Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36.994
Filtrar
1.
BMC Genomics ; 25(1): 557, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834972

RESUMO

Reducing the levels of dietary protein is an effective nutritional approach in lowering feed cost and nitrogen emissions in ruminants. The purpose of this study was to evaluate the effects of dietary Lys/Met ratio in a low protein diet (10%, dry matter basis) on the growth performance and hepatic function (antioxidant capacity, immune status, and glycolytic activity) in Tibetan lambs. Ninety two-month-old rams with an average weight of 15.37 ± 0.92 kg were randomly assigned to LP-L (dietary Lys/Met = 1:1), LP-M (dietary Lys/Met = 2:1) and LP-H (dietary Lys/Met = 3:1) treatments. The trial was conducted over 100 d, including 10 d of adaption to the diets. Hepatic phenotypes, antioxidant capacity, immune status, glycolytic activity and gene expression profiling was detected after the conclusion of the feeding trials. The results showed that the body weight was higher in the LP-L group when compared to those on the LP-M group (P < 0.05). In addition, the activities of the catalase (CAT) and glutathione peroxidase (GSH-Px) in the LP-L group were significantly increased compared with the LP-M group (P < 0.05), while the malondialdehyde (MDA) levels in LP-H group were significantly decreased (P < 0.05). Compared with LP-H group, both hepatic glycogen (P < 0.01) and lactate dehydrogenase (LDH) (P < 0.05) were significantly elevated in LP-L group. For the LP-L group, the hepatocytes were arranged radially with the central vein in the center, and hepatic plates exhibited tight arrangement. Transcriptome analysis identified 29, 179, and 129 differentially expressed genes (DEGs) between the LP-M vs. LP-L, LP-H vs. LP-M, and LP-H vs. LP-L groups, respectively (Q-values < 0.05 and |log2Fold Change| > 1). Gene Ontology (GO) and correlation analyses showed that in the LP-L group, core genes (C1QA and JUNB) enriched in oxidoreductase activity were positively correlated with antioxidant indicators, while the MYO9A core gene enriched in the immune response was positively associated with immune indicators, and core genes enriched in molecular function (PDK3 and PDP2) were positively correlated with glycolysis indicators. In summary, low-protein diet with a low Lys/Met ratio (1:1) could reduce the hepatic oxidative stress and improve the glycolytic activity by regulating the expression of related genes of Tibetan sheep.


Assuntos
Antioxidantes , Glicólise , Fígado , Metionina , Animais , Fígado/metabolismo , Fígado/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Antioxidantes/metabolismo , Ovinos , Metionina/farmacologia , Metionina/administração & dosagem , Metionina/metabolismo , Lisina/metabolismo , Dieta com Restrição de Proteínas/veterinária , Suplementos Nutricionais , Ração Animal/análise , Masculino
2.
FASEB J ; 38(11): e23715, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38837260

RESUMO

Impaired intestinal permeability induces systemic inflammation and metabolic disturbance. The effect of a leaky gut on metabolism in skeletal muscle, a major nutrient consumer, remains unclear. In this study, we aimed to investigate the glucose metabolic function of the whole body and skeletal muscles in a mouse model of diet-induced intestinal barrier dysfunction. At Week 2, we observed higher intestinal permeability in mice fed a titanium dioxide (TiO2)-containing diet than that of mice fed a normal control diet. Subsequently, systemic glucose and insulin tolerance were found to be impaired. In the skeletal muscle, glucose uptake and phosphorylation levels in insulin signaling were lower in the TiO2 group than those in the control group. Additionally, the levels of pro-inflammatory factors were higher in TiO2-fed mice than those in the control group. We observed higher carboxymethyl-lysin (CML) levels in the plasma and intestines of TiO2-fed mice and lower insulin-dependent glucose uptake in CML-treated cultured myotubes than those in the controls. Finally, soluble dietary fiber supplementation improved glucose and insulin intolerance, suppressed plasma CML, and improved intestinal barrier function. These results suggest that an impaired intestinal barrier leads to systemic glucose intolerance, which is associated with glucose metabolism dysfunction in the skeletal muscles due to circulating CML derived from the intestine. This study highlights that the intestinal condition regulates muscle and systemic metabolic health.


