Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.100
Filtrar
1.
Methods Mol Biol ; 2814: 55-79, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38954197

RESUMO

Lysosomes are membrane-enclosed organelles that digest intracellular material. They contain more than 50 different enzymes that can degrade a variety of macromolecules including nucleic acids, proteins, polysaccharides, and lipids. In addition to functioning within lysosomes, lysosomal enzymes are also secreted. Alterations in the levels and activities of lysosomal enzymes dysregulates lysosomes, which can lead to the intralysosomal accumulation of biological material and the development of lysosomal storage diseases (LSDs) in humans. Dictyostelium discoideum has a long history of being used to study the trafficking and functions of lysosomal enzymes. More recently, it has been used as a model system to study several LSDs. In this chapter, we outline the methods for assessing the activity of several lysosomal enzymes in D. discoideum (α-galactosidase, ß-galactosidase, α-glucosidase, ß-glucosidase, ß-N-acetylglucosaminidase, α-mannosidase, cathepsin B, cathepsin D, cathepsin F, palmitoyl protein thioesterase 1, and tripeptidyl peptidase 1).


Assuntos
Dictyostelium , Lisossomos , Dictyostelium/enzimologia , Lisossomos/enzimologia , Lisossomos/metabolismo , Tripeptidil-Peptidase 1 , Ensaios Enzimáticos/métodos , Humanos , beta-Galactosidase/metabolismo , Doenças por Armazenamento dos Lisossomos/enzimologia , Doenças por Armazenamento dos Lisossomos/metabolismo , Tioléster Hidrolases/metabolismo
2.
Reprod Domest Anim ; 59(6): e14643, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38877774

RESUMO

Progesterone has been shown to stimulate glycogen catabolism in uterine epithelial cells. Acid α-glucosidase (GAA) is an enzyme that breaks down glycogen within lysosomes. We hypothesized that progesterone may stimulate glycogenolysis in the uterine epithelium via GAA. We found that GAA was more highly expressed in the stroma on Day 1 than on Day 11. However, GAA did not appear to differ in the epithelium on Days 1 and 11. Progesterone (0-10 µM) had no effect on the levels of the full-length inactive protein (110 kDa) or the cleaved (active) peptides present inside the lysosome (70 and 76 kDa) in immortalized bovine uterine epithelial (BUTE) cells. Furthermore, the activity of GAA did not differ between the BUTE cells treated with 10 µM progesterone or control. Overall, we confirmed that GAA is present in the cow endometrium and BUTE cells. However, progesterone did not affect protein levels or enzyme activity.


Assuntos
Endométrio , Progesterona , alfa-Glucosidases , Animais , Bovinos , Feminino , Endométrio/metabolismo , Endométrio/enzimologia , Progesterona/farmacologia , Progesterona/metabolismo , alfa-Glucosidases/metabolismo , alfa-Glucosidases/genética , Células Epiteliais/metabolismo , Glicogenólise , Lisossomos/enzimologia , Lisossomos/metabolismo , Glicogênio/metabolismo
3.
Int J Mol Sci ; 25(12)2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38928321

RESUMO

Glucocerebrosidase (GCase) is a lysosomal enzyme that catalyzes the breakdown of glucosylceramide in the presence of its activator saposin C (SapC). SapC arises from the proteolytical cleavage of prosaposin (encoded by PSAP gene), which gives rise to four saposins. GCase is targeted to the lysosomes by LIMP-2, encoded by SCARB2 gene. GCase deficiency causes Gaucher Disease (GD), which is mainly due to biallelic pathogenetic variants in the GCase-encoding gene, GBA1. However, impairment of GCase activity can be rarely caused by SapC or LIMP-2 deficiencies. We report a new case of LIMP-2 deficiency and a new case of SapC deficiency (missing all four saposins, PSAP deficiency), and measured common biomarkers of GD and GCase activity. Glucosylsphingosine and chitotriosidase activity in plasma were increased in GCase deficiencies caused by PSAP and GBA1 mutations, whereas SCARB2-linked deficiency showed only Glucosylsphingosine elevation. GCase activity was reduced in fibroblasts and leukocytes: the decrease was sharper in GBA1- and SCARB2-mutant fibroblasts than PSAP-mutant ones; LIMP-2-deficient leukocytes displayed higher residual GCase activity than GBA1-mutant ones. Finally, we demonstrated that GCase mainly undergoes proteasomal degradation in LIMP-2-deficient fibroblasts and lysosomal degradation in PSAP-deficient fibroblasts. Thus, we analyzed the differential biochemical profile of GCase deficiencies due to the ultra-rare PSAP and SCARB2 biallelic pathogenic variants in comparison with the profile observed in GBA1-linked GCase deficiency.


