Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.013
Filtrar
1.
Brain Res Bull ; 214: 111003, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38852652

RESUMO

An influential model of spatial attention postulates three main attention-orienting mechanisms: disengagement, shifting, and engagement. Early research linked disengagement deficits with superior parietal damage, regardless of hemisphere or presence of spatial neglect. Subsequent studies supported the involvement of more ventral parietal regions, especially in the right hemisphere, and linked spatial neglect to deficient disengagement from ipsilateral cues. However, previous lesion studies faced serious limitations, such as small sample sizes and the lack of brain-injured controls without neglect. Additionally, some studies employed symbolic cues or used long cue-target intervals, which may fail to reveal impaired disengagement. We here used a machine-learning approach to conduct lesion-symptom mapping (LSM) on 89 patients with focal cerebral lesions to the left (LH) or right (RH) cerebral hemisphere. A group of 54 healthy participants served as controls. The paradigm used to uncover disengagement deficits employed non-predictive cues presented in the visual periphery and at short cue-target intervals, targeting exogenous attention. The main factors of interest were group (healthy participants, LH, RH), target position (left, right hemifield) and cue validity (valid, invalid). LSM-analyses were performed on two indices: the validity effect, computed as the absolute difference between reaction times (RTs) following invalid compared to valid cues, and the disengagement deficit, determined by the difference between contralesional and ipsilesional validity effects. While LH patients showed general slowing of RTs to contralesional targets, only RH patients exhibited a disengagement deficit from ipsilesional cues. LSM associated the validity effect with a right lateral frontal cluster, which additionally affected subcortical white matter of the right arcuate fasciculus, the corticothalamic pathway, and the superior longitudinal fasciculus. In contrast, the disengagement deficit was related to damage involving the right temporoparietal junction. Thus, our results support the crucial role of right inferior parietal and posterior temporal regions for attentional disengagement, but also emphasize the importance of lateral frontal regions, for the reorienting of attention.


Assuntos
Atenção , Lobo Frontal , Lateralidade Funcional , Lobo Parietal , Tempo de Reação , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Lobo Parietal/fisiopatologia , Atenção/fisiologia , Idoso , Lateralidade Funcional/fisiologia , Adulto , Tempo de Reação/fisiologia , Lobo Frontal/fisiopatologia , Transtornos da Percepção/etiologia , Transtornos da Percepção/fisiopatologia , Sinais (Psicologia) , Percepção Espacial/fisiologia , Lesões Encefálicas/fisiopatologia
2.
J Neuroeng Rehabil ; 21(1): 101, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38872209

RESUMO

BACKGROUND: In post-stroke rehabilitation, functional connectivity (FC), motor-related cortical potential (MRCP), and gait activities are common measures related to recovery outcomes. However, the interrelationship between FC, MRCP, gait activities, and bipedal distinguishability have yet to be investigated. METHODS: Ten participants were equipped with EEG devices and inertial measurement units (IMUs) while performing lower limb motor preparation (MP) and motor execution (ME) tasks. MRCP, FCs, and bipedal distinguishability were extracted from the EEG signals, while the change in knee degree during the ME phase was calculated from the gait data. FCs were analyzed with pairwise Pearson's correlation, and the brain-wide FC was fed into support vector machine (SVM) for bipedal classification. RESULTS: Parietal-frontocentral connectivity (PFCC) dysconnection and MRCP desynchronization were related to the MP and ME phases, respectively. Hemiplegic limb movement exhibited higher PFCC strength than nonhemiplegic limb movement. Bipedal classification had a short-lived peak of 75.1% in the pre-movement phase. These results contribute to a better understanding of the neurophysiological functions during motor tasks, with respect to localized MRCP and nonlocalized FC activities. The difference in PFCCs between both limbs could be a marker to understand the motor function of the brain of post-stroke patients. CONCLUSIONS: In this study, we discovered that PFCCs are temporally dependent on lower limb gait movement and MRCP. The PFCCs are also related to the lower limb motor performance of post-stroke patients. The detection of motor intentions allows the development of bipedal brain-controlled exoskeletons for lower limb active rehabilitation.


Assuntos
Eletroencefalografia , Marcha , Lobo Parietal , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Humanos , Masculino , Acidente Vascular Cerebral/fisiopatologia , Acidente Vascular Cerebral/complicações , Feminino , Pessoa de Meia-Idade , Marcha/fisiologia , Lobo Parietal/fisiopatologia , Lobo Parietal/fisiologia , Potencial Evocado Motor/fisiologia , Lobo Frontal/fisiopatologia , Lobo Frontal/fisiologia , Idoso , Adulto , Córtex Motor/fisiopatologia , Córtex Motor/fisiologia , Máquina de Vetores de Suporte
3.
Addict Biol ; 29(6): e13405, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38837586

