Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 515
Filtrar
1.
Food Chem ; 462: 140971, 2025 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-39208734

RESUMO

This study presents the contents of α-methylenecyclopropylglycine, a potentially toxic amino acid, in the peel, pulp and seed fractions of two well-known litchi varieties, namely Shahi and China, over a span of three harvest-seasons. For analysing α-methylenecyclopropylglycine, an LC-MS/MS-based method was validated. The method-accuracies fell within 75-110 % (RSD, <15 %) at 0.1 mg/kg (LOQ) and higher levels. A comparative evaluation of the results in peel, pulp and seed at 30 days before harvest (DBH), 15-DBH, and edible-ripe stage revealed that α-methylenecyclopropylglycine content increased as the litchi seeds grew towards maturity, regardless of the cultivar. In arils, at maturity, the concentration of α-methylenecyclopropylglycine ranged from not-detected to 11.7 µg/g dry weight. The Shahi cultivar showed slightly higher α-methylenecyclopropylglycine content in comparison to China litchi. This paper presents the first known analysis of combined seasonal data on different fruit components at various growth stages for the two chosen litchi cultivars grown in India.


Assuntos
Frutas , Litchi , Sementes , Espectrometria de Massas em Tandem , Litchi/química , Litchi/crescimento & desenvolvimento , Litchi/metabolismo , Frutas/química , Frutas/crescimento & desenvolvimento , China , Sementes/química , Sementes/crescimento & desenvolvimento , Glicina/análogos & derivados , Glicina/análise , Cromatografia Líquida de Alta Pressão , Ciclopropanos/análise
2.
Biomed Pharmacother ; 178: 117240, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39094546

RESUMO

Infection with Schistosoma japonicum (S. japonicum) is an important zoonotic parasitic disease that causes liver fibrosis in both human and domestic animals. The activation of hepatic stellate cells (HSCs) is a crucial phase in the development of liver fibrosis, and inhibiting their activation can alleviate this progression. Total flavonoids of litchi seed (TFL) is a naturally extracted drug, and modern pharmacological studies have shown its anti-fibrotic and liver-protective effects. However, the role of TFL in schistosomiasis liver fibrosis is still unclear. This study investigated the therapeutic effects of TFL on liver fibrosis in S. japonicum infected mice and explored its potential mechanisms. Animal study results showed that TFL significantly reduced the levels of Interleukin-1ß (IL-1ß), Tumor Necrosis Factor-α (TNF-α), Interleukin-4 (IL-4), and Interleukin-6 (IL-6) in the serum of S. japonicum infected mice. TFL reduced the spleen index of mice and markedly improved the pathological changes in liver tissues induced by S. japonicum infection, decreasing the expression of alpha-smooth muscle actin (α-SMA), Collagen I and Collagen III protein in liver tissues. In vitro studies indicated that TFL also inhibited the activation of HCSs induced by Transforming Growth Factor-ß1 (TGF-ß1) and reduced the levels of α-SMA. Gut microbes metagenomics study revealed that the composition, abundance, and functions of the mice gut microbiomes changed significantly after S. japonicum infection, and TLF treatment reversed these changes. Therefore, our study indicated that TFL alleviated granulomatous lesions and improved S. japonicum induced liver fibrosis in mice by inhibiting the activation of HSCs and by improving the gut microbiomes.


Assuntos
Flavonoides , Microbioma Gastrointestinal , Células Estreladas do Fígado , Litchi , Cirrose Hepática , Sementes , Animais , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/parasitologia , Cirrose Hepática/patologia , Microbioma Gastrointestinal/efeitos dos fármacos , Flavonoides/farmacologia , Camundongos , Litchi/química , Sementes/química , Esquistossomose Japônica/tratamento farmacológico , Esquistossomose Japônica/complicações , Citocinas/metabolismo , Schistosoma japonicum/efeitos dos fármacos , Schistosoma japonicum/patogenicidade , Masculino , Fígado/efeitos dos fármacos , Fígado/patologia , Fígado/parasitologia
3.
Bioresour Technol ; 408: 131157, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39059588

RESUMO

The present study successfully synthesized a novel biochar adsorbent (M-L-BC) using litchi seed modified with zinc chloride for PFASs removal in water. M-L-BC greatly enhanced removal of all examined PFASs (>95 %) as compared to the pristine biochar (<40 %). The maximum adsorption capacity was observed for PFOS, reaching 29.6 mg/g. Adsorption kinetics of PFASs followed the pseudo-second-order model (PSO), suggesting the predominance of chemical adsorption. Moreover, characterization and density functional theory (DFT) calculations jointly revealed involvement of surface complexation, electrostatic interactions, hydrogen bonding, and hydrophobic interactions in PFAS adsorption. Robust PFAS removal was demonstrated for M-L-BC across a wide range of pH (3-9), and coexisting ions had limited impact on adsorption of PFASs except PFBA. Furthermore, M-L-BC showed excellent performance in real water samples and retained reusability after five cycles of regeneration. Overall, M-L-BC represents a promising and high-quality adsorbent for efficient and sustainable removal of PFASs from water.