Assuntos
Lisina , Músculo Esquelético , Titânio , Animais , Camundongos , Músculo Esquelético/metabolismo , Músculo Esquelético/efeitos dos fármacos , Masculino , Lisina/análogos & derivados , Lisina/metabolismo , Camundongos Endogâmicos C57BL , Aditivos Alimentares/farmacologia , Insulina/sangue , Insulina/metabolismo , Glucose/metabolismo , Intolerância à Glucose/metabolismo , Mucosa Intestinal/metabolismo
3.
J Dig Dis ; 25(4): 255-265, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38837552

RESUMO

OBJECTIVES: In this study we aimed to assess the impact of acetylation of hepatocyte nuclear factor 4α (HNF4α) on lysine 458 on the differentiation therapy of hepatocellular carcinoma (HCC). METHODS: Periodic acid-Schiff (PAS) staining, Dil-acetylated low-density lipoprotein (Dil-Ac-LDL) uptake, and senescence-associated ß-galactosidase (SA-ß-gal) activity analysis were performed to assess the differentiation of HCC cells. HNF4α protein was detected by western blot and immunohistochemistry (IHC). The effects of HNF4α-K458 acetylation on HCC malignancy were evaluated in HCC cell lines, a Huh-7 xenograft mouse model, and an orthotopic model. The differential expression genes in Huh-7 xenograft tumors were screened by RNA-sequencing analysis. RESULTS: K458R significantly enhanced the inhibitory effect of HNF4α on the malignancy of HCC cells, whereas K458Q reduced the inhibitory effects of HNF4α. Moreover, K458R promoted, while K458Q decreased, HNF4α-induced HCC cell differentiation. K458R stabilized HNF4α, while K458Q accelerated the degradation of HNF4α via the ubiquitin proteasome system. K458R also enhanced the ability of HNF4α to inhibit cell growth of HCC in the Huh-7 xenograft mouse model and the orthotopic model. RNA-sequencing analysis revealed that inhibiting K458 acetylation enhanced the transcriptional activity of HNF4α without altering the transcriptome induced by HNF4α in HCC. CONCLUSION: Our data revealed that inhibiting K458 acetylation of HNF4α might provide a more promising candidate for differential therapy of HCC.


Assuntos
Carcinoma Hepatocelular , Diferenciação Celular , Fator 4 Nuclear de Hepatócito , Neoplasias Hepáticas , Fator 4 Nuclear de Hepatócito/genética , Fator 4 Nuclear de Hepatócito/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Acetilação , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Lisina/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Crit Rev Eukaryot Gene Expr ; 34(5): 31-43, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38842202

RESUMO

Breast cancer is one of the most common malignant tumors worldwide. SLC7A2 is abnormally expressed in multiple cancers. However, its potential in triple negative breast cancer (TNBC) is still unclear. The purpose of this study was to investigate the roles of SLC7A2 and its underlying molecular mechanisms in TNBC. mRNA expression was detected by RT-qPCR. Protein expression was detected by western blot. Co-localization of ACOX1 and TCF1 was determined using FISH assay. Histone crotonylation was performed using in vitro histone crotonylation assay. Functional analysis was performed using CCK-8 and flow cytometry assays. Xenograft assay was conducted to further verify the role of SLC7A2 in TNBC. CD8A expression was detected using immunohistochemistry. We found that SLC7A2 is downregulated in TNBC tumors. Low levels are associated with advanced stages and lymph node metastasis. SLC7A2 expression is positively correlated with CD8A. SLC7A2-mediated lysine catabolism drives the activation of CD8+ T cells. Moreover, SLC7A2 promotes histone crotonylation via upregulating ACOX1. It also promotes interaction between ACOX1 and TCF1, thus promoting antitumor T cell immunity. Additionally, overexpression of SLC7A2 activates CD8+ T cells and enhances the chemosensitivity of anti-PD-1 therapies in vivo. In conclusion, SLC7A2 may function as an antitumor gene in TNBC by activating antitumor immunity, suggesting SLC7A2/ACOX1/TCF1 signaling as a promising therapeutic strategy.


Assuntos
Lisina , Neoplasias de Mama Triplo Negativas , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Humanos , Feminino , Lisina/metabolismo , Animais , Camundongos , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Transportador 1 de Aminoácidos Neutros Grandes/genética , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/imunologia
5.
Food Res Int ; 186: 114397, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729739

RESUMO

The formation mechanism behind the sophisticated aromas of sesame oil (SO) has not been elucidated. The interaction effects of the Maillard reaction (MR) and lipid oxidation on the aroma formation of fragrant sesame oil were investigated in model reaction systems made of l-lysine (Lys) and d-glucose (Glc) with or without fresh SO (FSO) or oxidized SO (OSO). The addition of OSO to the Lys-Glc model increased the MR browning at 294 nm and 420 nm and enhanced the DPPH radical scavenging activity greater than the addition of FSO (p < 0.05). The presence of lysine and glucose inhibited the oxidation of sesame oil, reduced the loss of γ-tocopherol, and facilitated the formation of sesamol (p < 0.05). The Maillard-lipid interaction led to the increased concentrations of some of the alkylpyrazines, alkylfurans, and MR-derived ketones and acids (p < 0.05) while reducing the concentrations of other pyrazines, lipid-derived furans, aliphatic aldehydes, ketones, alcohols, and acids (p < 0.05). The addition of FSO to the MR model enhanced the characteristic roasted, nutty, sweet, and fatty aromas in sesame oil (p < 0.05), while excessive lipid oxidation (OSO) brought about an unpleasant oxidized odor and reduced the characteristic aromas. This study helps to understand the sophisticated aroma formation mechanism in sesame oil and provides scientific instruction for precise flavor control in the production of sesame oil.