RESUMO

AIMS: Abuse of methamphetamine has aroused concern worldwide. Stimulant use and sexual behaviours have been linked in behavioural and epidemiological studies. Although methamphetamine-related neurofunctional differences are reported in previous studies, only few studies have examined neurofunctional changes related to methamphetamine and sexual cues in methamphetamine dependence from short- to long-term abstinence. METHODS: Neurofunctional changes were measured using a cue-reactivity task involving methamphetamine, sexual, and neutral cues in 20 methamphetamine abusers who were evaluated after a short- (1 week to 3 months) and long-term (10-15 months) abstinence. RESULTS: Five brain regions mainly involved in the occipital lobe and the parietal lobe were found with the group-by-condition interaction. Region-of-interest analyses found higher sexual-cue-related activation than other two activations in all five brain regions in the long-term methamphetamine abstinence group while no group differences were found. Negative relationships between motor impulsivity and methamphetamine- or sexual-cue-related activations in the left middle occipital gyrus, the superior parietal gyrus and the right angular gyrus were found. CONCLUSIONS: The findings suggested that methamphetamine abstinence may change the neural response of methamphetamine abusers to methamphetamine and sexual cues, and the neurofunction of the five brain regions reported in this study may partly recover with long-term methamphetamine abstinence. Given the use and relapse of methamphetamine for sexual purposes, the findings of this study may have particular clinical relevance.


Assuntos
Transtornos Relacionados ao Uso de Anfetaminas , Sinais (Psicologia) , Metanfetamina , Comportamento Sexual , Humanos , Transtornos Relacionados ao Uso de Anfetaminas/fisiopatologia , Masculino , Adulto , Comportamento Sexual/efeitos dos fármacos , Imageamento por Ressonância Magnética , Lobo Parietal/fisiopatologia , Lobo Parietal/efeitos dos fármacos , Feminino , Lobo Occipital/fisiopatologia , Encéfalo/fisiopatologia , Encéfalo/efeitos dos fármacos , Estimulantes do Sistema Nervoso Central/farmacologia , Adulto Jovem , Comportamento Impulsivo/efeitos dos fármacos , Mapeamento Encefálico/métodos , Fatores de Tempo
4.
Commun Biol ; 7(1): 741, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890487

RESUMO

Cognitive reserve is the ability to actively cope with brain deterioration and delay cognitive decline in neurodegenerative diseases. It operates by optimizing performance through differential recruitment of brain networks or alternative cognitive strategies. We investigated cognitive reserve using Huntington's disease (HD) as a genetic model of neurodegeneration to compare premanifest HD, manifest HD, and controls. Contrary to manifest HD, premanifest HD behave as controls despite neurodegeneration. By decomposing the cognitive processes underlying decision making, drift diffusion models revealed a response profile that differs progressively from controls to premanifest and manifest HD. Here, we show that cognitive reserve in premanifest HD is supported by an increased rate of evidence accumulation compensating for the abnormal increase in the amount of evidence needed to make a decision. This higher rate is associated with left superior parietal and hippocampal hypertrophy, and exhibits a bell shape over the course of disease progression, characteristic of compensation.


Assuntos
Reserva Cognitiva , Tomada de Decisões , Hipocampo , Hipocampo/patologia , Hipocampo/fisiopatologia , Humanos , Masculino , Feminino , Doença de Huntington/patologia , Doença de Huntington/fisiopatologia , Doença de Huntington/genética , Doença de Huntington/psicologia , Pessoa de Meia-Idade , Lobo Parietal/patologia , Lobo Parietal/fisiopatologia , Hipertrofia , Adulto , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/fisiopatologia
5.
Sci Rep ; 14(1): 14135, 2024 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898075

RESUMO

Numerous prospective biomarkers are being studied for their ability to diagnose various stages of Alzheimer's disease (AD). High-density electroencephalogram (EEG) methods show promise as an accurate, economical, non-invasive approach to measuring the electrical potentials of brains associated with AD. Event-related potentials (ERPs) may serve as clinically useful biomarkers of AD. Through analysis of secondary data, the present study examined the performance and distribution of N4/P6 ERPs across the frontoparietal network (FPN) using EEG topographic mapping. ERP measures and memory as a function of reaction time (RT) were compared between a group of (n = 63) mild untreated AD patients and a control group of (n = 73) healthy age-matched adults. Based on the literature presented, it was expected that healthy controls would outperform patients in peak amplitude and mean component latency across three parameters of memory when measured at optimal N4 (frontal) and P6 (parietal) locations. It was also predicted that the control group would exhibit neural cohesion through FPN integration during cross-modal tasks, thus demonstrating healthy cognitive functioning consistent with older healthy adults. By targeting select frontal and parietal EEG reference channels based on N4/P6 component time windows and positivity, our findings demonstrated statistically significant group variations between controls and patients in N4/P6 peak amplitudes and latencies during cross-modal testing. Our results also support that the N4 ERP might be stronger than its P6 counterpart as a possible candidate biomarker. We conclude through topographic mapping that FPN integration occurs in healthy controls but is absent in AD patients during cross-modal memory tasks.