Assuntos
Carvão Vegetal , Cloretos , Litchi , Sementes , Poluentes Químicos da Água , Purificação da Água , Compostos de Zinco , Carvão Vegetal/química , Adsorção , Poluentes Químicos da Água/isolamento & purificação , Sementes/química , Purificação da Água/métodos , Cloretos/química , Compostos de Zinco/química , Litchi/química , Cinética , Concentração de Íons de Hidrogênio , Fluorocarbonos/química , Água/química
4.
Exp Appl Acarol ; 93(2): 397-407, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38967735

RESUMO

Phytoseiid mites have been frequently found in association with the lychee erinose mite, Aceria litchii, on lychee plants in Brazil, suggesting that they are promising candidates as biological control agents against this pest. Here, we investigated whether phytoseiids would suppress A. litchii infestation, i.e. formation of erinea, on lychee plants under field conditions. Four groups of A. litchii-infested plants were randomly distributed in the field, with each group receiving either Phytoseius intermedius, Amblyseius herbicolus, A. herbicolus supplemented with cattail pollen or no predator. During a three-month period, the released predators, along with others present in the surrounding environment, were allowed to freely walk among all plants. In each plant, we evaluated the occurrence of phytoseiid species, their abundance, and the dynamics of erinea formation. A total of 2,097 mites, including 13 other phytoseiid species were identified. The most abundant species were Iphiseiodes zuluagai and Euseius ho, rather than the two predator species that were released. A. herbicolus and P. intermedius failed to establish populations in the majority of the plants, regardless of the presence of pollen, suggesting their ineffectiveness in controlling A. litchii infestations. While there was a significant difference in the proportion of erinea among the four treatments, this contrast was not associated with the presence of phytoseiids, suggesting that other factors might have hindered erinea formation on lychee plants. The reasons behind this outcome are further explored and discussed.


Assuntos
Ácaros , Controle Biológico de Vetores , Animais , Ácaros/fisiologia , Brasil , Litchi , Comportamento Predatório
5.
Toxicon ; 248: 108047, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39067775

RESUMO

Cancer metabolism has emerged as a potential target for innovative therapeutic approaches in the treatment of cancer. Cancer metabolism has received much attention, particularly in relation to glucose metabolism. It has been observed that human malignancies have high levels of glucose-6-phosphate dehydrogenase (G6PD) activity which is an important enzyme of glucose metabolism. This overactivity is associated with the cell death and angiogenesis, highlighting its potential as a viable target for cancer treatment. This study was conducted to examine the methanolic extracts from the seeds, bark and leaves of litchi (Litchi chinensis Sonn.) in order to discover effective compounds targeting G6PD and potentially active entities against liver cancer. Plant extract screening for the target protein was carried out through enzymatic activity assay. The recombinant plasmid pET-24a-HmG6PD was expressed in E. coli (BL21-DE3) strain, then purified and assessed using metal affinity chromatography with Ni-NTA columns and SDS-PAGE. The cytotoxicity of plant extracts against liver cancer HepG2 cells was assessed using the MTT assay. All three extracts demonstrated significant inhibitory effects (>80% inhibition) against G6PD. They were then subjected to testing at various concentrations, and their IC50 values were subsequently determined. The extracts of litchi (leaf, IC50: 1.199 µg/mL; bark, IC50: 2.350 µg/mL; seeds, IC50: 1.238 µg/mL) displayed significant inhibition of G6PD activity at lower concentrations. Subsequently, the leaf extract of litchi was further assessed for its impact on HepG2 cell lines in a dose-dependent manner and exhibited strong potential as an inhibitor of cancer cell progression. Moreover, the results of acute toxicity study in mice revealed nontoxic effects of litchi leaf extract on hepatocytes. The results imply that Litchi chinensis leaf extract could be considered as a promising candidate for safer drug development in the treatment of liver cancer.