Assuntos
Doença de Gaucher , Glucosilceramidase , Proteínas de Membrana Lisossomal , Receptores Depuradores , Saposinas , Glucosilceramidase/genética , Glucosilceramidase/deficiência , Glucosilceramidase/metabolismo , Humanos , Doença de Gaucher/genética , Doença de Gaucher/metabolismo , Saposinas/deficiência , Saposinas/genética , Saposinas/metabolismo , Proteínas de Membrana Lisossomal/metabolismo , Proteínas de Membrana Lisossomal/genética , Receptores Depuradores/genética , Receptores Depuradores/metabolismo , Fibroblastos/metabolismo , Mutação , Lisossomos/metabolismo , Lisossomos/enzimologia , Hexosaminidases/metabolismo , Hexosaminidases/genética , Hexosaminidases/deficiência , Masculino , Feminino
4.
Nat Commun ; 15(1): 5388, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918376

RESUMO

Heparan sulfate (HS) is degraded in lysosome by a series of glycosidases. Before the glycosidases can act, the terminal glucosamine of HS must be acetylated by the integral lysosomal membrane enzyme heparan-α-glucosaminide N-acetyltransferase (HGSNAT). Mutations of HGSNAT cause HS accumulation and consequently mucopolysaccharidosis IIIC, a devastating lysosomal storage disease characterized by progressive neurological deterioration and early death where no treatment is available. HGSNAT catalyzes a unique transmembrane acetylation reaction where the acetyl group of cytosolic acetyl-CoA is transported across the lysosomal membrane and attached to HS in one reaction. However, the reaction mechanism remains elusive. Here we report six cryo-EM structures of HGSNAT along the reaction pathway. These structures reveal a dimer arrangement and a unique structural fold, which enables the elucidation of the reaction mechanism. We find that a central pore within each monomer traverses the membrane and controls access of cytosolic acetyl-CoA to the active site at its luminal mouth where glucosamine binds. A histidine-aspartic acid catalytic dyad catalyzes the transfer reaction via a ternary complex mechanism. Furthermore, the structures allow the mapping of disease-causing variants and reveal their potential impact on the function, thus creating a framework to guide structure-based drug discovery efforts.


Assuntos
Acetiltransferases , Microscopia Crioeletrônica , Lisossomos , Mucopolissacaridose III , Mucopolissacaridose III/genética , Mucopolissacaridose III/metabolismo , Mucopolissacaridose III/enzimologia , Humanos , Lisossomos/metabolismo , Lisossomos/enzimologia , Acetiltransferases/metabolismo , Acetiltransferases/química , Acetiltransferases/genética , Domínio Catalítico , Mutação , Heparitina Sulfato/metabolismo , Acetilcoenzima A/metabolismo , Acetilcoenzima A/química , Modelos Moleculares , Glucosamina/metabolismo , Glucosamina/química , Acetilação , Membranas Intracelulares/metabolismo
5.
J Lipid Res ; 65(7): 100574, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38857781