Assuntos
Doença de Alzheimer , Biomarcadores , Eletroencefalografia , Potenciais Evocados , Lobo Frontal , Lobo Parietal , Humanos , Doença de Alzheimer/fisiopatologia , Doença de Alzheimer/diagnóstico , Masculino , Feminino , Eletroencefalografia/métodos , Idoso , Lobo Parietal/fisiopatologia , Potenciais Evocados/fisiologia , Lobo Frontal/fisiopatologia , Lobo Frontal/diagnóstico por imagem , Pessoa de Meia-Idade , Tempo de Reação/fisiologia , Estudos de Casos e Controles , Mapeamento Encefálico/métodos , Idoso de 80 Anos ou mais , Memória/fisiologia
6.
Behav Brain Funct ; 20(1): 16, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926731

RESUMO

BACKGROUND: An intronic deletion within intron 2 of the DCDC2 gene encompassing the entire READ1 (hereafter, READ1d) has been associated in both children with developmental dyslexia (DD) and typical readers (TRs), with interindividual variation in reading performance and motion perception as well as with structural and functional brain alterations. Visual motion perception -- specifically processed by the magnocellular (M) stream -- has been reported to be a solid and reliable endophenotype of DD. Hence, we predicted that READ1d should affect neural activations in brain regions sensitive to M stream demands as reading proficiency changes. METHODS: We investigated neural activations during two M-eliciting fMRI visual tasks (full-field sinusoidal gratings controlled for spatial and temporal frequencies and luminance contrast, and sensitivity to motion coherence at 6%, 15% and 40% dot coherence levels) in four subject groups: children with DD with/without READ1d, and TRs with/without READ1d. RESULTS: At the Bonferroni-corrected level of significance, reading skills showed a significant effect in the right polar frontal cortex during the full-field sinusoidal gratings-M task. Regardless of the presence/absence of the READ1d, subjects with poor reading proficiency showed hyperactivation in this region of interest (ROI) compared to subjects with better reading scores. Moreover, a significant interaction was found between READ1d and reading performance in the left frontal opercular area 4 during the 15% coherent motion sensitivity task. Among subjects with poor reading performance, neural activation in this ROI during this specific task was higher for subjects without READ1d than for READ1d carriers. The difference vanished as reading skills increased. CONCLUSIONS: Our findings showed a READ1d-moderated genetic vulnerability to alterations in neural activation in the ventral attentive and salient networks during the processing of relevant stimuli in subjects with poor reading proficiency.


Assuntos
Dislexia , Lobo Frontal , Imageamento por Ressonância Magnética , Percepção de Movimento , Lobo Parietal , Leitura , Humanos , Dislexia/fisiopatologia , Dislexia/genética , Masculino , Criança , Feminino , Imageamento por Ressonância Magnética/métodos , Lobo Parietal/fisiopatologia , Percepção de Movimento/fisiologia , Lobo Frontal/fisiopatologia , Lobo Frontal/diagnóstico por imagem , Proteínas Associadas aos Microtúbulos/genética , Mapeamento Encefálico/métodos , Rede Nervosa/fisiopatologia , Rede Nervosa/diagnóstico por imagem , Estimulação Luminosa/métodos
7.
BMC Psychiatry ; 24(1): 428, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849793

RESUMO

BACKGROUND: Theoretical and empirical evidence indicates the critical role of the default mode network (DMN) in the pathophysiology of the bipolar disorder (BD). This study aims to identify the specific brain regions of the DMN that is impaired in patients with BD. METHODS: A total of 56 patients with BD and 71 healthy controls (HC) underwent resting-state functional magnetic resonance imaging. Three commonly used functional indices, i.e., fractional amplitude of low-frequency fluctuation (fALFF), regional homogeneity (ReHo), and degree centrality (DC), were utilized to identify the brain region showing abnormal spontaneous brain activity in patients with BD. Then, this region served as the seed region for resting-state functional connectivity (rsFC) analysis. RESULTS: Compared to the HC group, the BD group showed reduced fALFF, ReHo, and DC values in the left precuneus. Moreover, patients exhibited decreased rsFCs within the left precuneus and between the left precuneus and the medial prefrontal cortex. Additionally, there was diminished negative connectivity between the left precuneus and the left putamen, extending to the left insula (putamen/insula). The abnormalities in DMN functional connectivity were confirmed through various analysis strategies. CONCLUSIONS: Our findings provide convergent evidence for the abnormalities in the DMN, particularly located in the left precuneus. Decreased functional connectivity within the DMN and the reduced anticorrelation between the DMN and the salience network are found in patients with BD. These findings suggest that the DMN is a key aspect for understanding the neural basis of BD, and the altered functional patterns of DMN may be a potential candidate biomarker for diagnosis of BD.


Assuntos
Transtorno Bipolar , Rede de Modo Padrão , Imageamento por Ressonância Magnética , Humanos , Transtorno Bipolar/fisiopatologia , Transtorno Bipolar/diagnóstico por imagem , Feminino , Masculino , Adulto , Rede de Modo Padrão/fisiopatologia , Rede de Modo Padrão/diagnóstico por imagem , Rede Nervosa/fisiopatologia , Rede Nervosa/diagnóstico por imagem , Lobo Parietal/fisiopatologia , Lobo Parietal/diagnóstico por imagem , Conectoma/métodos , Córtex Pré-Frontal/fisiopatologia , Córtex Pré-Frontal/diagnóstico por imagem , Estudos de Casos e Controles , Adulto Jovem , Pessoa de Meia-Idade , Encéfalo/fisiopatologia , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico
8.
Hypertension ; 81(7): 1609-1618, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38690668

