis of MIRI. The purpose of this study was to illustrate the relationship between gut microbiota and cardioprotection of EA on MIRI. We conducted a MIRI model by ligating the left anterior descending coronary artery for 30 min followed by reperfusion in male Sprague Dawley rats, which then received 7 days of EA intervention. Echocardiography was employed to evaluate left ventricular function. Fecal samples were collected for microbial analysis by 16S rDNA high-throughput sequencing. Blood samples and myocardium were collected for inflammatory cytokine detection by enzyme linked immunosorbent assay (ELISA) and Western blot. Hematoxylin & eosin (HE) staining and immunofluorescence of ileum tissue were performed for intestinal damage evaluation. After 7 days of EA intervention, the left ventricular function was improved with significantly increased ejection fraction and fractional shortening. Furthermore, we found that EA intervention reversed the changed gut microbiota induced by MIRI, including Clostridiales, RF39, S24-7, Desulfovibrio, and Allobaculum, improved the impaired gut barrier, reduced the production and circulation of lipopolysaccharide (LPS), inhibited the level of interleukin 6 (IL-6) and interleukin 12 (IL-12) in periphery and decreased the expression of Toll like receptor 4 (TLR4) and IL-6 in myocardium. EA intervention could improve the impaired gut mucosal barrier and reduce the production and circulation of LPS after MIRI through regulating gut microbiota, thus inhibiting the circulation and myocardium inflammation and finally exerted the cardioprotective effect.


Assuntos
Bactérias/metabolismo , Eletroacupuntura , Microbioma Gastrointestinal , Mediadores da Inflamação/metabolismo , Mucosa Intestinal/microbiologia , Lipopolissacarídeos/sangue , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miocárdio/metabolismo , Proteínas de Fase Aguda , Animais , Bactérias/crescimento & desenvolvimento , Proteínas de Transporte/sangue , Modelos Animais de Doenças , Disbiose , Masculino , Glicoproteínas de Membrana/sangue , Traumatismo por Reperfusão Miocárdica/sangue , Traumatismo por Reperfusão Miocárdica/microbiologia , Traumatismo por Reperfusão Miocárdica/patologia , Miocárdio/patologia , Ratos Sprague-Dawley , Função Ventricular Esquerda
18.
Sci Rep ; 11(1): 14560, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34267289

RESUMO

Lipodystrophic mice are protected from cartilage damage following joint injury. This protection can be reversed by the implantation of a small adipose tissue graft. The purpose of this study was to evaluate the relationship between the gut microbiota and knee cartilage damage while controlling for adiposity, high fat diet, and joint injury using lipodystrophic (LD) mice. LD and littermate control (WT) mice were fed a high fat diet, chow diet, or were rescued with fat implantation, then challenged with destabilization of the medial meniscus surgery to induce osteoarthritis (OA). 16S rRNA sequencing was conducted on feces. MaAslin2 was used to determine associations between taxonomic relative abundance and OA severity. While serum LPS levels between groups were similar, synovial fluid LPS levels were increased in both limbs of HFD WT mice compared to all groups, except for fat transplanted animals. The Bacteroidetes:Firmicutes ratio of the gut microbiota was significantly reduced in HFD and OA-rescued animals when compared to chow. Nine novel significant associations were found between gut microbiota taxa and OA severity. These findings suggest the presence of causal relationships the gut microbiome and cartilage health, independent of diet or adiposity, providing potential therapeutic targets through manipulation of the microbiome.


Assuntos
Cartilagem/fisiopatologia , Dieta Hiperlipídica/efeitos adversos , Microbioma Gastrointestinal/fisiologia , Osteoartrite/microbiologia , Adiposidade , Animais , Bacteroidetes/genética , Feminino , Firmicutes/genética , Microbioma Gastrointestinal/genética , Lipodistrofia/microbiologia , Lipopolissacarídeos/sangue , Masculino , Menisco/cirurgia , Camundongos Transgênicos , Obesidade/microbiologia , Osteoartrite/etiologia , RNA Ribossômico 16S/genética , Líquido Sinovial/metabolismo
19.
Int J Mol Sci ; 22(9)2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-34068595