RESUMO

Bis(monoacylglycerol)phosphate (BMP) is an acidic glycerophospholipid localized to late endosomes and lysosomes. However, the metabolism of BMP is poorly understood. Because many drugs that cause phospholipidosis inhibit lysosomal phospholipase A2 (LPLA2, PLA2G15, LYPLA3) activity, we investigated whether this enzyme has a role in BMPcatabolism. The incubation of recombinant human LPLA2 (hLPLA2) and liposomes containing the naturally occurring BMP (sn-(2-oleoyl-3-hydroxy)-glycerol-1-phospho-sn-1'-(2'-oleoyl-3'-hydroxy)-glycerol (S,S-(2,2',C18:1)-BMP) resulted in the deacylation of this BMP isomer. The deacylation rate was 70 times lower than that of dioleoyl phosphatidylglycerol (DOPG), an isomer and precursor of BMP. The release rates of oleic acid from DOPG and four BMP stereoisomers by LPLA2 differed. The rank order of the rates of hydrolysis were DOPG>S,S-(3,3',C18:1)-BMP>R,S-(3,1',C18:1)-BMP>R,R-(1,1',C18:1)>S,S-(2,2')-BMP. The cationic amphiphilic drug amiodarone (AMD) inhibited the deacylation of DOPG and BMP isomers by hLPLA2 in a concentration-dependent manner. Under these experimental conditions, the IC50s of amiodarone-induced inhibition of the four BMP isomers and DOPG were less than 20 µM and approximately 30 µM, respectively. BMP accumulation was observed in AMD-treated RAW 264.7 cells. The accumulated BMP was significantly reduced by exogenous treatment of cells with active recombinant hLPLA2 but not with diisopropylfluorophosphate-inactivated recombinant hLPLA2. Finally, a series of cationic amphiphilic drugs known to cause phospholipidosis were screened for inhibition of LPLA2 activity as measured by either the transacylation or fatty acid hydrolysis of BMP or phosphatidylcholine as substrates. Fifteen compounds demonstrated significant inhibition with IC50s ranging from 6.8 to 63.3 µM. These results indicate that LPLA2 degrades BMP isomers with different substrate specificities under acidic conditions and may be the key enzyme associated with BMP accumulation in drug-induced phospholipidosis.


Assuntos
Lisofosfolipídeos , Lisossomos , Monoglicerídeos , Humanos , Lisossomos/metabolismo , Lisossomos/enzimologia , Monoglicerídeos/metabolismo , Lisofosfolipídeos/metabolismo , Animais , Camundongos , Fosfolipases A2/metabolismo , Fosfolipídeos/metabolismo , Lipossomos/metabolismo , Lipidoses/metabolismo , Lipidoses/induzido quimicamente , Lipidoses/enzimologia
6.
Mol Biol Rep ; 51(1): 578, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38668789

RESUMO

Mg2+-independent phosphatidic acid phosphatase (PAP2), diacylglycerol pyrophosphate phosphatase 1 (Dpp1) is a membrane-associated enzyme in Saccharomyces cerevisiae. The enzyme is responsible for inducing the breakdown of ß-phosphate from diacylglycerol pyrophosphate (DGPP) into phosphatidate (PA) and then removes the phosphate from PA to give diacylglycerol (DAG). In this study through RNAi suppression, we have demonstrated that Trypanosoma brucei diacylglycerol pyrophosphate phosphatase 1 (TbDpp1) procyclic form production is not required for parasite survival in culture. The steady-state levels of triacylglycerol (TAG), the number of lipid droplets, and the PA content are all maintained constant through the inducible down-regulation of TbDpp1. Furthermore, the localization of C-terminally tagged variants of TbDpp1 in the lysosome was demonstrated by immunofluorescence microscopy.


Assuntos
Glicerol/análogos & derivados , Lisossomos , Trypanosoma brucei brucei , Trypanosoma brucei brucei/enzimologia , Trypanosoma brucei brucei/genética , Lisossomos/metabolismo , Lisossomos/enzimologia , Triglicerídeos/metabolismo , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , Fosfatidato Fosfatase/metabolismo , Fosfatidato Fosfatase/genética , Interferência de RNA , Difosfatos/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Monoéster Fosfórico Hidrolases/genética , Diglicerídeos/metabolismo , Ácidos Fosfatídicos/metabolismo
7.
Structure ; 32(6): 766-779.e7, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38537643

RESUMO

Endolysosomal exonucleases PLD3 and PLD4 (phospholipases D3 and D4) are associated with autoinflammatory and autoimmune diseases. We report structures of these enzymes, and the molecular basis of their catalysis. The structures reveal an intra-chain dimer topology forming a basic active site at the interface. Like other PLD superfamily members, PLD3 and PLD4 carry HxKxxxxD/E motifs and participate in phosphodiester-bond cleavage. The enzymes digest ssDNA and ssRNA in a 5'-to-3' manner and are blocked by 5'-phosphorylation. We captured structures in apo, intermediate, and product states and revealed a "link-and-release" two-step catalysis. We also unexpectedly demonstrated phosphatase activity via a covalent 3-phosphohistidine intermediate. PLD4 contains an extra hydrophobic clamp that stabilizes substrate and could affect oligonucleotide substrate preference and product release. Biochemical and structural analysis of disease-associated mutants of PLD3/4 demonstrated reduced enzyme activity or thermostability and the possible basis for disease association. Furthermore, these findings provide insight into therapeutic design.