Assuntos
Glucose , Lisina , Reação de Maillard , Odorantes , Oxirredução , Óleo de Gergelim , Óleo de Gergelim/química , Glucose/química , Odorantes/análise , Lisina/química , Fenóis/química , Benzodioxóis
6.
Microb Cell Fact ; 23(1): 132, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38711050

RESUMO

BACKGROUND: 1,5-pentanediol (1,5-PDO) is a linear diol with an odd number of methylene groups, which is an important raw material for polyurethane production. In recent years, the chemical methods have been predominantly employed for synthesizing 1,5-PDO. However, with the increasing emphasis on environmentally friendly production, it has been a growing interest in the biosynthesis of 1,5-PDO. Due to the limited availability of only three reported feasible biosynthesis pathways, we developed a new biosynthetic pathway to form a cell factory in Escherichia coli to produce 1,5-PDO. RESULTS: In this study, we reported an artificial pathway for the synthesis of 1,5-PDO from lysine with an integrated cofactor and co-substrate recycling and also evaluated its feasibility in E.coli. To get through the pathway, we first screened aminotransferases originated from different organisms to identify the enzyme that could successfully transfer two amines from cadaverine, and thus GabT from E. coli was characterized. It was then cascaded with lysine decarboxylase and alcohol dehydrogenase from E. coli to achieve the whole-cell production of 1,5-PDO from lysine. To improve the whole-cell activity for 1,5-PDO production, we employed a protein scaffold of EutM for GabT assembly and glutamate dehydrogenase was also validated for the recycling of NADPH and α-ketoglutaric acid (α-KG). After optimizing the cultivation and bioconversion conditions, the titer of 1,5-PDO reached 4.03 mM. CONCLUSION: We established a novel pathway for 1,5-PDO production through two consecutive transamination reaction from cadaverine, and also integrated cofactor and co-substrate recycling system, which provided an alternative option for the biosynthesis of 1,5-PDO.


Assuntos
Vias Biossintéticas , Escherichia coli , Escherichia coli/metabolismo , Escherichia coli/genética , Engenharia Metabólica/métodos , Glicóis/metabolismo , Lisina/metabolismo , Lisina/biossíntese , Álcool Desidrogenase/metabolismo , Transaminases/metabolismo , Transaminases/genética , Carboxiliases/metabolismo
7.
Chirality ; 36(5): e23670, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38716587

RESUMO

Metal clusters have drawn considerable research attention over the years due to their fascinating optical properties. Owing to their appealing photophysical characteristics, these materials have drawn attention as potential candidates for various application in diverse fields, including disease detection, biosensing, chemical sensing, and the fabrication of light-harvesting materials. Presently, there is an increasing research focus on the use of clusters in biomedical research, both as biodetection platform and as bioimaging agents. Of special interest are chiral clusters, which can selectively interact with chiral biomolecules owing to their optical activity. Herein, we showcase the use of a pair of chiroptically active copper clusters for the enantioselective detection of lysine, an amino acid of vast biological relevance. Two techniques are concurrently employed for the detection of lysine at varying concentrations. Circular dichroism serves as a potent tool for detecting lysine at low concentrations, whereas luminescence is effectively employed as a detection method for high analyte concentrations. The combined electronic impact of clusters and lysine resulted in the emergence of an enhanced enantioselective Cotton effect at specific wavelength.


Assuntos
Cobre , Lisina , Lisina/química , Lisina/análise , Cobre/química , Cobre/análise , Estereoisomerismo , Dicroísmo Circular/métodos
8.
Pak J Pharm Sci ; 37(1(Special)): 245-255, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38747276

RESUMO

Aripiprazole (ARI), an antipsychotic having low solubility and stability. To overcome this, formation of binary and ternary using inclusion complexes of Methyl-ß-cyclodextrin (MßCD) /Hydroxy propyl beta cyclodextrin (HPßCD) and L-Arginine (ARG)/ Lysine (LYS) are analyzed by dissolution testing and phase stability study along with their complexation efficacy and solubility constants made by physical mixing. Inclusion complexes with ARG were better than LYS and prepared by solvent evaporation and lyophilization method as well. They are characterized by Attenuated Total Reflection Fourier Transform Infrared Spectroscopy (AT-FTIR), X-ray powder diffractometry (XRD), Differential Scanning Calorimetry (DSC), Scanning electron microscopy (SEM) and Thermal gravimetric analysis (TGA). The bond shifting in AT-FTIR confirmed the molecular interactions between host and guest molecules. The SEM images also confirmed a complete change of drug morphology in case of ternary inclusion complexes prepared by lyophilization method for both the polymers. ARI: MßCD: ARG when used in the specific molar ratio of 1:1:0.27 by prepared by lyophilization method has 18 times best solubility while ARI:HPßCD:ARG was 7 times best solubility than pure drug making MßCD a better choice than HPßCD. Change in the molar ratio will cause loss of stability or solubility. Solvent evaporation gave significant level of solubility but less stability.