RESUMO

BACKGROUND: Chronic hypertension is known to be a major contributor to cognitive decline, with executive function and working memory being among the domains most commonly affected. Despite the growing literature on such dysfunction in patients with hypertension, the underlying neural processes are poorly understood. METHODS: In this cross-sectional study, we examine these neural processes by having participants with controlled hypertension, uncontrolled hypertension, and healthy controls perform a verbal working memory task during magnetoencephalography. Neural oscillations associated with the encoding and maintenance components of the working memory task were imaged and statistically evaluated among the 3 groups. RESULTS: Differences related to hypertension emerged during the encoding phase, where the hypertension groups exhibited weaker α-ß oscillatory responses compared with controls in the left parietal cortices, whereas such oscillatory activity differed between the 2 hypertension groups in the right prefrontal regions. Importantly, these neural responses in the prefrontal and parietal cortices during encoding were also significantly associated with behavioral performance across all participants. CONCLUSIONS: Overall, our data suggest that hypertension is associated with neurophysiological abnormalities during working memory encoding, whereas the neural processes serving maintenance seem to be preserved. The right hemispheric neural responses likely reflected compensatory processing, which patients with controlled hypertension may use to achieve verbal working memory function at the level of controls, as opposed to the uncontrolled hypertension group where diminished resources may have limited such additional recruitment.


Assuntos
Hipertensão , Magnetoencefalografia , Memória de Curto Prazo , Humanos , Memória de Curto Prazo/fisiologia , Masculino , Feminino , Hipertensão/fisiopatologia , Estudos Transversais , Magnetoencefalografia/métodos , Pessoa de Meia-Idade , Adulto , Lobo Parietal/fisiopatologia , Função Executiva/fisiologia , Testes Neuropsicológicos , Córtex Pré-Frontal/fisiopatologia
9.
Nat Hum Behav ; 8(6): 1136-1149, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38740984

RESUMO

Speech brain-machine interfaces (BMIs) translate brain signals into words or audio outputs, enabling communication for people having lost their speech abilities due to diseases or injury. While important advances in vocalized, attempted and mimed speech decoding have been achieved, results for internal speech decoding are sparse and have yet to achieve high functionality. Notably, it is still unclear from which brain areas internal speech can be decoded. Here two participants with tetraplegia with implanted microelectrode arrays located in the supramarginal gyrus (SMG) and primary somatosensory cortex (S1) performed internal and vocalized speech of six words and two pseudowords. In both participants, we found significant neural representation of internal and vocalized speech, at the single neuron and population level in the SMG. From recorded population activity in the SMG, the internally spoken and vocalized words were significantly decodable. In an offline analysis, we achieved average decoding accuracies of 55% and 24% for each participant, respectively (chance level 12.5%), and during an online internal speech BMI task, we averaged 79% and 23% accuracy, respectively. Evidence of shared neural representations between internal speech, word reading and vocalized speech processes was found in participant 1. SMG represented words as well as pseudowords, providing evidence for phonetic encoding. Furthermore, our decoder achieved high classification with multiple internal speech strategies (auditory imagination/visual imagination). Activity in S1 was modulated by vocalized but not internal speech in both participants, suggesting no articulator movements of the vocal tract occurred during internal speech production. This work represents a proof-of-concept for a high-performance internal speech BMI.


Assuntos
Interfaces Cérebro-Computador , Lobo Parietal , Fala , Humanos , Fala/fisiologia , Masculino , Lobo Parietal/fisiologia , Lobo Parietal/fisiopatologia , Adulto , Neurônios/fisiologia , Quadriplegia/fisiopatologia , Feminino , Córtex Somatossensorial/fisiologia , Córtex Somatossensorial/fisiopatologia , Percepção da Fala/fisiologia
10.
J Affect Disord ; 359: 269-276, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38795776

RESUMO

Changes in EEG have been reported in both major depressive disorder (MDD) and bipolar disorder (BD). Specifically, power changes in EEG alpha and theta frequency bands during rest and task are known in both disorders. This leaves open whether there are changes in yet another component of the electrophysiological EEG signal, namely phase-related processes that may allow for distinguishing MDD and BD. For that purpose, we investigate EEG-based spontaneous phase in the resting state of MDD, BD and healthy controls. Our main findings show: (i) decreased spontaneous phase variability in frontal theta of both MDD and BD compared to HC; (ii) decreased spontaneous phase variability in central-parietal alpha in MDD compared to both BD and HC; (iii) increased delays or lags of alpha phase cycles in MDD (but not in BD), which (iv) correlate with the decreased phase variability in MDD. Together, we show similar (decreased frontal theta variability) and distinct (decreased central-parietal alpha variability with increased lags or delays) findings in the spontaneous phase dynamics of MDD and BD. This suggests potential relevance of theta and alpha phase dynamics in distinguishing MDD and BD in clinical differential-diagnosis.