Assuntos
Domínio Catalítico , Modelos Moleculares , Fosfolipase D , Fosfolipase D/metabolismo , Fosfolipase D/química , Fosfolipase D/genética , Humanos , Especificidade por Substrato , Cristalografia por Raios X , Mutação , Lisossomos/metabolismo , Lisossomos/enzimologia , Fosforilação , DNA de Cadeia Simples/metabolismo , DNA de Cadeia Simples/química , Multimerização Proteica , Ligação Proteica , Exodesoxirribonucleases
8.
J Biol Chem ; 300(3): 105743, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38354786

RESUMO

The lysosome is an acid organelle that contains a variety of hydrolytic enzymes and plays a significant role in intracellular degradation to maintain cellular homeostasis. Genetic variants in lysosome-related genes can lead to severe congenital diseases, such as lysosomal storage diseases. In the present study, we investigated the impact of depleting lysosomal acid lipase A (LIPA), a lysosomal esterase that metabolizes esterified cholesterol or triglyceride, on lysosomal function. Under nutrient-rich conditions, LIPA gene KO (LIPAKO) cells exhibited impaired autophagy, whereas, under starved conditions, they showed normal autophagy. The cause underlying the differential autophagic activity was increased sensitivity of LIPAKO cells to ammonia, which was produced from l-glutamine in the medium. Further investigation revealed that ammonia did not affect upstream signals involved in autophagy induction, autophagosome-lysosome fusion, and hydrolytic enzyme activities in LIPAKO cells. On the other hand, LIPAKO cells showed defective lysosomal acidity upon ammonia loading. Microscopic analyses revealed that lysosomes of LIPAKO cells enlarged, whereas the amount of lysosomal proton pump V-ATPase did not proportionally increase. Since the enlargement of lysosomes in LIPAKO cells was not normalized under starved conditions, this is the primary change that occurred in the LIPAKO cells, and autophagy was affected by impaired lysosomal function under the specific conditions. These findings expand our comprehension of the pathogenesis of Wolman's disease, which is caused by a defect in the LIPA gene, and suggest that conditions, such as hyperlipidemia, may easily disrupt lysosomal functions.


Assuntos
Autofagia , Lipase , Lisossomos , Humanos , Amônia/metabolismo , Autofagia/fisiologia , Lipase/genética , Lipase/metabolismo , Lisossomos/química , Lisossomos/enzimologia , Doença de Wolman/enzimologia , Doença de Wolman/genética , Células HeLa , Concentração de Íons de Hidrogênio , Técnicas de Inativação de Genes
9.
J Biol Chem ; 299(12): 105473, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37979916

RESUMO

Vacuolar H+-ATPases (V-ATPases) are highly conserved multisubunit enzymes that maintain the distinct pH of eukaryotic organelles. The integral membrane a-subunit is encoded by tissue- and organelle-specific isoforms, and its cytosolic N-terminal domain (aNT) modulates organelle-specific regulation and targeting of V-ATPases. Organelle membranes have specific phosphatidylinositol phosphate (PIP) lipid enrichment linked to maintenance of organelle pH. In yeast, the aNT domains of the two a-subunit isoforms bind PIP lipids enriched in the organelle membranes where they reside; these interactions affect activity and regulatory properties of the V-ATPases containing each isoform. Humans have four a-subunit isoforms, and we hypothesize that the aNT domains of these isoforms will also bind to specific PIP lipids. The a1 and a2 isoforms of human V-ATPase a-subunits are localized to endolysosomes and Golgi, respectively. We determined that bacterially expressed Hua1NT and Hua2NT bind specifically to endolysosomal PIP lipids PI(3)P and PI(3,5)P2 and Golgi enriched PI(4)P, respectively. Despite the lack of canonical PIP-binding sites, we identified potential binding sites in the HuaNT domains by sequence comparisons and existing subunit structures and models. We found that mutations at a similar location in the distal loops of both HuaNT isoforms compromise binding to their cognate PIP lipids, suggesting that these loops encode PIP specificity of the a-subunit isoforms. These data suggest a mechanism through which PIP lipid binding could stabilize and activate V-ATPases in distinct organelles.