Assuntos
2-Hidroxipropil-beta-Ciclodextrina , Arginina , Aripiprazol , Varredura Diferencial de Calorimetria , Lisina , Solubilidade , beta-Ciclodextrinas , Aripiprazol/química , Arginina/química , beta-Ciclodextrinas/química , 2-Hidroxipropil-beta-Ciclodextrina/química , Lisina/química , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X , Liofilização , Antipsicóticos/química , Estabilidade de Medicamentos , Microscopia Eletrônica de Varredura , Composição de Medicamentos , Química Farmacêutica/métodos
9.
Front Endocrinol (Lausanne) ; 15: 1371220, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38737551

RESUMO

Background and objective: Aberrant epigenetic regulation and increased oxidative stress in the placenta play a significant role in placental pathophysiology and fetal programming in preeclampsia, a hypertensive disorder in human pregnancy. The purpose of the study is to investigate if hypermethylation of histone H3K9 occurs in placental trophoblasts from preeclampsia. Methods: Trophoblasts were isolated and cultured from 14 placentas, 7 from normotensive pregnant women and 7 from preeclamptic pregnancies. Methylated H3K9 expression and antioxidant superoxide dismutase expression were determined by Western blot. We also examined consequences of oxidative stress and the downstream effects of histone methyltransferase inhibition on H3K9 expression associated with antioxidant CuZn-SOD and Mn-SOD expression in placental trophoblasts. Results: We found that expression of mono-, di-, and tri-methylation of histone H3 lysine 9 (H3K9me1, H3K9me2 and H3K9me3) was significantly increased, p<0.01, which correlated with downregulation of antioxidant superoxide dismutase CuZn-SOD and Mn-SOD expression, in trophoblasts from preeclamptic placentas compared to those from uncomplicated control placentas. We further demonstrated hypoxia could promote histone H3K9 methylation in placental trophoblasts, and hypoxia-induced upregulation of H3K9me1, H3K9me2 and H3K9me3 expression was reversible when hypoxic condition was removed. In addition, we also uncovered that inhibition of methyltransferase not only prevented hypoxia-induced upregulation of H3K9me1, H3K9me2 and H3K9me3 expression, but also abolished hypoxia-induced downregulation of CuZn-SOD and Mn-SOD expression in placental trophoblasts. Conclusions: These findings are noteworthy and provide further evidence that increased oxidative stress in the intrauterine environment is likely a mechanism to induce aberrant histone modification in placental trophoblasts in preeclampsia. Moreover, CuZn-SOD and Mn-SOD expression/activity are possibly H3K9 methylation-dependent in placental trophoblasts, which further suggest that oxidative stress and aberrant histone modification have significant impact on placental trophoblasts/fetal programming in preeclampsia.


Assuntos
Histonas , Estresse Oxidativo , Placenta , Pré-Eclâmpsia , Trofoblastos , Humanos , Feminino , Pré-Eclâmpsia/metabolismo , Pré-Eclâmpsia/genética , Pré-Eclâmpsia/patologia , Gravidez , Trofoblastos/metabolismo , Histonas/metabolismo , Adulto , Placenta/metabolismo , Metilação , Superóxido Dismutase/metabolismo , Superóxido Dismutase/genética , Metilação de DNA , Células Cultivadas , Lisina/metabolismo
10.
J Clin Pediatr Dent ; 48(3): 131-138, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38755991

RESUMO

In the current odontological era, carious lesions are removed while tooth tissue is preserved. Most of these ideals are met by chemomechanical caries removal (CMCR) methods, which are easy and comfortable to use, differentiate and eliminate infected tissues, minimize pressure, vibration and heat, and are cost-effective. This study examines the efficacy of commercially available CMCR agents, namely Papacarie®, Carie-Care™ and BRIX3000™, and a conventional hand instrumentation method for caries removal in deciduous molars in terms of time consumption, ease of application, and pain perception. For this randomized clinical trial, 120 children aged 4 to 9 years were selected and randomly allocated to four groups of 30 patients each. Time consumption, ease of application, and pain perception were evaluated at three intervals: pre-, during- and post-caries removal, using Wong-Baker FACES (WBF) Pain Rating Scale and the Face, Legs, Activity, Cry, Consolability (FLACC) scale. The results showed that among the compared materials and conventional hand instrumentation technique, Carie-Care™ was statistically found to be the least time-consuming with a p-value of 0.019, have the least pain perception with a p-value of 0.02, and was clinically the best with respect to manipulation and handling. While all three CMCR agents aid in the removal of carious tissue, Carie-Care™ was the most effective based on time consumption, pain perception and simplicity of administration.