Assuntos
Ritmo alfa , Transtorno Bipolar , Transtorno Depressivo Maior , Eletroencefalografia , Lobo Frontal , Ritmo Teta , Humanos , Transtorno Bipolar/fisiopatologia , Transtorno Bipolar/diagnóstico , Transtorno Depressivo Maior/fisiopatologia , Transtorno Depressivo Maior/diagnóstico , Adulto , Masculino , Feminino , Ritmo Teta/fisiologia , Ritmo alfa/fisiologia , Lobo Frontal/fisiopatologia , Diagnóstico Diferencial , Pessoa de Meia-Idade , Lobo Parietal/fisiopatologia , Adulto Jovem , Descanso/fisiologia , Córtex Cerebral/fisiopatologia
11.
Sci Rep ; 14(1): 10304, 2024 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-38705917

RESUMO

Understanding neurogenetic mechanisms underlying neuropsychiatric disorders such as schizophrenia and autism is complicated by their inherent clinical and genetic heterogeneity. Williams syndrome (WS), a rare neurodevelopmental condition in which both the genetic alteration (hemideletion of ~ twenty-six 7q11.23 genes) and the cognitive/behavioral profile are well-defined, offers an invaluable opportunity to delineate gene-brain-behavior relationships. People with WS are characterized by increased social drive, including particular interest in faces, together with hallmark difficulty in visuospatial processing. Prior work, primarily in adults with WS, has searched for neural correlates of these characteristics, with reports of altered fusiform gyrus function while viewing socioemotional stimuli such as faces, along with hypoactivation of the intraparietal sulcus during visuospatial processing. Here, we investigated neural function in children and adolescents with WS by using four separate fMRI paradigms, two that probe each of these two cognitive/behavioral domains. During the two visuospatial tasks, but not during the two face processing tasks, we found bilateral intraparietal sulcus hypoactivation in WS. In contrast, during both face processing tasks, but not during the visuospatial tasks, we found fusiform hyperactivation. These data not only demonstrate that previous findings in adults with WS are also present in childhood and adolescence, but also provide a clear example that genetic mechanisms can bias neural circuit function, thereby affecting behavioral traits.


Assuntos
Imageamento por Ressonância Magnética , Síndrome de Williams , Humanos , Síndrome de Williams/fisiopatologia , Síndrome de Williams/genética , Síndrome de Williams/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Adolescente , Criança , Feminino , Masculino , Mapeamento Encefálico/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Face , Reconhecimento Facial/fisiologia , Lobo Parietal/fisiopatologia , Lobo Parietal/diagnóstico por imagem , Percepção Espacial/fisiologia
12.
J Psychiatry Neurosci ; 49(3): E172-E181, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38729664

RESUMO

BACKGROUND: Repetitive transcranial magnetic stimulation (rTMS) is an effective treatment for major depressive disorder (MDD), but substantial heterogeneity in outcomes remains. We examined a potential mechanism of action of rTMS to normalize individual variability in resting-state functional connectivity (rs-fc) before and after a course of treatment. METHODS: Variability in rs-fc was examined in healthy controls (baseline) and individuals with MDD (baseline and after 4-6 weeks of rTMS). Seed-based connectivity was calculated to 4 regions associated with MDD: left dorsolateral prefrontal cortex (DLPFC), right subgenual anterior cingulate cortex (sgACC), bilateral insula, and bilateral precuneus. Individual variability was quantified for each region by calculating the mean correlational distance of connectivity maps relative to the healthy controls; a higher variability score indicated a more atypical/idiosyncratic connectivity pattern. RESULTS: We included data from 66 healthy controls and 252 individuals with MDD in our analyses. Patients with MDD did not show significant differences in baseline variability of rs-fc compared with controls. Treatment with rTMS increased rs-fc variability from the right sgACC and precuneus, but the increased variability was not associated with clinical outcomes. Interestingly, higher baseline variability of the right sgACC was significantly associated with less clinical improvement (p = 0.037, uncorrected; did not survive false discovery rate correction).Limitations: The linear model was constructed separately for each region of interest. CONCLUSION: This was, to our knowledge, the first study to examine individual variability of rs-fc related to rTMS in individuals with MDD. In contrast to our hypotheses, we found that rTMS increased the individual variability of rs-fc. Our results suggest that individual variability of the right sgACC and bilateral precuneus connectivity may be a potential mechanism of rTMS.


Assuntos
Transtorno Depressivo Maior , Imageamento por Ressonância Magnética , Estimulação Magnética Transcraniana , Humanos , Transtorno Depressivo Maior/terapia , Transtorno Depressivo Maior/fisiopatologia , Transtorno Depressivo Maior/diagnóstico por imagem , Estimulação Magnética Transcraniana/métodos , Feminino , Masculino , Adulto , Pessoa de Meia-Idade , Vias Neurais/fisiopatologia , Vias Neurais/diagnóstico por imagem , Lobo Parietal/fisiopatologia , Lobo Parietal/diagnóstico por imagem , Descanso , Giro do Cíngulo/fisiopatologia , Giro do Cíngulo/diagnóstico por imagem , Conectoma , Resultado do Tratamento , Encéfalo/fisiopatologia , Encéfalo/diagnóstico por imagem
13.
Brain Cogn ; 177: 106164, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38670050

RESUMO

Recent work has found that the presence of transient, oscillatory burst-like events, particularly within the beta band (15-29 Hz), is more closely tied to disease state and behavior across species than traditional electroencephalography (EEG) power metrics. This study sought to examine whether features of beta events over frontoparietal electrodes were associated with early life stress (ELS) and the related clinical presentation. Eighteen adults with documented ELS (n = 18; ELS + ) and eighteen adults without documented ELS (n = 18; ELS-) completed eyes-closed resting state EEG as part of their participation in a larger childhood stress study. The rate, power, duration, and frequency span of transient oscillatory events were calculated within the beta band at five frontoparietal electrodes. ELS variables were positively associated with beta event rate at Fp2 and beta event duration at Pz, in that greater ELS was associated with higher resting rates and longer durations. These beta event characteristics were used to successfully distinguish between ELS + and ELS- groups. In an independent clinical dataset (n = 25), beta event power at Pz was positively correlated with ELS. Beta events deserve ongoing investigation as a potential disease marker of ELS and subsequent psychiatric treatment outcomes.


Assuntos
Ritmo beta , Eletroencefalografia , Estresse Psicológico , Humanos , Feminino , Adulto , Masculino , Ritmo beta/fisiologia , Estresse Psicológico/fisiopatologia , Eletroencefalografia/métodos , Lobo Frontal/fisiopatologia , Lobo Parietal/fisiopatologia , Adulto Jovem , Pessoa de Meia-Idade
14.
Nat Commun ; 15(1): 3476, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658530

RESUMO

Cognitive maps in the hippocampal-entorhinal system are central for the representation of both spatial and non-spatial relationships. Although this system, especially in humans, heavily relies on vision, the role of visual experience in shaping the development of cognitive maps remains largely unknown. Here, we test sighted and early blind individuals in both imagined navigation in fMRI and real-world navigation. During imagined navigation, the Human Navigation Network, constituted by frontal, medial temporal, and parietal cortices, is reliably activated in both groups, showing resilience to visual deprivation. However, neural geometry analyses highlight crucial differences between groups. A 60° rotational symmetry, characteristic of a hexagonal grid-like coding, emerges in the entorhinal cortex of sighted but not blind people, who instead show a 90° (4-fold) symmetry, indicative of a square grid. Moreover, higher parietal cortex activity during navigation in blind people correlates with the magnitude of 4-fold symmetry. In sum, early blindness can alter the geometry of entorhinal cognitive maps, possibly as a consequence of higher reliance on parietal egocentric coding during navigation.


Assuntos
Cegueira , Mapeamento Encefálico , Córtex Entorrinal , Imageamento por Ressonância Magnética , Humanos , Cegueira/fisiopatologia , Masculino , Adulto , Feminino , Córtex Entorrinal/diagnóstico por imagem , Córtex Entorrinal/fisiopatologia , Córtex Entorrinal/fisiologia , Mapeamento Encefálico/métodos , Lobo Parietal/diagnóstico por imagem , Lobo Parietal/fisiopatologia , Pessoa de Meia-Idade , Navegação Espacial/fisiologia , Adulto Jovem , Pessoas com Deficiência Visual , Cognição/fisiologia , Imaginação/fisiologia
15.
Schizophr Res ; 267: 130-137, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38531160

RESUMO

BACKGROUND: Impaired cognitive reappraisal is a notable symptom of early psychosis, but its neurobiological basis remains underexplored. We aimed to identify the underlying neurobiological mechanism of this impairment by using resting-state functional connectivity (FC) analyses focused on brain regions related to cognitive reappraisal. METHODS: Resting-state functional magnetic resonance images were collected from 36 first-episode psychosis (FEP) patients, 32 clinical high-risk (CHR) individuals, and 48 healthy controls (HCs). Whole-brain FC maps using seed regions associated with cognitive reappraisal were generated and compared across the FEP, CHR and HC groups. We assessed the correlation between resting-state FC, reappraisal success ratio, positive symptom severity and social functioning controlling for covariates. RESULTS: FEP patients showed higher FC between the left superior parietal lobe and left inferior frontal gyrus than HCs. Higher FC between the left superior parietal lobe and left inferior frontal gyrus negatively correlated with the reappraisal success ratio in the FEP group after controlling for covariates. Lower FC correlated with lower positive symptom severity and improved global functioning in the FEP group. CONCLUSIONS: Alteration in left frontoparietal connectivity reflects impaired cognitive reappraisal in early psychosis, and such alteration correlates with increased positive symptoms and decreased global functioning. These findings offer a potential path for interventions targeting newly emerging symptoms in the early stages of psychosis.


Assuntos
Lobo Frontal , Imageamento por Ressonância Magnética , Lobo Parietal , Transtornos Psicóticos , Humanos , Transtornos Psicóticos/fisiopatologia , Transtornos Psicóticos/diagnóstico por imagem , Masculino , Feminino , Lobo Parietal/fisiopatologia , Lobo Parietal/diagnóstico por imagem , Adulto Jovem , Adulto , Lobo Frontal/fisiopatologia , Lobo Frontal/diagnóstico por imagem , Adolescente , Disfunção Cognitiva/fisiopatologia , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/etiologia , Conectoma , Mapeamento Encefálico
16.
Neuroimage Clin ; 42: 103588, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38471434

RESUMO

Reward-based learning and decision-making are prime candidates to understand symptoms of attention deficit hyperactivity disorder (ADHD). However, only limited evidence is available regarding the neurocomputational underpinnings of the alterations seen in ADHD. This concerns flexible behavioral adaption in dynamically changing environments, which is challenging for individuals with ADHD. One previous study points to elevated choice switching in adolescent ADHD, which was accompanied by disrupted learning signals in medial prefrontal cortex. Here, we investigated young adults with ADHD (n = 17) as compared to age- and sex-matched controls (n = 17) using a probabilistic reversal learning experiment during functional magnetic resonance imaging (fMRI). The task requires continuous learning to guide flexible behavioral adaptation to changing reward contingencies. To disentangle the neurocomputational underpinnings of the behavioral data, we used reinforcement learning (RL) models, which informed the analysis of fMRI data. ADHD patients performed worse than controls particularly in trials before reversals, i.e., when reward contingencies were stable. This pattern resulted from 'noisy' choice switching regardless of previous feedback. RL modelling showed decreased reinforcement sensitivity and enhanced learning rates for negative feedback in ADHD patients. At the neural level, this was reflected in a diminished representation of choice probability in the left posterior parietal cortex in ADHD. Moreover, modelling showed a marginal reduction of learning about the unchosen option, which was paralleled by a marginal reduction in learning signals incorporating the unchosen option in the left ventral striatum. Taken together, we show that impaired flexible behavior in ADHD is due to excessive choice switching ('hyper-flexibility'), which can be detrimental or beneficial depending on the learning environment. Computationally, this resulted from blunted sensitivity to reinforcement of which we detected neural correlates in the attention-control network, specifically in the parietal cortex. These neurocomputational findings remain preliminary due to the relatively small sample size.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Imageamento por Ressonância Magnética , Lobo Parietal , Recompensa , Estriado Ventral , Humanos , Transtorno do Deficit de Atenção com Hiperatividade/fisiopatologia , Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico por imagem , Masculino , Feminino , Lobo Parietal/fisiopatologia , Lobo Parietal/diagnóstico por imagem , Adulto Jovem , Estriado Ventral/fisiopatologia , Estriado Ventral/diagnóstico por imagem , Adulto , Reforço Psicológico
17.
Neurobiol Dis ; 179: 106047, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36841423

RESUMO

Brain functional connectivity in dementia has been assessed with dissimilar EEG connectivity metrics and estimation procedures, thereby increasing results' heterogeneity. In this scenario, joint analyses integrating information from different metrics may allow for a more comprehensive characterization of brain functional interactions in different dementia subtypes. To test this hypothesis, resting-state electroencephalogram (rsEEG) was recorded in individuals with Alzheimer's Disease (AD), behavioral variant frontotemporal dementia (bvFTD), and healthy controls (HCs). Whole-brain functional connectivity was estimated in the EEG source space using 101 different types of functional connectivity, capturing linear and nonlinear interactions in both time and frequency-domains. Multivariate machine learning and progressive feature elimination was run to discriminate AD from HCs, and bvFTD from HCs, based on joint analyses of i) EEG frequency bands, ii) complementary frequency-domain metrics (e.g., instantaneous, lagged, and total connectivity), and iii) time-domain metrics with different linearity assumption (e.g., Pearson correlation coefficient and mutual information). <10% of all possible connections were responsible for the differences between patients and controls, and atypical connectivity was never captured by >1/4 of all possible connectivity measures. Joint analyses revealed patterns of hypoconnectivity (patientsHCs) in both groups was mainly identified in frontotemporal regions. These atypicalities were differently captured by frequency- and time-domain connectivity metrics, in a bandwidth-specific fashion. The multi-metric representation of source space whole-brain functional connectivity evidenced the inadequacy of single-metric approaches, and resulted in a valid alternative for the selection problem in EEG connectivity. These joint analyses reveal patterns of brain functional interdependence that are overlooked with single metrics approaches, contributing to a more reliable and interpretable description of atypical functional connectivity in neurodegeneration.


Assuntos
Doença de Alzheimer , Encéfalo , Conectoma , Demência Frontotemporal , Vias Neurais , Idoso , Feminino , Humanos , Masculino , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/metabolismo , Doença de Alzheimer/fisiopatologia , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Eletroencefalografia , Lobo Frontal/diagnóstico por imagem , Lobo Frontal/fisiopatologia , Demência Frontotemporal/diagnóstico por imagem , Demência Frontotemporal/metabolismo , Demência Frontotemporal/fisiopatologia , Imageamento por Ressonância Magnética , Lobo Parietal/diagnóstico por imagem , Lobo Parietal/fisiopatologia , Reprodutibilidade dos Testes , Lobo Temporal/diagnóstico por imagem , Lobo Temporal/fisiopatologia
18.
Brain Imaging Behav ; 16(4): 1516-1527, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35080703