Assuntos
Fosfatos de Fosfatidilinositol , Subunidades Proteicas , ATPases Vacuolares Próton-Translocadoras , Humanos , Sítios de Ligação , Endossomos/enzimologia , Endossomos/metabolismo , Complexo de Golgi/enzimologia , Complexo de Golgi/metabolismo , Concentração de Íons de Hidrogênio , Lisossomos/enzimologia , Lisossomos/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/metabolismo , Especificidade por Substrato , ATPases Vacuolares Próton-Translocadoras/química , ATPases Vacuolares Próton-Translocadoras/metabolismo , Domínios Proteicos
10.
J Virol ; 97(12): e0133823, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38009916

RESUMO

IMPORTANCE: Betacoronaviruses, including severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and mouse hepatitis virus (MHV), exploit the lysosomal exocytosis pathway for egress. However, whether all betacoronaviruses members use the same pathway to exit cells remains unknown. Here, we demonstrated that porcine hemagglutinating encephalomyelitis virus (PHEV) egress occurs by Arl8b-dependent lysosomal exocytosis, a cellular egress mechanism shared by SARS-CoV-2 and MHV. Notably, PHEV acidifies lysosomes and activates lysosomal degradative enzymes, while SARS-CoV-2 and MHV deacidify lysosomes and limit the activation of lysosomal degradative enzymes. In addition, PHEV release depends on V-ATPase-mediated lysosomal pH. Furthermore, this is the first study to evaluate ßCoV using lysosome for spreading through the body, and we have found that lysosome played a critical role in PHEV neural transmission and brain damage caused by virus infection in the central nervous system. Taken together, different betacoronaviruses could disrupt lysosomal function differently to exit cells.


Assuntos
Betacoronavirus 1 , Infecções por Coronavirus , Exocitose , Lisossomos , Neurônios , Animais , Camundongos , Betacoronavirus 1/metabolismo , Lisossomos/enzimologia , Lisossomos/metabolismo , Lisossomos/virologia , Vírus da Hepatite Murina/metabolismo , Neurônios/enzimologia , Neurônios/metabolismo , Neurônios/patologia , Neurônios/virologia , SARS-CoV-2/metabolismo , Suínos/virologia , Concentração de Íons de Hidrogênio , ATPases Vacuolares Próton-Translocadoras/metabolismo , Infecções por Coronavirus/patologia , Infecções por Coronavirus/transmissão , Infecções por Coronavirus/virologia
11.
J Biol Chem ; 299(7): 104912, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37307916

RESUMO

α-synuclein (αS) is an abundant, neuronal protein that assembles into fibrillar pathological inclusions in a spectrum of neurodegenerative diseases that include Lewy body diseases (LBD) and Multiple System Atrophy (MSA). The cellular and regional distributions of pathological inclusions vary widely between different synucleinopathies contributing to the spectrum of clinical presentations. Extensive cleavage within the carboxy (C)-terminal region of αS is associated with inclusion formation, although the events leading to these modifications and the implications for pathobiology are of ongoing study. αS preformed fibrils can induce prion-like spread of αS pathology in both in vitro and animal models of disease. Using C truncation-specific antibodies, we demonstrated here that prion-like cellular uptake and processing of αS preformed fibrils resulted in two major cleavages at residues 103 and 114. A third cleavage product (122 αS) accumulated upon application of lysosomal protease inhibitors. In vitro, both 1-103 and 1-114 αS polymerized rapidly and extensively in isolation and in the presence of full-length αS. 1-103 αS also demonstrated more extensive aggregation when expressed in cultured cells. Furthermore, we used novel antibodies to αS cleaved at residue Glu114, to assess x-114 αS pathology in postmortem brain tissue from patients with LBD and MSA, as well as three different transgenic αS mouse models of prion-like induction. The distribution of x-114 αS pathology was distinct from that of overall αS pathology. These studies reveal the cellular formation and behavior of αS C-truncated at residues 114 and 103 as well as the disease dependent distribution of x-114 αS pathology.