Assuntos
Cárie Dentária , Preparo da Cavidade Dentária , Papaína , Dente Decíduo , Humanos , Cárie Dentária/terapia , Pré-Escolar , Criança , Papaína/uso terapêutico , Masculino , Feminino , Preparo da Cavidade Dentária/métodos , Preparo da Cavidade Dentária/instrumentação , Medição da Dor , Lisina/uso terapêutico , Dente Molar
11.
Food Res Int ; 183: 114175, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38760120

RESUMO

Lactose hydrolysed concentrated milk was prepared using ß-galactosidase enzyme (4.76U/mL) with a reaction period of 12 h at 4 °C. Addition of polysaccharides (5 % maltodextrin/ß-cyclodextrin) to concentrated milk either before or after lactose hydrolysis did not result in significant differences (p > 0.05) in degree of hydrolysis (% DH) of lactose and residual lactose content (%). Three different inlet temperatures (165 °C, 175 °C and 185 °C) were used for the preparation of powders which were later characterised based on physico-chemical and maillard browning characteristics. Moisture content, solubility and available lysine content of the powders decreased significantly, whereas, browning parameters i.e., browning index, 5-hydroxymethylfurfural, furosine content increased significantly (p < 0.05) with an increase in inlet air temperature. The powder was finally prepared with 5 % polysaccharide and an inlet air temperature of 185 °C which reduced maillard browning. Protein-polysaccharide interactions were identified using Fourier Transform infrared spectroscopy, fluorescence spectroscopy and determination of free amino groups in the powder samples. Maltodextrin and ß-cyclodextrin containing powder samples exhibited lower free amino groups and higher degree of graft value as compared to control sample which indicated protein-polysaccharide interactions. Results obtained from Fourier Transform infrared spectroscopy also confirmed strong protein-polysaccharide interactions, moreover a significant decrease in fluorescence intensity was also observed in the powder samples. These interactions between the proteins and polysaccharides reduced the maillard browning in powders.


Assuntos
Furaldeído , Lactose , Reação de Maillard , Leite , Polissacarídeos , Pós , Lactose/química , Polissacarídeos/química , Leite/química , Animais , Espectroscopia de Infravermelho com Transformada de Fourier , Furaldeído/análogos & derivados , Furaldeído/química , beta-Galactosidase/metabolismo , beta-Ciclodextrinas/química , Hidrólise , Secagem por Atomização , Temperatura , Lisina/química , Lisina/análogos & derivados , Solubilidade , Espectrometria de Fluorescência , Proteínas do Leite/química , Manipulação de Alimentos/métodos
12.
Front Endocrinol (Lausanne) ; 15: 1328679, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38779451

RESUMO

Objective: The established link between posttranslational modifications of histone and non-histone lysine (K) residues in cell metabolism, and their role in cancer progression, is well-documented. However, the lactylation expression signature in triple-negative breast cancer (TNBC) remains underexplored. Methods: We conducted a comprehensive lactylproteome profiling of eight pairs of TNBC samples and their matched adjacent tissues. This was achieved through 4-Dimensional label-free quantitative proteomics combined with lactylation analysis (4D-LFQP-LA). The expression of identified lactylated proteins in TNBC was detected using immunoblotting and immunohistochemistry (IHC) with specific primary antibodies, and their clinicopathological and prognostic significance was evaluated. Results: Our analysis identified 58 lactylation sites on 48 proteins, delineating the protein lactylation alteration signature in TNBC. Bioinformatic and functional analyses indicated that these lactylated proteins play crucial roles in regulating key biological processes in TNBC. Notably, lactylation of lysine at position 12 (H4K12lac) in the histone H4 domain was found to be upregulated in TNBC. Further investigations showed a high prevalence of H4K12lac upregulation in TNBC, with positive rates of 93.19% (137/147) and 92.93% (92/99) in TNBC tissue chip and validation cohorts, respectively. H4K12lac expression correlated positively with Ki-67 and inversely with overall survival (OS) in TNBC (HR [hazard ratio] =2.813, 95%CI [credibility interval]: 1.242-6.371, P=0.0164), suggesting its potential as an independent prognostic marker (HR=3.477, 95%CI: 1.324-9.130, P=0.011). Conclusions: Lactylation is a significant post-translational modification in TNBC proteins. H4K12lac emerges as a promising biomarker for TNBC, offering insights into the lactylation profiles of TNBC proteins and linking histone modifications to clinical implications in TNBC.