Assuntos
Glucosefosfato Desidrogenase , Litchi , Neoplasias Hepáticas , Extratos Vegetais , Litchi/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Células Hep G2 , Folhas de Planta/química , Casca de Planta/química , Metanol , Antineoplásicos Fitogênicos/farmacologia , Sementes/química
6.
Toxicon ; 248: 108052, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39074693

RESUMO

Litchi (Litchi sinensis), a fruit with a sweet and white aril, cultivated mainly in Southeast Asia and possesses anticancer, antibacterial, antioxidant, and other therapeutic properties. It is a delicacy among children. However, an outbreak of acute encephalopathy syndrome (AES) in litchi growing regions during the seasons of litchi ripening and harvesting (May-June) resulted in symptoms of lethargy, weakness, fever, vomiting, seizures, and coma that was most common among malnourished children below 15 years. Upon successful epidemiological studies, it was confirmed that the non-protein amino acids such as hypoglycine A (HGA) and methylenecyclopropylglycine (MCPG) are responsible for the AES outbreak. Most of the underprivileged and malnourished kids with an empty stomach venture into the litchi orchards to savor the fruit during the litchi harvesting season. Their fasting condition results in decreased glucose levels in the blood. The decreased glucose levels trigger glycogenolysis. However, gluconeogenesis takes over glycogenolysis to replenish the glucose levels due to fewer glycogen stores in malnourished children. The toxins are involved in fatty acid oxidation and gluconeogenesis pathways, by blocking several steps in the former process. Depleted glycogen stores and suppression of gluconeogenesis synergistically cause hypoglycemia and accumulation of toxic intermediates from the metabolic pathway leading to metabolic failure. The incidence of AES can be prevented by creating proper awareness among the farmers, vendors and consumers on the importance of adverse effects of litchi fruit when consumed on empty stomach or fasting state. Further, elucidating detailed biochemical pathway of HGA and MCPG toxicity, improving agricultural and public health practices, keeping glucose stores and glucose banks in the areas which are highly prone to litchi induced toxicity are some of the therapeutic measures. This review highlights and discusses the AES incidences, mechanistic pathways involved in litchi fruit toxicity, and corresponding risk factors involved and possible treatment and preventive approaches.


Assuntos
Frutas , Litchi , Humanos , Hipoglicinas , Criança , Gluconeogênese , Ciclopropanos , Glicina/análogos & derivados
7.
Biomed Chromatogr ; 38(9): e5950, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38973522

RESUMO

Litchi chinensis Sonn (Litchi) has been listed in the Chinese Pharmacopeia, and is an economically and medicinally valuable species within the family Sapindaceae. However, the material basis of its pharmacological action and the pharmacodynamic substances associated with its hypoglycemic effect are still unclear. The predominant objective of this study was to establish the fingerprint profile of litchi leaves and to evaluate the relationship between the components of the high-performance liquid chromatography (HPLC) fingerprint of litchi leaves, assess its hypoglycemic effect by measuring α-glucosidase and α-amylase inhibition, and find the spectrum-effect relationship of litchi leaves by bivariate correlation analysis, Grey relational analysis and partial least squares regression analysis. In this study, the fingerprint of litchi leaves was established by HPLC, and a total of 15 common peaks were identified that clearly calibrated eight components, with P1 being gallic acid, P2 being protocatechuic acid, P3 being catechin, P6 being epicatechin, P12 being rutin, P13 being astragalin, P14 being quercetin and P15 being kaempferol. The similarities between the fingerprints of 11 batches of litchi leaves were 0.766-0.979. Simultaneously, the results of the spectrum-effect relationship showed that the chemical constituents represented by peaks P8, P3, P12, P14, P2, P13, and P11 were relevant to the hypoglycemic effect.


Assuntos
Hipoglicemiantes , Litchi , Extratos Vegetais , Folhas de Planta , Litchi/química , Folhas de Planta/química , Cromatografia Líquida de Alta Pressão/métodos , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Hipoglicemiantes/análise , Extratos Vegetais/química , Extratos Vegetais/farmacologia , alfa-Amilases/antagonistas & inibidores , alfa-Amilases/metabolismo , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/análise
8.
Int J Mol Sci ; 25(11)2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38891992