Assuntos
Doença por Corpos de Lewy , Atrofia de Múltiplos Sistemas , alfa-Sinucleína , Animais , Camundongos , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Camundongos Transgênicos , Atrofia de Múltiplos Sistemas/metabolismo , Atrofia de Múltiplos Sistemas/patologia , Príons/química , Príons/metabolismo , Humanos , Lisossomos/enzimologia , Inibidores de Proteases , Doença por Corpos de Lewy/metabolismo , Doença por Corpos de Lewy/patologia , Autopsia , Ácido Glutâmico/metabolismo
12.
J Mol Biol ; 435(15): 168171, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37285900

RESUMO

Carboxypeptidase E (CPE), an essential enzyme in the biosynthetic production line of most peptide hormones and neuropeptides, is predominantly expressed in endocrine tissues and in the nervous system. CPE is active in acidic environments where it cleaves the C'-terminal basic residues of peptide precursors to generate their bioactive form. Consequently, this highly conserved enzyme regulates numerous fundamental biological processes. Here, we combined live-cell microscopy and molecular analysis to examine the intracellular distribution and secretion dynamics of fluorescently tagged CPE. We show that, in non-endocrine cells, tagged-CPE is a soluble luminal protein that is efficiently exported from the ER via the Golgi apparatus to lysosomes. The C'-terminal conserved amphipathic helix serves as a lysosomal and secretory granule targeting and a secretion motif. Following secretion, CPE may be reinternalized into the lysosomes of neighboring cells.


Assuntos
Carboxipeptidase H , Lisossomos , Carboxipeptidase H/genética , Carboxipeptidase H/metabolismo , Complexo de Golgi/enzimologia , Lisossomos/enzimologia , Neuropeptídeos/metabolismo
13.
J Cell Biol ; 222(6)2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37191899

RESUMO

Lysosomal hydrolases require an acidic lumen for their optimal activities. In this issue, two independent groups (Wu et al. 2023. J. Cell Biol.https://doi.org/10.1083/jcb.202208155; Zhang et al. 2023. J. Cell. Biol.https://doi.org/10.1083/jcb.202210063) report that hydrolase activation also requires high intralysosomal Cl-, which is established by the lysosomal Cl-/H+ exchanger ClC-7.


Assuntos
Canais de Cloreto , Cloretos , Hidrolases , Lisossomos , Lisossomos/enzimologia , Hidrolases/metabolismo , Canais de Cloreto/metabolismo
14.
J Mol Biol ; 435(12): 168023, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-36828270

RESUMO

Beta-glucocerebrosidase is a lysosomal hydrolase, encoded by GBA1 that represents the most common risk gene associated with Parkinson's disease (PD) and Lewy Body Dementia. Glucocerebrosidase dysfunction has been also observed in the absence of GBA1 mutations across different genetic and sporadic forms of PD and related disorders, suggesting a broader role of glucocerebrosidase in neurodegeneration. In this review, we highlight recent advances in mechanistic characterization of glucocerebrosidase function as the foundation for development of novel therapeutics targeting glucocerebrosidase in PD and related disorders.


Assuntos
Glucosilceramidase , Doença de Parkinson , Humanos , alfa-Sinucleína/genética , Glucosilceramidase/genética , Glucosilceramidase/metabolismo , Lisossomos/enzimologia , Mutação , Doença de Parkinson/enzimologia , Doença de Parkinson/genética
15.
Proc Natl Acad Sci U S A ; 119(39): e2117105119, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36122205

RESUMO

Mucins are functionally implicated in a range of human pathologies, including cystic fibrosis, influenza, bacterial endocarditis, gut dysbiosis, and cancer. These observations have motivated the study of mucin biosynthesis as well as the development of strategies for inhibition of mucin glycosylation. Mammalian pathways for mucin catabolism, however, have remained underexplored. The canonical view, derived from analysis of N-glycoproteins in human lysosomal storage disorders, is that glycan degradation and proteolysis occur sequentially. Here, we challenge this view by providing genetic and biochemical evidence supporting mammalian proteolysis of heavily O-glycosylated mucin domains without prior deglycosylation. Using activity screening coupled with mass spectrometry, we ascribed mucin-degrading activity in murine liver to the lysosomal protease cathepsin D. Glycoproteomics of substrates digested with purified human liver lysosomal cathepsin D provided direct evidence for proteolysis within densely O-glycosylated domains. Finally, knockout of cathepsin D in a murine model of the human lysosomal storage disorder neuronal ceroid lipofuscinosis 10 resulted in accumulation of mucins in liver-resident macrophages. Our findings imply that mucin-degrading activity is a component of endogenous pathways for glycoprotein catabolism in mammalian tissues.