Assuntos
Biomarcadores Tumorais , Histonas , Processamento de Proteína Pós-Traducional , Neoplasias de Mama Triplo Negativas , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Humanos , Histonas/metabolismo , Feminino , Biomarcadores Tumorais/metabolismo , Prognóstico , Pessoa de Meia-Idade , Proteômica/métodos , Proteoma/metabolismo , Adulto , Lisina/metabolismo
13.
Life Sci Alliance ; 7(8)2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38803224

RESUMO

The ubiquitin (Ub) code denotes the complex Ub architectures, including Ub chains of different lengths, linkage types, and linkage combinations, which enable ubiquitination to control a wide range of protein fates. Although many linkage-specific interactors have been described, how interactors are able to decode more complex architectures is not fully understood. We conducted a Ub interactor screen, in humans and yeast, using Ub chains of varying lengths, as well as homotypic and heterotypic branched chains of the two most abundant linkage types-lysine 48-linked (K48) and lysine 63-linked (K63) Ub. We identified some of the first K48/K63-linked branch-specific Ub interactors, including histone ADP-ribosyltransferase PARP10/ARTD10, E3 ligase UBR4, and huntingtin-interacting protein HIP1. Furthermore, we revealed the importance of chain length by identifying interactors with a preference for Ub3 over Ub2 chains, including Ub-directed endoprotease DDI2, autophagy receptor CCDC50, and p97 adaptor FAF1. Crucially, we compared datasets collected using two common deubiquitinase inhibitors-chloroacetamide and N-ethylmaleimide. This revealed inhibitor-dependent interactors, highlighting the importance of inhibitor consideration during pulldown studies. This dataset is a key resource for understanding how the Ub code is read.


Assuntos
Lisina , Ubiquitina , Ubiquitinação , Humanos , Ubiquitina/metabolismo , Lisina/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Ligação Proteica , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética
14.
Cell Rep ; 43(5): 114180, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38733581

RESUMO

Macrophage activation is a hallmark of atherosclerosis, accompanied by a switch in core metabolism from oxidative phosphorylation to glycolysis. The crosstalk between metabolic rewiring and histone modifications in macrophages is worthy of further investigation. Here, we find that lactate efflux-associated monocarboxylate transporter 4 (MCT4)-mediated histone lactylation is closely related to atherosclerosis. Histone H3 lysine 18 lactylation dependent on MCT4 deficiency activated the transcription of anti-inflammatory genes and tricarboxylic acid cycle genes, resulting in the initiation of local repair and homeostasis. Strikingly, histone lactylation is characteristically involved in the stage-specific local repair process during M1 to M2 transformation, whereas histone methylation and acetylation are not. Gene manipulation and protein hydrolysis-targeted chimerism technology are used to confirm that MCT4 deficiency favors ameliorating atherosclerosis. Therefore, our study shows that macrophage MCT4 deficiency, which links metabolic rewiring and histone modifications, plays a key role in training macrophages to become repair and homeostasis phenotypes.


Assuntos
Aterosclerose , Histonas , Lisina , Macrófagos , Transportadores de Ácidos Monocarboxílicos , Histonas/metabolismo , Macrófagos/metabolismo , Aterosclerose/metabolismo , Aterosclerose/genética , Aterosclerose/patologia , Animais , Camundongos , Transportadores de Ácidos Monocarboxílicos/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Lisina/metabolismo , Humanos , Proteínas Musculares/metabolismo , Proteínas Musculares/genética , Ativação de Macrófagos , Camundongos Endogâmicos C57BL
15.
Nat Commun ; 15(1): 4023, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740816

RESUMO

Abscission is the final stage of cytokinesis, which cleaves the intercellular bridge (ICB) connecting two daughter cells. Abscission requires tight control of the recruitment and polymerization of the Endosomal Protein Complex Required for Transport-III (ESCRT-III) components. We explore the role of post-translational modifications in regulating ESCRT dynamics. We discover that SMYD2 methylates the lysine 6 residue of human CHMP2B, a key ESCRT-III component, at the ICB, impacting the dynamic relocation of CHMP2B to sites of abscission. SMYD2 loss-of-function (genetically or pharmacologically) causes CHMP2B hypomethylation, delayed CHMP2B polymerization and delayed abscission. This is phenocopied by CHMP2B lysine 6 mutants that cannot be methylated. Conversely, SMYD2 gain-of-function causes CHMP2B hypermethylation and accelerated abscission, specifically in cells undergoing cytokinetic challenges, thereby bypassing the abscission checkpoint. Additional experiments highlight the importance of CHMP2B methylation beyond cytokinesis, namely during ESCRT-III-mediated HIV-1 budding. We propose that lysine methylation signaling fine-tunes the ESCRT-III machinery to regulate the timing of cytokinetic abscission and other ESCRT-III dependent functions.