RESUMO

Class III peroxidases (CIII PRXs) are plant-specific enzymes with high activity that play key roles in the catalysis of oxidation-reduction reactions. In plants, CIII PRXs can reduce hydrogen peroxide to catalyze oxidation-reduction reactions, thereby affecting plant growth, development, and stress responses. To date, no systematic analysis of the CIII PRX gene family in litchi (Litchi chinensis Sonn.) has been documented, although the genome has been reported. In this study, a total of 77 CIII PRX (designated LcPRX) gene family members were predicted in the litchi genome to provide a reference for candidate genes in the responses to abiotic stresses during litchi growth and development. All of these LcPRX genes had different numbers of highly conserved PRX domains and were unevenly distributed across fifteen chromosomes. They were further clustered into eight clades using a phylogenetic tree, and almost every clade had its own unique gene structure and motif distribution. Collinearity analysis confirmed that there were eleven pairs of duplicate genes among the LcPRX members, and segmental duplication (SD) was the main driving force behind the LcPRX gene expansion. Tissue-specific expression profiles indicated that the expression levels of all the LcPRX family members in different tissues of the litchi tree were significantly divergent. After different abiotic stress treatments, quantitative real-time PCR (qRT-PCR) analysis revealed that the LcPRX genes responded to various stresses and displayed differential expression patterns. Physicochemical properties, transmembrane domains, subcellular localization, secondary structures, and cis-acting elements were also analyzed. These findings provide insights into the characteristics of the LcPRX gene family and give valuable information for further elucidating its molecular function and then enhancing abiotic stress tolerance in litchi through molecular breeding.


Assuntos
Regulação da Expressão Gênica de Plantas , Litchi , Família Multigênica , Filogenia , Estresse Fisiológico , Litchi/genética , Litchi/metabolismo , Litchi/enzimologia , Estresse Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genoma de Planta , Peroxidases/genética , Peroxidases/metabolismo , Perfilação da Expressão Gênica
9.
Genes (Basel) ; 15(6)2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38927692

RESUMO

Anthocyanidin reductase (ANR) is a key enzyme regulating anthocyanin synthesis and accumulation in plants. Here, lychee ANR genes were globally identified, their sequence and phylogenetic characteristics were analyzed, and their spatiotemporal expression patterns were characterized. A total of 51 ANR family members were identified in the lychee genome. The length of the encoded amino acid residues ranged from 87 aa to 289 aa, the molecular weight ranged from 9.49 KD to 32.40 KD, and the isoelectric point (pI) ranged from 4.83 to 9.33. Most of the members were acidic proteins. Most members of the LcANR family were located in the cytoplasm. The 51 LcANR family members were unevenly distributed in 11 chromosomes, and their exons and motif conserved structures were significantly different from each other. Promoters in over 90% of LcANR members contained anaerobically induced response elements, and 88% contained photoresponsive elements. Most LcANR family members had low expression in nine lychee tissues and organs (root, young leaf, bud, female flower, male flower, pericarp, pulp, seed, and calli), and some members showed tissue-specific expression patterns. The expression of one gene, LITCHI029356.m1, decreased with the increase of anthocyanin accumulation in 'Feizixiao' and 'Ziniangxi' pericarp, which was negatively correlated with pericarp coloring. The identified LcANR gene was heterologously expressed in tobacco K326, and the function of the LcANR gene was verified. This study provides a basis for the further study of LcANR function, particularly the role in lychee pericarp coloration.


Assuntos
Antocianinas , Regulação da Expressão Gênica de Plantas , Litchi , Família Multigênica , Filogenia , Proteínas de Plantas , Litchi/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Antocianinas/biossíntese , Antocianinas/genética , Antocianinas/metabolismo , Genoma de Planta
10.
Food Chem ; 457: 140142, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38936122

RESUMO

Litchi (Litchi chinensis Sonn.) is a tropical fruit with various health benefits. The objective of this study is to present a thorough analysis of the cancer preventive and anticancer therapeutic properties of litchi constituents and phytocompounds. The Preferred Reporting Items for Systematic Reviews and Meta-Analysis criteria were followed in this work. Various litchi extracts and constituents were studied for their anticancer effects. In vitro studies showed that litchi-derived components reduced cell proliferation, induced cytotoxicity, and promoted autophagy via increased cell cycle arrest and apoptosis. Based on in vivo studies, litchi flavonoids and other extracted constituents significantly reduced tumor size, number, volume, and metastasis. Major signaling pathways impacted by litchi constituents were shown to stimulate proapoptotic, antiproliferative, and antimetastatic activities. Despite promising antineoplastic activities, additional research, especially in vivo and clinical studies, is necessary before litchi-derived products and phytochemicals can be used for human cancer prevention and intervention.