Assuntos
Catepsina D , Lisossomos , Mucinas , Animais , Catepsina D/genética , Catepsina D/metabolismo , Glicoproteínas/metabolismo , Humanos , Lisossomos/enzimologia , Mamíferos/metabolismo , Camundongos , Mucinas/metabolismo , Polissacarídeos/metabolismo
16.
Proc Natl Acad Sci U S A ; 119(33): e2203518119, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35939698

RESUMO

The mannose-6-phosphate (M6P) pathway is responsible for the transport of hydrolytic enzymes to lysosomes. N-acetylglucosamine-1-phosphotransferase (GNPT) catalyzes the first step of tagging these hydrolases with M6P, which when recognized by receptors in the Golgi diverts them to lysosomes. Genetic defects in the GNPT subunits, GNPTAB and GNPTG, cause the lysosomal storage diseases mucolipidosis types II and III. To better understand its function, we determined partial three-dimensional structures of the GNPT complex. The catalytic domain contains a deep cavity for binding of uridine diphosphate-N-acetylglucosamine, and the surrounding residues point to a one-step transfer mechanism. An isolated structure of the gamma subunit of GNPT reveals that it can bind to mannose-containing glycans in different configurations, suggesting that it may play a role in directing glycans into the active site. These findings may facilitate the development of therapies for lysosomal storage diseases.


Assuntos
Doenças por Armazenamento dos Lisossomos , Manosefosfatos , Mucolipidoses , Transferases (Outros Grupos de Fosfato Substituídos) , Domínio Catalítico , Humanos , Doenças por Armazenamento dos Lisossomos/metabolismo , Lisossomos/enzimologia , Manosefosfatos/metabolismo , Mucolipidoses/enzimologia , Transferases (Outros Grupos de Fosfato Substituídos)/química , Transferases (Outros Grupos de Fosfato Substituídos)/genética
17.
Proc Natl Acad Sci U S A ; 119(29): e2200553119, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35858317

RESUMO

Loss of activity of the lysosomal glycosidase ß-glucocerebrosidase (GCase) causes the lysosomal storage disease Gaucher disease (GD) and has emerged as the greatest genetic risk factor for the development of both Parkinson disease (PD) and dementia with Lewy bodies. There is significant interest into how GCase dysfunction contributes to these diseases, however, progress toward a full understanding is complicated by presence of endogenous cellular factors that influence lysosomal GCase activity. Indeed, such factors are thought to contribute to the high degree of variable penetrance of GBA mutations among patients. Robust methods to quantitatively measure GCase activity within lysosomes are therefore needed to advance research in this area, as well as to develop clinical assays to monitor disease progression and assess GCase-directed therapeutics. Here, we report a selective fluorescence-quenched substrate, LysoFQ-GBA, which enables measuring endogenous levels of lysosomal GCase activity within living cells. LysoFQ-GBA is a sensitive tool for studying chemical or genetic perturbations of GCase activity using either fluorescence microscopy or flow cytometry. We validate the quantitative nature of measurements made with LysoFQ-GBA using various cell types and demonstrate that it accurately reports on both target engagement by GCase inhibitors and the GBA allele status of cells. Furthermore, through comparisons of GD, PD, and control patient-derived tissues, we show there is a close correlation in the lysosomal GCase activity within monocytes, neuronal progenitor cells, and neurons. Accordingly, analysis of clinical blood samples using LysoFQ-GBA may provide a surrogate marker of lysosomal GCase activity in neuronal tissue.