RESUMO

Systemic inflammation, from gut translocation of organismal molecules, might worsen uremic complications in acute kidney injury (AKI). The monitoring of gut permeability integrity and/or organismal molecules in AKI might be clinically beneficial. Due to the less prominence of Candida albicans in human intestine compared with mouse gut, C. albicans were orally administered in bilateral nephrectomy (BiN) mice. Gut dysbiosis, using microbiome analysis, and gut permeability defect (gut leakage), which was determined by fluorescein isothiocyanate-dextran and intestinal tight-junction immunofluorescent staining, in mice with BiN-Candida was more severe than BiN without Candida. Additionally, profound gut leakage in BiN-Candida also resulted in gut translocation of lipopolysaccharide (LPS) and (1→3)-ß-D-glucan (BG), the organismal components from gut contents, that induced more severe systemic inflammation than BiN without Candida. The co-presentation of LPS and BG in mouse serum enhanced inflammatory responses. As such, LPS with Whole Glucan Particle (WGP, a representative BG) induced more severe macrophage responses than LPS alone as determined by supernatant cytokines and gene expression of downstream signals (NFκB, Malt-1 and Syk). Meanwhile, WGP alone did not induced the responses. In parallel, WGP (with or without LPS), but not LPS alone, accelerated macrophage ATP production (extracellular flux analysis) through the upregulation of genes in mitochondria and glycolysis pathway (using RNA sequencing analysis), without the induction of cell activities. These data indicated a WGP pre-conditioning effect on cell energy augmentation. In conclusion, Candida in BiN mice accelerated gut translocation of BG that augmented cell energy status and enhanced pro-inflammatory macrophage responses. Hence, gut fungi and BG were associated with the enhanced systemic inflammation in acute uremia.


Assuntos
Injúria Renal Aguda/metabolismo , Candida albicans/metabolismo , Inflamação/sangue , Proteoglicanas/sangue , Injúria Renal Aguda/genética , Injúria Renal Aguda/microbiologia , Animais , Candida/metabolismo , Candida albicans/patogenicidade , Disbiose/sangue , Metabolismo Energético , Humanos , Inflamação/microbiologia , Inflamação/patologia , Inflamação/cirurgia , Lipopolissacarídeos/sangue , Macrófagos/metabolismo , Macrófagos/microbiologia , Macrófagos/patologia , Camundongos , Microbiota/genética , Nefrectomia/efeitos adversos
20.
Front Immunol ; 12: 622935, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34054798

RESUMO

Introduction: During peritonitis, lipopolysaccharides (LPS) cross the peritoneum and pass through the liver before reaching the central compartment. The aim of the present study was to investigate the role of lipoproteins and phospholipid transfer protein (PLTP) in the early stages of LPS detoxification. Material and Methods: Peritonitis was induced by intra-peritoneal injection of LPS in mice. We analyzed peritoneal fluid, portal and central blood. Lipoprotein fractions were obtained by ultracentrifugation and fast protein liquid chromatography. LPS concentration and activity were measured by liquid chromatography coupled with mass spectrometry and limulus amoebocyte lysate. Wild-type mice were compared to mice knocked out for PLTP. Results: In mice expressing PLTP, LPS was able to bind to HDL in the peritoneal compartment, and this was maintained in plasma from portal and central blood. A hepatic first-pass effect of HDL-bound LPS was observed in wild-type mice. LPS binding to HDL resulted in an early arrival of inactive LPS in the central blood of wild-type mice. Conclusion: PLTP promotes LPS peritoneal clearance and neutralization in a model of peritonitis. This mechanism involves the early binding of LPS to lipoproteins inside the peritoneal cavity, which promotes LPS translocation through the peritoneum and its uptake by the liver.


Assuntos
Líquido Ascítico/metabolismo , Lipopolissacarídeos/sangue , Lipoproteínas HDL/sangue , Peritônio/metabolismo , Peritonite/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Lipopolissacarídeos/toxicidade , Camundongos Endogâmicos C57BL , Camundongos Knockout , Peritonite/sangue , Peritonite/induzido quimicamente , Proteínas de Transferência de Fosfolipídeos/sangue , Proteínas de Transferência de Fosfolipídeos/genética , Ligação Proteica , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...