RESUMO

Dysfunction of the cingulo-frontal-parietal (CFP) cognitive attention network has been associated with the pathophysiology of chronic low back pain (cLBP). However, the direction of information processing within this network remains largely unknown. We aimed to study the effective connectivity among the CFP regions in 36 cLBP patients and 36 healthy controls by dynamic causal modeling (DCM). Both the resting-state and task-related (Multi-Source Interference Task, MSIT) functional magnetic resonance imaging (fMRI) data were collected and analyzed. The relationship between the effective connectivity of the CFP regions and clinical measures was also examined. Our results suggested that cLBP had significantly altered resting-state effective connectivity of the prefrontal cortex (PFC)-to-mid-cingulate cortex (MCC) (increased) and MCC-to-left superior parietal cortex (LPC) (decreased) pathways as compared with healthy controls. MSIT-related DCM suggested that the interference task could significantly increase the effective connectivity of the right superior parietal cortex (RPC)-to-PFC and RPC-to-MCC pathways in cLBP than that in healthy controls. The control task could significantly decrease the effective connectivity of the MCC-to-LPC and MCC-to-RPC pathways in cLBP than that in healthy controls. The endogenous connectivity of the PFC-to-RPC pathway in cLBP was significantly lower than that in healthy controls. No significant correlations were found between the effective connectivity within CFP networks and pain/depression scores in patients with cLBP. In summary, our findings suggested altered effective connectivity in multiple pathways within the CFP network in both resting-state and performing attention-demanding tasks in patients with cLBP, which extends our understanding of attention dysfunction in patients with cLBP.


Assuntos
Dor Crônica , Disfunção Cognitiva , Dor Lombar , Lobo Parietal , Estudos de Casos e Controles , Dor Crônica/fisiopatologia , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/fisiopatologia , Humanos , Dor Lombar/fisiopatologia , Imageamento por Ressonância Magnética , Lobo Parietal/diagnóstico por imagem , Lobo Parietal/fisiopatologia
19.
Behav Brain Res ; 417: 113612, 2022 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-34600960

RESUMO

This single-center, randomized, single-blind, parallel-controlled study aimed to analyze the changes in resting-state functional connectivity (RSFC) in young patients with a suicide attempt caused by depression before and after cognitive-behavioral therapy (CBT) combined with fluoxetine or fluoxetine alone by functional magnetic resonance imaging (fMRI). Before treatment, functional connectivity of the right subgenual anterior cingulate cortex (R-sgACC), left subgenual anterior cingulate cortex (L-sgACC) and right precuneus (R-PCu) was lower in depressed patients with a suicide attempt than that of healthy controls. After treatment, compared with the fluoxetine group, functional connectivity between the R-sgACC and left posterior cerebellar lobe in the CBT group was increased, while this group also showed increased RSFC between the L-sgACC and right anterior cingulate cortex/ medial prefrontal cortex. On the contrary, the functional connectivity between the R-PCu and right parietal lobe was reduced (P < 0.001). It was also found there were some changes in different brain regions in pre- and post-treatment within both the CBT and MG group. The functional connectivity of the R-sgACC and the left posterior cerebellum lobe was negatively correlated with the SSI score. The functional connectivity of the R-PCu and right middle frontal cortex was negatively correlated with the HAMD score before treatment. After treatment, functional connectivity between the R-PCu and right superior frontal gyrus was positively correlated with the SSI scores in the CBT group. After 8 weeks of combined CBT, the strength of the functional connectivity in the bilateral sgACC and bilateral PCu was significantly changed.


Assuntos
Antidepressivos de Segunda Geração/uso terapêutico , Terapia Cognitivo-Comportamental , Depressão , Fluoxetina/uso terapêutico , Giro do Cíngulo/fisiopatologia , Lobo Parietal/fisiopatologia , Tentativa de Suicídio , Adulto , Encéfalo/fisiopatologia , Depressão/complicações , Depressão/terapia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Córtex Pré-Frontal/fisiopatologia , Adulto Jovem
20.
Neuroimage ; 247: 118778, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34896587

RESUMO

Theories of language organization in the brain commonly posit that different regions underlie distinct linguistic mechanisms. However, such theories have been criticized on the grounds that many neuroimaging studies of language processing find similar effects across regions. Moreover, condition by region interaction effects, which provide the strongest evidence of functional differentiation between regions, have rarely been offered in support of these theories. Here we address this by using lesion-symptom mapping in three large, partially-overlapping groups of aphasia patients with left hemisphere brain damage due to stroke (N = 121, N = 92, N = 218). We identified multiple measure by region interaction effects, associating damage to the posterior middle temporal gyrus with syntactic comprehension deficits, damage to posterior inferior frontal gyrus with expressive agrammatism, and damage to inferior angular gyrus with semantic category word fluency deficits. Our results are inconsistent with recent hypotheses that regions of the language network are undifferentiated with respect to high-level linguistic processing.


Assuntos
Afasia/fisiopatologia , Mapeamento Encefálico/métodos , Encéfalo/fisiopatologia , Adulto , Idoso , Compreensão , Feminino , Humanos , Idioma , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Lobo Parietal/fisiopatologia , Córtex Pré-Frontal/fisiopatologia , Acidente Vascular Cerebral/fisiopatologia , Lobo Temporal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...