Assuntos
Citocinese , Complexos Endossomais de Distribuição Requeridos para Transporte , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Humanos , Metilação , Células HeLa , Histona-Lisina N-Metiltransferase/metabolismo , Histona-Lisina N-Metiltransferase/genética , HIV-1/metabolismo , HIV-1/genética , HIV-1/fisiologia , Lisina/metabolismo , Processamento de Proteína Pós-Traducional
16.
Int J Mol Sci ; 25(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38731885

RESUMO

Lysine is an essential amino acid that cannot be synthesized in humans. Rice is a global staple food for humans but has a rather low lysine content. Identification of the quantitative trait nucleotides (QTNs) and genes underlying lysine content is crucial to increase lysine accumulation. In this study, five grain and three leaf lysine content datasets and 4,630,367 single nucleotide polymorphisms (SNPs) of 387 rice accessions were used to perform a genome-wide association study (GWAS) by ten statistical models. A total of 248 and 71 common QTNs associated with grain/leaf lysine content were identified. The accuracy of genomic selection/prediction RR-BLUP models was up to 0.85, and the significant correlation between the number of favorable alleles per accession and lysine content was up to 0.71, which validated the reliability and additive effects of these QTNs. Several key genes were uncovered for fine-tuning lysine accumulation. Additionally, 20 and 30 QTN-by-environment interactions (QEIs) were detected in grains/leaves. The QEI-sf0111954416 candidate gene LOC_Os01g21380 putatively accounted for gene-by-environment interaction was identified in grains. These findings suggested the application of multi-model GWAS facilitates a better understanding of lysine accumulation in rice. The identified QTNs and genes hold the potential for lysine-rich rice with a normal phenotype.


Assuntos
Estudo de Associação Genômica Ampla , Lisina , Oryza , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Oryza/genética , Oryza/metabolismo , Lisina/metabolismo , Estudo de Associação Genômica Ampla/métodos , Fenótipo , Interação Gene-Ambiente , Grão Comestível/genética , Grão Comestível/metabolismo
17.
Int J Mol Sci ; 25(9)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38732042

RESUMO

Numerous post-translational modifications are involved in oocyte maturation and embryo development. Recently, lactylation has emerged as a novel epigenetic modification implicated in the regulation of diverse cellular processes. However, it remains unclear whether lactylation occurs during oocyte maturation and embryo development processes. Herein, the lysine lactylation (Kla) modifications were determined during mouse oocyte maturation and early embryo development by immunofluorescence staining. Exogenous lactate was supplemented to explore the consequences of modulating histone lactylation levels on oocyte maturation and embryo development processes by transcriptomics. Results demonstrated that lactylated proteins are widely present in mice with tissue- and cell-specific distribution. During mouse oocyte maturation, immunofluorescence for H3K9la, H3K14la, H4K8la, and H4K12la was most intense at the germinal vesicle (GV) stage and subsequently weakened or disappeared. Further, supplementing the culture medium with 10 mM sodium lactate elevated both the oocyte maturation rate and the histone Kla levels in GV oocytes, and there were substantial increases in Kla levels in metaphase II (MII) oocytes. It altered the transcription of molecules involved in oxidative phosphorylation. Moreover, histone lactylation levels changed dynamically during mouse early embryogenesis. Sodium lactate at 10 mM enhanced early embryo development and significantly increased lactylation, while impacting glycolytic gene transcription. This study reveals the roles of lactylation during oocyte maturation and embryo development, providing new insights to improving oocyte maturation and embryo quality.


Assuntos
Desenvolvimento Embrionário , Histonas , Oócitos , Processamento de Proteína Pós-Traducional , Animais , Histonas/metabolismo , Oócitos/metabolismo , Camundongos , Desenvolvimento Embrionário/genética , Feminino , Oogênese , Lisina/metabolismo , Técnicas de Maturação in Vitro de Oócitos , Regulação da Expressão Gênica no Desenvolvimento
18.
Int J Mol Sci ; 25(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38732083

RESUMO

Three new phenanthridine peptide derivatives (19, 22, and 23) were synthesized to explore their potential as spectrophotometric probes for DNA and RNA. UV/Vis and circular dichroism (CD) spectra, mass spectroscopy, and computational analysis confirmed the presence of intramolecular interactions in all three compounds. Computational analysis revealed that compounds alternate between bent and open conformations, highlighting the latter's crucial influence on successful polynucleotide recognition. Substituting one glycine with lysine in two regioisomers (22, 23) resulted in stronger binding interactions with DNA and RNA than for a compound containing two glycines (19), thus emphasizing the importance of lysine. The regioisomer with lysine closer to the phenanthridine ring (23) exhibited a dual and selective fluorimetric response with non-alternating AT and ATT polynucleotides and induction of triplex formation from the AT duplex. The best binding constant (K) with a value of 2.5 × 107 M-1 was obtained for the interaction with AT and ATT polynucleotides. Furthermore, apart from distinguishing between different types of ds-DNA and ds-RNA, the same compound could recognize GC-rich DNA through distinct induced CD signals.