Assuntos
Doença de Gaucher , Glucosilceramidase , Doença de Parkinson , Doença de Gaucher/enzimologia , Doença de Gaucher/genética , Glucosilceramidase/análise , Glucosilceramidase/genética , Humanos , Corpos de Lewy/enzimologia , Doença por Corpos de Lewy/enzimologia , Lisossomos/enzimologia , Mutação , Doença de Parkinson/enzimologia , Doença de Parkinson/genética , Especificidade por Substrato , alfa-Sinucleína/metabolismo
18.
Proc Natl Acad Sci U S A ; 119(20): e2123261119, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35561222

RESUMO

Mammalian target of rapamycin complex 1 (mTORC1) senses amino acids to control cell growth, metabolism, and autophagy. Some amino acids signal to mTORC1 through the Rag GTPase, whereas glutamine and asparagine activate mTORC1 through a Rag GTPase-independent pathway. Here, we show that the lysosomal glutamine and asparagine transporter SNAT7 activates mTORC1 after extracellular protein, such as albumin, is macropinocytosed. The N terminus of SNAT7 forms nutrient-sensitive interaction with mTORC1 and regulates mTORC1 activation independently of the Rag GTPases. Depletion of SNAT7 inhibits albumin-induced mTORC1 lysosomal localization and subsequent activation. Moreover, SNAT7 is essential to sustain KRAS-driven pancreatic cancer cell growth through mTORC1. Thus, SNAT7 links glutamine and asparagine signaling from extracellular protein to mTORC1 independently of the Rag GTPases and is required for macropinocytosis-mediated mTORC1 activation and pancreatic cancer cell growth.


Assuntos
Sistemas de Transporte de Aminoácidos Neutros , Lisossomos , Alvo Mecanístico do Complexo 1 de Rapamicina , Pinocitose , Sistemas de Transporte de Aminoácidos Neutros/química , Sistemas de Transporte de Aminoácidos Neutros/genética , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Asparagina/metabolismo , Glutamina/metabolismo , Humanos , Lisossomos/enzimologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Transdução de Sinais
19.
Int J Mol Sci ; 23(3)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35163078

RESUMO

The present paper proposes a new level of regulation of programmed cell death (PCD) in developing systems based on epigenetics. We argue against the traditional view of PCD as an altruistic "cell suicide" activated by specific gene-encoded signals with the function of favoring the development of their neighboring progenitors to properly form embryonic organs. In contrast, we propose that signals and local tissue interactions responsible for growth and differentiation of the embryonic tissues generate domains where cells retain an epigenetic profile sensitive to DNA damage that results in its subsequent elimination in a fashion reminiscent of what happens with scaffolding at the end of the construction of a building. Canonical death genes, including Bcl-2 family members, caspases, and lysosomal proteases, would reflect the downstream molecular machinery that executes the dying process rather than being master cell death regulatory signals.


Assuntos
Caspases/metabolismo , Morte Celular , Epigênese Genética , Regulação da Expressão Gênica no Desenvolvimento , Genes bcl-2 , Peptídeo Hidrolases/metabolismo , Animais , Caspases/genética , Diferenciação Celular , Lisossomos/enzimologia , Peptídeo Hidrolases/genética
20.
Protein Pept Lett ; 28(11): 1246-1258, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34931962

RESUMO

BACKGROUND: Metabolic and clinical disorders forming the complex of interrelated abnormalities is known as metabolic syndrome (METs). OBJECTIVE: Our goal was to assess the dependence of serum arylsulfatase (AS) and acid phosphatase (ACP) activities on anthropometric and biochemical parameters in patients with METs. METHODS: In 142 patients with METs (IDF criteria), consisting of different components in different sequences (hypertension, diabetes, lipid disorders), and in 65 healthy participants, basic biochemical parameters were determined in laboratory tests. The activity of serum hydrolases was determined using Bessey's (ACP) and Roy's (AS) methods. RESULTS: The AS activity is correlated with waist-to-hip ratio (WHR) (more strongly in women and in most advanced METs), BMI (in men), and triglycerides (TG) (in women, participants with I degree obesity, and those with three METs components). The ACP activity correlated with the WHR of patients with II degree obesity, TG in those with III degree of obesity, and total cholesterol (TC) in those with four METs components. CONCLUSION: Increased AS activity in patients with METs compared to lower AS activity in the control group may be due to decreased lysosomal function and related to the amount of adipose tissue. Low activity of ACP in the blood serum of patients with METs compared to high activity of ACP in the control group may indicate exhaustion of the lysosomal apparatus and loss of hydrolytic activity. The increase in TG and TC in groups with an increasing number of METs-defining components may be due to the abnormal lysosomal degradation of these compounds.


Assuntos
Fosfatase Ácida/sangue , Arilsulfatases/sangue , Lisossomos/enzimologia , Síndrome Metabólica/sangue , Estresse Oxidativo , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...