Assuntos
Litchi , Neoplasias , Extratos Vegetais , Litchi/química , Humanos , Neoplasias/prevenção & controle , Neoplasias/tratamento farmacológico , Animais , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Frutas/química , Proliferação de Células/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química
11.
Int J Biol Macromol ; 275(Pt 2): 133252, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38945707

RESUMO

The short shelf life of Litchi is due to its rapid metabolism after being harvested. Refrigeration is not a suitable method for preserving litchi, as the browning process of litchi that has been cryogenic will accelerate when it is brought to room temperature. This study introduces an alginate-based coating as a solution to control the post-harvest metabolism of litchi. The coating achieves this by simultaneously establishing crosslink and percolation networks, both of which act as barriers. The percolation network is created using rod-like cellulose nanocrystals, which possess excellent percolation properties. This network effectively reduces moisture loss. Compared to the control group, the coated litchi exhibited a 38.1 % lower browning index and a 62.5 % lower decay rate. Additionally, the soluble solid content increased by 107.1 %. The inclusion of cellulose nanocrystals and the crosslinking of calcium ions enhanced the mechanical properties of the composite membrane. Specifically, the tensile strength and elongation at break increased by 70 % and 366 % respectively. As all the components in the coating are edible, it is environmentally friendly and safe for human consumption.


Assuntos
Alginatos , Celulose , Litchi , Alginatos/química , Litchi/química , Celulose/química , Nanopartículas/química , Resistência à Tração
12.
Food Chem ; 453: 139694, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-38776793

RESUMO

Previous studies have indicated that hydrogen-rich water (HW) treatment can delay fruit ripening and senescence. However, little is known about the HW-delaying pulp breakdown. In this study, eight physiological characteristics revealed that HW treatment delayed both pericarp browning and pulp breakdown of litchi fruit. To gain a comprehensive understanding of the changes in litchi pulp, a combination of multiple metabolomics and gene expression analyses was conducted, assessing 67 primary metabolites, 103 volatiles, 31 amino acids, and 13 crucial metabolite-related genes. Results showed that HW treatment promoted starch degradation, decelerated cell wall degradation and glycolysis, and maintained the flavor and quality of litchi fruit. Furthermore, HW treatment stimulated the production of volatile alcohols, aldehydes, ketones, olefins, and amino acids, which might play a vital role in HW-delaying pulp breakdown. This study sheds light on the mechanism by which HW delayed pulp breakdown by investigating small molecule metabolites and metabolic pathways.


Assuntos
Armazenamento de Alimentos , Frutas , Hidrogênio , Litchi , Água , Frutas/química , Frutas/metabolismo , Frutas/crescimento & desenvolvimento , Litchi/química , Litchi/metabolismo , Litchi/crescimento & desenvolvimento , Hidrogênio/metabolismo , Hidrogênio/análise , Água/metabolismo , Água/análise , Compostos Orgânicos Voláteis/metabolismo , Compostos Orgânicos Voláteis/química
13.
Artigo em Inglês | MEDLINE | ID: mdl-38728074

RESUMO

A novel plant-beneficial bacterium strain, designated as JGH33T, which inhibited Peronophythora litchii sporangia germination, was isolated on Reasoner's 2A medium from a litchi rhizosphere soil sample collected in Gaozhou City, Guangdong Province, PR China. Cells of strain JGH33T were Gram-stain-positive, aerobic, non-motile, bent rods. The strain grew optimally at 30-37 °C and pH 6.0-8.0. Sequence similarity analysis based on 16S rRNA genes indicated that strain JGH33T exhibited highest sequence similarity to Sinomonas albida LC13T (99.2 %). The genomic DNA G+C content of the isolate was 69.1 mol%. The genome of JGH33T was 4.7 Mbp in size with the average nucleotide identity value of 83.45 % to the most related reference strains, which is lower than the species delineation threshold of 95 %. The digital DNA-DNA hybridization of the isolate resulted in a relatedness value of 24.9 % with its closest neighbour. The predominant respiratory quinone of JGH33T was MK-9(H2). The major fatty acids were C15 : 0 anteiso (43.4 %), C16 : 0 iso (19.1 %) and C17 : 0 anteiso (19.3 %), and the featured component was C18 : 3 ω6c (1.01 %). The polar lipid composition of strain JGH33T included diphosphatidylglycerol, phosphatidylglycerol, dimannosylglyceride, phosphatidylinositol and glycolipids. On the basis of polyphasic taxonomy analyses data, strain JGH33T represents a novel species of the genus Sinomonas, for which the name Sinomonas terricola sp. nov. is proposed, with JGH33T (=JCM 35868T=GDMCC 1.3730T) as the type strain.


Assuntos
Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano , Ácidos Graxos , Litchi , Hibridização de Ácido Nucleico , Filogenia , RNA Ribossômico 16S , Rizosfera , Análise de Sequência de DNA , Microbiologia do Solo , Vitamina K 2 , China , RNA Ribossômico 16S/genética , Ácidos Graxos/análise , DNA Bacteriano/genética , Litchi/microbiologia , Vitamina K 2/análogos & derivados , Vitamina K 2/análise , Fosfolipídeos/análise
14.
Environ Sci Pollut Res Int ; 31(25): 37316-37325, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38769265

RESUMO

Litchi and longan pests significantly affect crop yield and quality. Chemical prevention and control are very effective for production; therefore, it is crucial to study fate assessment and appropriate field efficacy before pesticide application on crops to appropriately assess the health and ecological risks linked with these agents. This study conducted Good Agricultural Practice (GAP) field trials and laboratory experiments to elucidate the dissipation, terminal residues, and efficacy of methoxyfenozide on litchi and longan in six locations throughout China. To detect methoxyfenozide residues on litchi and longan, a QuEChERS/UPLC-MS/MS-based method was designed. The initial methoxyfenozide levels in litchi and longan ranged from 2.21-2.86 to 0.83-0.95 mg kg-1 and indicated half-lives of 5.1-5.3 and 5.3-5.7 days, respectively. After 7 days of foliage treatment, the concentrations of terminal methoxyfenozide residue were 0.78-2.61 and 0.02-1.01 mg kg-1, which were less than the established maximum residue limit for methoxyfenozide in litchi and longan. The chronic (acceptable daily intake = 0.0055-0.0331%) dietary intake risk analysis for methoxyfenozide in longan and litchi indicated acceptable concentrations of terminal residue for the general population. Methoxyfenozide in litchi and longan was readily degraded in first-order kinetics models, the degradation rate on longan was higher than that on litchi, and their dietary risks were negligible to consumers. Two hundred forty grams per liter of methoxyfenozide suspension concentrate (SC) represents a highly efficacious insecticidal dose to control litchi and longan pests and indicates a significant application potential as it is rapidly degraded and linked with reduced post-treatment residue levels.


Assuntos
Hidrazinas , Litchi , Litchi/química , Animais , Inseticidas , China , Resíduos de Praguicidas , Hormônios Juvenis
15.
Pest Manag Sci ; 80(9): 4714-4724, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38779954

RESUMO

BACKGROUND: The litchi fruit borer Conopomorpha sinensis Bradley is a major destructive pest of litchi and longan plants in China, India and South East Asia. Given its strong olfactory-based oviposition behaviour, interfering with the chemical communication between this insect pest and its host plant may serve as a potential control strategy. However, the chemical compounds associated with its egg-laying behaviour remain poorly understood. RESULTS: In this study, we investigated the olfactory preference of female C. sinensis for oviposition on intact mature fruits of the Feizixiao (FZX) and Guiwei (GW) varieties. Results showed that female C. sinensis preferred to lay eggs on FZX compared with GW fruits, and this preference was olfactory-induced. In addition, we identified differences in the chemical composition of the volatile blend and proportions between FZX and GW fruits, with terpenes being the main volatile components contributing to this divergence. Compounds that induced electrophysiological activity in female borers were subsequently screened from FZX. d-Limonene exhibited the strongest oviposition attraction among four candidates. Furthermore, this compound served as a volatile olfactory cue for recognition and orientation in female C. sinensis. CONCLUSION: The results of this study provide a deeper understanding of the olfactory preferences of female C. sinensis for oviposition on specific litchi varieties. © 2024 Society of Chemical Industry.


Assuntos
Frutas , Litchi , Mariposas , Oviposição , Animais , Oviposição/efeitos dos fármacos , Feminino , Mariposas/fisiologia , Mariposas/crescimento & desenvolvimento , Olfato , Compostos Orgânicos Voláteis/farmacologia
16.
Food Chem ; 450: 139380, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-38640535

RESUMO

Pyrimethanil (PYR) is a fungicide that is harmful to consumers when present in foods at concentrations greater than maximum permitted residue levels. High-performance immunoprobes and dual-readout strategy may be useful for constructing sensitive lateral flow immunoassay (LFIA). Herein, the prepared litchi-like Au-Ag bimetallic nanospheres (LBNPs) exhibited high mass extinction coefficients and fluorescence quenching constants. Benefiting from LBNPs and dual-readout mode, the limits of detection of LBNPs-CM-LFIA and LBNPs-FQ-LFIA for PYR were 0.957 and 0.713 ng mL-1, which were 2.54- and 3.41-fold lower than that of gold nanoparticles-based LFIA, respectively. The limits of quantitation of LBNPs-CM-LFIA and LBNPs-FQ-LFIA were 3.740 and 1.672 ng mL-1, respectively. LBNPs-LFIA was applied to detect PYR in cucumber and grape samples with satisfactory recovery (90%-111%). LBNPs-LFIA showed good agreement with LC-MS/MS for the detection of PYR in the samples. Accordingly, this sensitive and accurate dual-readout LFIA based on LBNPs can be effectively applied for food safety.


Assuntos
Contaminação de Alimentos , Fungicidas Industriais , Ouro , Nanopartículas Metálicas , Nanosferas , Pirimidinas , Prata , Vitis , Prata/química , Ouro/química , Nanosferas/química , Pirimidinas/química , Pirimidinas/análise , Imunoensaio/métodos , Imunoensaio/instrumentação , Contaminação de Alimentos/análise , Fungicidas Industriais/análise , Fungicidas Industriais/química , Vitis/química , Nanopartículas Metálicas/química , Litchi/química , Cucumis sativus/química , Limite de Detecção
17.
Food Funct ; 15(9): 4818-4831, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38606579

RESUMO

Gamma-aminobutyric acid (GABA) is the predominant amino acid in litchi pulp, known for its neuroregulatory effects and anti-inflammatory properties. Although previous research has highlighted the pro-inflammatory characteristics of litchi thaumatin-like protein (LcTLP), interplay between GABA and LcTLP in relation to inflammation remains unclear. This study aims to explore the hepatoprotective effects of the litchi pulp-derived GABA extract (LGE) against LcTLP-induced liver inflammation in mice and LO2 cells. In vivo experiments demonstrated that LGE significantly reduced the levels of aspartate transaminase and alanine transaminase, and protected the liver against infiltration of CD4+ and CD8+ T cells and histological injury induced by LcTLP. Pro-inflammatory cytokines including interleukin-6, interleukin-1ß, and tumor necrosis factor-α were also diminished by LGE. The LGE appeared to modulate the mitogen-activated protein kinase (MAPK) signaling pathway to exert its anti-inflammatory effects, as evidenced by a reduction of 47%, 35%, and 31% in phosphorylated p38, JNK, and ERK expressions, respectively, in the liver of the high-dose LGE group. Additionally, LGE effectively improved the translocation of gut microbiota by modulating its microbiological composition and abundance. In vitro studies have shown that LGE effectively counteracts the increase in reactive oxygen species, calcium ions, and pro-inflammatory cytokines induced by LcTLP. These findings may offer new perspectives on the health benefits and safety of litchi consumption.


Assuntos
Litchi , Extratos Vegetais , Ácido gama-Aminobutírico , Animais , Camundongos , Litchi/química , Extratos Vegetais/farmacologia , Masculino , Ácido gama-Aminobutírico/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Citocinas/metabolismo , Anti-Inflamatórios/farmacologia , Proteínas de Plantas/farmacologia , Inflamação/tratamento farmacológico , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Camundongos Endogâmicos C57BL , Frutas/química , Aspartato Aminotransferases
18.
Int J Mol Sci ; 25(7)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38612774

RESUMO

D-arginine (D-Arg) can promote embryogenic callus (EC) proliferation and increase the rate of somatic embryo induction of litchi (Litchi chinensis Sonn.), yet the mechanism underlying the processes is incompletely understood. To investigate the mechanism, physiological responses of polyamines (PAs) [putrescine (Put), spermidine (Spd), and spermine (Spm)] were investigated for D-Arg-treated litchi EC and enzyme activity related to polyamine metabolism, plant endogenous hormones, and polyamine- and embryogenic-related genes were explored. Results showed that the exogenous addition of D-Arg reduces the activity of diamine oxidase (DAO) and polyamine oxidase (PAO) in EC, reduces the production of H2O2, promotes EC proliferation, and increases the (Spd + Spm)/Put ratio to promote somatic embryo induction. Exogenous D-Arg application promoted somatic embryogenesis (SE) by increasing indole-3-acetyl glycine (IAA-Gly), kinetin-9-glucoside (K9G), and dihydrozeatin-7-glucoside (DHZ7G) levels and decreasing trans-zeatin riboside (tZR), N-[(-)-jasmonoyl]-(L)-valine (JA-Val), jasmonic acid (JA), and jasmonoyl-L-isoleucine (Ja-ILE) levels on 18 d, as well as promoting cell division and differentiation. The application of exogenous D-Arg regulated EC proliferation and somatic embryo induction by altering gene expression levels of the WRKY family, AP2/ERF family, C3H family, and C2H2 family. These results indicate that exogenous D-Arg could regulate the proliferation of EC and the SE induction of litchi by changing the biosynthesis of PAs through the alteration of gene expression pattern and endogenous hormone metabolism.


Assuntos
Ciclopentanos , Isoleucina/análogos & derivados , Litchi , Oxilipinas , Litchi/genética , Peróxido de Hidrogênio , Desenvolvimento Embrionário , Poliaminas , Espermidina , Putrescina , Espermina , Arginina , Divisão Celular , Glucosídeos
19.
Sheng Wu Gong Cheng Xue Bao ; 40(4): 1102-1119, 2024 Apr 25.
Artigo em Chinês | MEDLINE | ID: mdl-38658152

RESUMO

HSP70 protein, as an important member of the heat shock protein (HSP) family, plays an important role in plant growth, development, and response to biotic and abiotic stresses. In order to explore the role of HSP70 gene family members in Litchi chinensis under low temperature, high temperature, drought, and salt stress, bioinformatics methods were used to identify the HSP70 gene family members within the entire L. chinensis genome. The expression of these genes under various abiotic stresses was then detected using quantitative real-time PCR (qRT-PCR). The results showed that the LcHSP70 gene family consisted of 18 members, which were unevenly distributed across ten L. chinensis chromosomes. The LcHSP70 protein contained 479-851 amino acids, with isoelectric points ranging from 5.07 to 6.95, and molecular weights from 52.44 kDa to 94.07 kDa. The predicted subcellular localization showed that LcHSP70 protein was present in the nucleus, cytoplasm, endoplasmic reticulum, mitochondria, and chloroplast. Phylogenetic analysis divided the LcHSP70 proteins into five subgroups, namely Ⅰ, Ⅱ, Ⅲ, Ⅳ, and Ⅵ. The promoter regions of the LcHSP70 genes contained various cis-acting elements related to plant growth, development, hormone response, and stress response. Moreover, the expression of LcHSP70 genes displayed distint tissue-specific expression level, categorized into universal expression and specific expression. From the selected 6 LcHSP70 genes (i.e., LcHSP70-1, LcHSP70-5, LcHSP70-10, LcHSP70-14, LcHSP70-16, and LcHSP70-18), their relative expression levels were assessed under different abiotic stresses using qRT-PCR. The results indicated that the gene family members exhibited diverse responses to low temperature, high temperature, drought, and salt stress, with significant variations in their expression levels across different time periods. These results provide a foundation for further exploration of the function of the LcHSP70 gene family.


Assuntos
Secas , Regulação da Expressão Gênica de Plantas , Proteínas de Choque Térmico HSP70 , Litchi , Filogenia , Proteínas de Plantas , Estresse Fisiológico , Litchi/genética , Litchi/metabolismo , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Estresse Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/biossíntese , Família Multigênica , Estresse Salino/genética
20.
Molecules ; 29(8)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38675680

RESUMO

This study presents a method for analyzing dimethomorph residues in lychee using QuEChERS extraction and HPLC-MS/MS. The validation parameters for this method, which include accuracy, precision, linearity, and recovery, indicate that it meets standard validation requirements. Following first-order kinetics, the dissipation dynamic of dimethomorph in lychee was determined to range from 6.4 to 9.2 days. Analysis of terminal residues revealed that residues in whole lychee were substantially greater than those in the pulp, indicating that dimethomorph residues are predominantly concentrated in the peel. When applied twice and thrice at two dosage levels with pre-harvest intervals (PHIs) of 5, 7, and 10 days, the terminal residues in whole lychee ranged from 0.092 to 1.99 mg/kg. The terminal residues of the pulp ranged from 0.01 to 0.18 mg/kg, with the residue ratio of whole lychee to pulp consistently exceeding one. The risk quotient (RQ) for dimethomorph, even at the recommended dosage, was less than one, indicating that the potential for damage was negligible. This study contributes to the establishment of maximum residue limits (MRLs) in China by providing essential information on the safe application of dimethomorph in lychee orchards.


Assuntos
Litchi , Espectrometria de Massas em Tandem , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas em Tandem/métodos , Litchi/química , Morfolinas/análise , Resíduos de Praguicidas/análise , Contaminação de Alimentos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...