Assuntos
Dicroísmo Circular , DNA , Lisina , Peptídeos , Fenantridinas , Fenantridinas/química , Lisina/química , Peptídeos/química , DNA/química , DNA/metabolismo , RNA/química , Conformação de Ácido Nucleico
19.
Bioorg Med Chem ; 106: 117735, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38714021

RESUMO

Numerous natural antimicrobial peptides (AMPs) exhibit a cationic amphipathic helical conformation, wherein cationic amino acids, such as lysine and arginine, play pivotal roles in antimicrobial activity by aiding initial attraction to negatively charged bacterial membranes. Expanding on our previous work, which introduced a de novo design of amphipathic helices within cationic heptapeptides using an 'all-hydrocarbon peptide stapling' approach, we investigated the impact of lysine-homologue substitution on helix formation, antimicrobial activity, hemolytic activity, and proteolytic stability of these novel AMPs. Our results demonstrate that substituting lysine with ornithine enhances both the antimicrobial activity and proteolytic stability of the stapled heptapeptide AMP series, while maintaining low hemolytic activity. This finding underscores lysine-homologue substitution as a valuable strategy for optimizing the therapeutic potential of diverse cationic AMPs.


Assuntos
Antibacterianos , Peptídeos Catiônicos Antimicrobianos , Hemólise , Lisina , Testes de Sensibilidade Microbiana , Lisina/química , Lisina/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Hemólise/efeitos dos fármacos , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/síntese química , Relação Estrutura-Atividade , Proteólise/efeitos dos fármacos , Humanos , Estrutura Molecular
20.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38733259

RESUMO

An experiment was conducted to assess the effects of porcine somatotropin (pST) on the responses to a near-ideal blend of AA on the AA composition of empty, whole-empty body (WEB) protein and WEB essential AA accretion rate in pigs from 22 to 60 kg BW. Forty Hampshire × Yorkshire gilts were individually penned and assigned to a 4 × 2 factorial arrangement of treatments consisting of four diets with and without pST injection. A fortified corn-soybean meal basal diet was formulated to contain 1.50% total Lys with Thr, Met, and Trp added to obtain a near-ideal blend of these AA relative to Lys. In three additional diets, Lys was reduced to 1.25%, 1.00%, and 0.75% by diluting the basal diet with cornstarch, cellulose, and sand such that the diets also contained the same ratios of AA. Pigs that received pST were administered a daily i.m. injection of 2 mg of pST. At 60 kg BW, the WEB (carcass, head, viscera, blood, nails, and hair) was ground and analyzed for proximate and AA composition. Administration of pST increased (P < 0.001) accretion rates of WEB protein and essential AA. Increasing dietary essential AA increased (quadratic, P < 0.03) accretion rate of WEB protein, His, Leu, Trp, and Val in pST-treated pigs, but not in untreated pigs. Lysine composition in the accreted WEB protein was not affected (P > 0.05) by dietary Lys. The efficiency of Lys utilization for WEB Lys accretion was linearly affected (P < 0.01) by dietary Lys. These results indicated that the dietary Lys needed to achieve maximum WEB Lys accretion is markedly increased by pST administration.


This study evaluated the effects of two factors, porcine somatotropin and graded levels of amino acids, on the total accumulation and the accretion rate of amino acids across a broad range of protein deposition rates in growing pigs. Treatments included 1) with or without a daily injection of porcine somatotropin and 2) graded levels of total dietary lysine from 0.75% to 1.50%. As expected, both the administration of porcine somatotropin and increased dietary lysine increased both the amount and the rate of amino acid accretion. However, the amount and rate of amino acid accretion from increased dietary amino acids were markedly greater in pigs treated with porcine somatotropin. Thus, the extent to which the genetic potential for protein deposition is achieved depends on both the anabolic capacity of the pig and the amino acid concentration of the diet provided.


Assuntos
Aminoácidos , Ração Animal , Fenômenos Fisiológicos da Nutrição Animal , Dieta , Hormônio do Crescimento , Lisina , Animais , Ração Animal/análise , Lisina/farmacologia , Lisina/administração & dosagem , Lisina/química , Dieta/veterinária , Feminino , Hormônio do Crescimento/farmacologia , Aminoácidos/metabolismo , Aminoácidos/farmacologia , Suínos/crescimento & desenvolvimento , Suplementos Nutricionais/análise , Composição Corporal/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA