Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 875
Filtrar
1.
Poult Sci ; 103(11): 104225, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39217666

RESUMO

This study was conducted to explore effects of Lonicerae flos and Rhomoma curcumae longae extracts (LR) on intestinal function of broilers. Three hundred broiler chickens were randomly assigned to the following 5 groups. The control group were fed the basal diet; the antibiotic group were fed the basal diet supplemented with spectinomycin hydrochloride (50 million units/ton) + lincomycin hydrochloride (25 g/ton); the LRH, LRM and LRL groups were fed the basal diet supplemented with a high dose (750 g/ton of feed), normal dose (500 g/ton of feed), or low dose (250 g/ton of feed) of LR, respectively. The changes of intestinal structure, intestinal digestive enzyme activities, antioxidant enzyme activities, inflammatory cytokines, and bacterial abundances in the colon and cecum contents were determined. The results indicated that compared with the control group and the antibiotic group, LR significantly increased the villus length/crypt depth (VCR) of the intestine, and significantly inhibited oxidative stress and inflammatory responses in the broiler intestine. In addition, LR regulated intestinal function by increasing the abundance of the intestinal microorganisms in broilers. In conclusion, LR improved antioxidant capacity, intestinal morphology, and microorganisms, and inhibited inflammatory response. The effect of high and medium doses of LR was better than lower doses.


Assuntos
Ração Animal , Galinhas , Dieta , Intestinos , Lonicera , Extratos Vegetais , Animais , Galinhas/crescimento & desenvolvimento , Galinhas/fisiologia , Extratos Vegetais/farmacologia , Extratos Vegetais/administração & dosagem , Intestinos/efeitos dos fármacos , Dieta/veterinária , Lonicera/química , Ração Animal/análise , Distribuição Aleatória , Curcuma/química , Suplementos Nutricionais/análise , Masculino , Relação Dose-Resposta a Droga , Microbioma Gastrointestinal/efeitos dos fármacos , Rizoma/química , Antioxidantes/metabolismo , Antioxidantes/administração & dosagem
2.
Molecules ; 29(18)2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39339369

RESUMO

Lonicerae japonicae flos (LJF) and Lonicerae flos (LF) are traditional Chinese herbs that are commonly used and widely known for their medicinal properties and edibility. Although they may have a similar appearance and vary slightly in chemical composition, their effectiveness as medicine and their use in clinical settings vary significantly, making them unsuitable for substitution. In this study, a novel 2 × 3 six-channel fluorescent sensor array is proposed that uses machine learning algorithms in combination with the indicator displacement assay (IDA) method to quickly identify LJF and LF. This array comprises two coumarin-based fluorescent indicators (ES and MS) and three diboronic acid-substituted 4,4'-bipyridinium cation quenchers (Q1-Q3), forming six dynamic complexes (C1-C6). When these complexes react with the ortho-dihydroxy groups of phenolic acid compounds in LJF and LF, they release different fluorescent indicators, which in turn causes distinct fluorescence recovery. By optimizing eight machine learning algorithms, the model achieved 100% and 98.21% accuracy rates in the testing set and the cross-validation predictions, respectively, in distinguishing between LJF and LF using Linear Discriminant Analysis (LDA). The integration of machine learning with this fluorescent sensor array shows great potential in analyzing and detecting foods and pharmaceuticals that contain polyphenols.


Assuntos
Lonicera , Lonicera/química , Corantes Fluorescentes/química , Espectrometria de Fluorescência/métodos , Aprendizado de Máquina , Cumarínicos/química , Cumarínicos/análise , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/análise , Extratos Vegetais/química , Extratos Vegetais/análise
3.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(8): 1571-1581, 2024 Aug 20.
Artigo em Chinês | MEDLINE | ID: mdl-39276053

RESUMO

OBJECTIVE: To explore the mechanism underlying the protective effect of Lonicerae japonicae flos (LJF) extract against doxorubicin (DOX) -induced liver injury in mice. METHODS: Network pharmacology methods were used to obtain the intersection genes between LJF targets and disease targets, based on which the protein-protein interaction (PPI) network was constructed using STRING database for screening the core targets using Cytoscape software. DAVID database was used for bioinformatics analysis, and the core components and core targets were verified using molecular docking study. In a mouse model of DOX-induced liver injury, the effect of LJF extract on liver pathologies, serum levels of ALT and AST, and hepatic expressions of HYP, ROS, TNF-α, IL-6, COL-Ⅳ and P53 proteins were evaluated using HE and Masson staining, ELISA, and Western blotting. RESULTS: We identified 12 core targets from 43 intersection genes involving cancer pathway, IL-17 signaling pathway, and TNF signaling pathways. Molecular docking study suggested that 10 core components of LJF could bind to different core targets. The mice with DOX-induced liver injury showed elevated serum AST and ALT levels with obvious liver injury and fibrosis, increased ROS content, and enhanced expressions of TNF-α, IL-6, HYP, COL-Ⅳ and P53 proteins in the liver tissue. All these changes in the mouse models were significantly alleviated by treatment with LJF extract, suggesting obviously lowered levels of oxidative stress, inflammation and fibrosis in the liver tissues. CONCLUSION: LJF extract is capable of alleviating DOX-induced liver injury in mice by downregulating Trp53, TNF and IL-6 to reduce liver oxidative stress, inflammation and fibrosis.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Doxorrubicina , Interleucina-6 , Lonicera , Simulação de Acoplamento Molecular , Fator de Necrose Tumoral alfa , Animais , Doxorrubicina/efeitos adversos , Camundongos , Lonicera/química , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Interleucina-6/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Extratos Vegetais/farmacologia , Fígado/metabolismo , Fígado/efeitos dos fármacos , Fígado/patologia , Proteína Supressora de Tumor p53/metabolismo , Substâncias Protetoras/farmacologia , Mapas de Interação de Proteínas , Transdução de Sinais/efeitos dos fármacos , Farmacologia em Rede
4.
BMC Microbiol ; 24(1): 367, 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39342140

RESUMO

BACKGROUND: The plant microbiome is one of the key determinants of healthy plant growth. However, the complexity of microbial diversity in plant microenvironments in different regions, especially the relationship between subsurface and aboveground microorganisms, is not fully understood. The present study investigated the diversity of soil microorganisms in different regions and the diversity of microorganisms within different ecological niches, and compared soil microorganisms and endophytic microorganisms. METHODS: 16 S and ITS sequencing was used to sequence the soil and endophytes microbiome of honeysuckle. Alpha diversity analysis and principal component analysis (PCoA) were used to study the soil and endophyte microbial communities, and the function of endophyte bacteria and fungi was predicted based on the PICRUST2 process and FUNGuild. RESULTS: In total, there were 382 common bacterial genera and 139 common fungal genera in the soil of different producing areas of honeysuckle. There were 398 common bacterial genera and 157 common fungal genera in rhizosphere soil. More beneficial bacteria were enriched in rhizosphere soil. Endophytic bacteria were classified into 34 phyla and 770 genera. Endophytic fungi were classified into 11 phyla and 581 genera, among which there were significant differences in the dominant genera of roots, stems, leaves, and flowers, as well as in community diversity and richness. Endophytic fungal functions were mainly dominated by genes related to saprophytes, functional genes that could fight microorganisms were also found in KEGG secondary functional genes. CONCLUSION: More beneficial bacteria were enriched in rhizosphere soil of honeysuckle, and the microbial network of the rhizosphere is more complex than that of the soil. Among the tissues of honeysuckle, the flowers have the richest diversity of endophytes. The endogenous dominant core bacteria in each part of honeysuckle plant have a high degree of overlap with the dominant bacteria in soil. Functional prediction suggested that some dominant core bacteria have antibacterial effects, providing a reference for further exploring the strains with antibacterial function of honeysuckle. Understanding the interaction between honeysuckle and microorganisms lays a foundation for the study of growth promotion, quality improvement, and disease and pests control of honeysuckle from the perspective of microorganisms.


Assuntos
Bactérias , Endófitos , Fungos , Lonicera , Microbiota , Rizosfera , Microbiologia do Solo , Endófitos/classificação , Endófitos/genética , Endófitos/isolamento & purificação , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Fungos/classificação , Fungos/genética , Fungos/isolamento & purificação , Lonicera/microbiologia , Biodiversidade , Raízes de Plantas/microbiologia , Filogenia , RNA Ribossômico 16S/genética , Solo/química
5.
Viruses ; 16(9)2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39339827

RESUMO

The highly abundant and stable antiviral small RNA derived from honeysuckle, known as miR2911, has been shown to play a key role in inhibiting influenza virus infection and SARS-CoV-2 infection. However, whether miR2911 inhibits the replication of porcine reproductive and respiratory syndrome virus (PRRSV) remains unknown. Hence, this study investigated the mechanisms underlying the action of miR2911 during PRRSV infection. Six targets of miR2911 within the PRRSV orf1 (Nsp2: 2459 to 2477, 1871 to 1892, 954 to 977, and 1271 to 1292; Nsp1: 274 to 296 and 822 to 841) were successfully identified by using the miRanda v1.0b software. The miR2911 target sequence was analyzed by target sequence comparison, and only individual base mutations existed in different prevalent strains, and the miR2911 target region was highly conserved among different strains. Subsequently, through the dual luciferase reporter gene assay and miR2911 overexpression assay, it was demonstrated that miR2911 significantly inhibits the replication of PRRSV by targeting regions of PRRSV Nsp1 and Nsp2. These findings offer new insights for the development of novel anti-PRRSV drugs.


Assuntos
Lonicera , MicroRNAs , Vírus da Síndrome Respiratória e Reprodutiva Suína , Replicação Viral , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Vírus da Síndrome Respiratória e Reprodutiva Suína/efeitos dos fármacos , Vírus da Síndrome Respiratória e Reprodutiva Suína/fisiologia , Replicação Viral/efeitos dos fármacos , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Suínos , Síndrome Respiratória e Reprodutiva Suína/virologia , RNA Viral/genética , Linhagem Celular , Genes Virais , Fases de Leitura Aberta , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo
6.
Dokl Biol Sci ; 518(1): 137-148, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39128958

RESUMO

Using high-performance liquid chromatography (HPLC), the contents of main classes of biologically active polyphenols in leaf extracts were analyzed in the medicinal species Spiraea chamaedryfolia L. (Rosaceae) and Lonicera caerulea subsp. altaica L. (Caprifoliaceae). Their features were studied in relation to the macroelement and trace element contents in soil and phytomass in sites with sporadic occurrence of serpentinites in the Altai Mountains. A total of 16 polyphenolic compounds were identified for the first time in S. chamaedryfolia leaf extracts. Of these, three compounds were attributed to phenol carboxylic acids; ten, to flavonols; two, to flavones; and one was identified as a flavanone. In L. caerulea subsp. altaica, the analysis confirmed the polyphenolic composition measured earlier, including hydroxycinnamic acids, flavonols, and flavones, and identified an additional compound as a flavanone. Species-specific shifts in plant secondary metabolism were found to occur in response to specific edaphic properties and the accumulation of macroelements and trace elements in leaves of plants growing in an area with a natural geochemical anomaly.


Assuntos
Lonicera , Folhas de Planta , Polifenóis , Solo , Folhas de Planta/química , Polifenóis/química , Polifenóis/análise , Lonicera/química , Solo/química , Cromatografia Líquida de Alta Pressão , Extratos Vegetais/química
7.
BMC Plant Biol ; 24(1): 790, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39164652

RESUMO

Melatonin (Mt) functions as a growth regulator and multifunctional signaling molecule in plants, thereby playing a crucial role in promoting growth and orchestrating protective responses to various abiotic stresses. However, the mechanism whereby exogenous Mt protects Lonicera japonica Thunb. (L. japonica) against salt stress has not been fully elucidated. Therefore, this study aimed to elucidate how exogenous Mt alleviates sodium chloride (NaCl) stress in L. japonica seedlings. Salt-sensitive L. japonica seedlings were treated with an aqueous solution containing 150 mM of NaCl and aqueous solutions containing various concentrations of Mt. The results revealed that treatment of NaCl-stressed L. japonica seedlings with a 60 µM aqueous solution of Mt significantly enhanced vegetative plant growth by scavenging reactive oxygen species and thus reducing oxidative stress. The latter was evidenced by decreases in electrical conductivity and malondialdehyde (MDA) concentrations. Moreover, Mt treatment led to increases in the NaCl-stressed L. japonica seedlings' total chlorophyll content, soluble sugar content, and flavonoid content, demonstrating that Mt treatment improved the seedlings' tolerance of NaCl stress. This was also indicated by the NaCl-stressed L. japonica seedlings exhibiting marked increases in the activities of antioxidant enzymes (superoxide dismutase, peroxidase, catalase, and ascorbate peroxidase) and in photosynthetic functions. Furthermore, Mt treatment of NaCl-stressed L. japonica seedlings increased their expression of phenylalanine ammonia-lyase 1 (PAL1), phenylalanine ammonia-lyase 2 (PAL2), calcium-dependent protein kinase (CPK), cinnamyl alcohol dehydrogenase (CAD), flavanol synthase (FLS), and chalcone synthase (CHS). In conclusion, our results demonstrate that treatment of L. japonica seedlings with a 60 µM aqueous solution of Mt significantly ameliorated the detrimental effects of NaCl stress in the seedlings. Therefore, such treatment has substantial potential for use in safeguarding medicinal plant crops against severe salinity.


Assuntos
Regulação da Expressão Gênica de Plantas , Lonicera , Melatonina , Estresse Salino , Plântula , Lonicera/metabolismo , Lonicera/efeitos dos fármacos , Lonicera/genética , Lonicera/crescimento & desenvolvimento , Melatonina/farmacologia , Plântula/crescimento & desenvolvimento , Plântula/efeitos dos fármacos , Plântula/genética , Estresse Salino/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Cloreto de Sódio/farmacologia , Antioxidantes/metabolismo , Espécies Reativas de Oxigênio/metabolismo
8.
Molecules ; 29(15)2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39124991

RESUMO

The study investigated the impact of Lonicera caerulea L. juice matrix modification and drying techniques on powder characteristics. The evaluation encompassed phenolics (514.7-4388.7 mg/100 g dry matter), iridoids (up to 337.5 mg/100 g dry matter), antioxidant and antiglycation capacity, as well as anti-ageing properties of powders produced using maltodextrin, inulin, trehalose, and palatinose with a pioneering role as a carrier. Spray drying proved to be competitive with freeze drying for powder quality. Carrier application influenced the fruit powder properties. Trehalose protected the phenolics in the juice extract products, whereas maltodextrin showed protective effect in the juice powders. The concentrations of iridoids were influenced by the matrix type and drying technique. Antiglycation capacity was more affected by the carrier type in juice powders than in extract products. However, with carrier addition, the latter showed approximately 12-fold higher selectivity for acetylcholinesterase than other samples. Understanding the interplay between matrix composition, drying techniques, and powder properties provides insights for the development of plant-based products with tailored attributes, including potential health-linked properties.


Assuntos
Liofilização , Lonicera , Extratos Vegetais , Pós , Secagem por Atomização , Liofilização/métodos , Pós/química , Lonicera/química , Extratos Vegetais/química , Antioxidantes/química , Antioxidantes/análise , Sucos de Frutas e Vegetais/análise , Polissacarídeos/química , Polissacarídeos/análise , Fenóis/análise , Fenóis/química
9.
Molecules ; 29(15)2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39125021

RESUMO

Lonicera caerulea L. fruits are a rich source of vitamins, organic acids, and phenolic compounds, which are characterised by their health-promoting properties. The content of bioactive compounds in this fruit may vary depending on the cultivar and the harvest date. This study analysed the effect of applying 5 ppm gaseous ozone for 1, 3, and 5 min on the chemical properties of L. kamtschatica varieties and newly created clones of L. emphyllocalyx for three years of cultivation. The fruits harvested from L. emphyllocalyx, depending on the year of harvest, had significantly larger size and weight compared to L. kamtschatica. On average, the acidity of the L. emphyllocalyx clones was 6% higher than other tested varieties. The average content of ascorbic acid was highest in L. emphyllocalyx clone '21-17'-57.80 mg·100 g-1; the year of harvest will significantly affect the content of vitamin C, reaching the highest level in 2022-53.92 mg·100 g-1. The total content of polyphenols was significantly dependent on the year of cultivation; reaching, on average, 54.8% more in 2022 compared to the rest of the years. The total antioxidant value using the FRAP, DPPH, and ABTS methods varied depending on the variety; exposure to ozone significantly increased the antioxidant value in each case. On the basis of the study, both botanical varieties can be used in food processing. Gaseous ozone exposure can significantly influence chemical composition, increasing the health-promoting value of fruit.


Assuntos
Antioxidantes , Frutas , Lonicera , Ozônio , Ozônio/química , Lonicera/química , Antioxidantes/química , Antioxidantes/farmacologia , Frutas/química , Ácido Ascórbico/análise , Fenóis/análise , Fenóis/química
11.
Zhongguo Zhong Yao Za Zhi ; 49(12): 3263-3269, 2024 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-39041088

RESUMO

Numerous studies show that Lonicera macranthoides and L. japonica have significant differences in organic matter. However, there is still a lack of research on inorganic elements between them. In this study, a non-targeted elemental metabolomics method was established by inductively coupled plasma mass spectrometry(ICP-MS), so as to compare the overall differences of inorganic elements between L. macranthoides and L. japonica. In addition, the differential markers were screened, and these differential markers were quantitatively analyzed by the targeted method. The non-targeted elemental metabolomics showed that the established mathematical model could reflect the difference in element content between L. macranthoides and L. japonica. Four inorganic elements such as ~(55)Mn, ~(209)Bi, ~(111)Cd, and ~(85)Rb were confirmed as the differential markers of L. macranthoides and L. japonica based on the screening principles of variable importance in the projection(VIP) value>2.0, P<0.01 and fold change(FC) value>1.2 or <0.80. The targeted quantitative results showed that the content of ~(209)Bi in L. japonica was significantly higher than that in L. macranthoides, while ~(55)Mn, ~(111)Cd, and ~(85)Rb in L. macranthoides were significantly higher than that in L. japonica. The non-targeted and targeted elemental metabolomics methods based on ICP-MS can significantly reflect the overall differences in inorganic elements between L. macranthoides and L. japonica. Exploring the differences between them from the perspective of elements can partly reflect the differences in their drug properties and lay a foundation for further study on the quality control mode of inorganic elements in L. macranthoides and L. japonica and their pharmacological effects.


Assuntos
Lonicera , Espectrometria de Massas , Metabolômica , Controle de Qualidade , Lonicera/química , Espectrometria de Massas/métodos , Metabolômica/métodos , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/análise
12.
Molecules ; 29(14)2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39064860

RESUMO

Lonicera similis Hemsl. (L. similis) is a promising industrial crop with flowers rich in phenolic compounds. In this study, an ultrasound-assisted extraction (UAE) was designed to extract phenolic compounds from L. similis flowers (LSFs). A contrastive analysis on the phenolic compounds' yield and characterization and the antioxidant activity of the extracts at three harvest stages (PGS I, PGS II, and PGS III) are reported. The results indicate that the optimal conditions are a sonication intensity of 205.9 W, ethanol concentration of 46.4%, SLR of 1 g: 31.7 mL, and sonication time of 20.1 min. Under these optimized conditions, the TPC values at PGS I, PGS II, and PGS III were 117.22 ± 0.55, 112.73 ± 1.68, and 107.33 ± 1.39 mg GAE/g, respectively, whereas the extract of PGS I had the highest TFC (68.48 ± 2.01 mg RE/g). The HPLC analysis showed that chlorogenic acid, rutin, quercetin, isoquercitrin, and ferulic acid are the main components in the phenolic compounds from LSFs, and their contents are closely corrected with the harvest periods. LSF extracts exhibited a better antioxidant activity, and the activity at PGS I was significantly higher than those at PGS II and PGS III. The correlation analysis showed that kaempferol and ferulic acid, among the eight phenolic compounds, have a significant positive correlation with the antioxidant activity, while the remaining compounds have a negative correlation. Minor differences in extracts at the three harvest stages were found through SEM and FTIR. These findings may provide useful references for the optimal extraction method of phenolic compounds from LSFs at three different harvest periods, which will help to achieve a higher phytochemical yield at the optimal harvest stage (PGS I).


Assuntos
Antioxidantes , Flores , Lonicera , Fenóis , Extratos Vegetais , Antioxidantes/química , Antioxidantes/farmacologia , Antioxidantes/isolamento & purificação , Flores/química , Fenóis/química , Fenóis/isolamento & purificação , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Lonicera/química , Cromatografia Líquida de Alta Pressão , Ondas Ultrassônicas , Sonicação
13.
Molecules ; 29(14)2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39065001

RESUMO

A deep eutectic solvent (DES) with the ability to change from hydrophilic to hydrophobic was designed and synthesized and applied to the determination of organophosphorus (OPP) pesticides in honeysuckle dew samples. Choline chloride, phenol, and tetrahydrofuran (THF) were used as the hydrogen bond acceptor, hydrogen bond donor, and demulsifier, respectively. Eight OPP pesticides were extracted by DES coupled with ultrasonic-assisted extraction (UA) and then chromatographed by GC-MS. DES used as an extract solvent has the advantages of high extraction efficiency, low cost, and environmental protection. Furthermore, DES is compatible with GC-MS. The single factor experiment design and Box-Behnken design (BBD) were applied to the optimization of experimental factors, including the type and composition of extraction solvent, type of demulsifier solvent, the volume of DES and THF, pH of sample solution, and ultrasonic time. Under the optimum experimental conditions, the high degree of linearity from 0.1 to 20.0 ng mL-1 (R2 ≥ 0.9989), the limits of detection from 0.014 to 0.051 ng mL-1 (S/N = 3), and the recoveries of analytes from 81.4 to 104.4% with relative standard deviation below 8.6%. In addition, the adsorption mechanism of OPPs on DES was explored by adsorption kinetic studies. These results have demonstrated that the present method has offered an effective, accurate, and sensitive methodology for OPP pesticides in honeysuckle dew samples, and this method provides a reference for the detection of pesticide residues in traditional Chinese medicine.


Assuntos
Solventes Eutéticos Profundos , Microextração em Fase Líquida , Compostos Organofosforados , Praguicidas , Microextração em Fase Líquida/métodos , Praguicidas/análise , Praguicidas/isolamento & purificação , Praguicidas/química , Compostos Organofosforados/análise , Compostos Organofosforados/química , Solventes Eutéticos Profundos/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Lonicera/química , Solventes/química , Ondas Ultrassônicas , Limite de Detecção
14.
J Oleo Sci ; 73(8): 1113-1124, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39019619

RESUMO

The essential oil extracted from the flower buds of Lonicerae japonicae (LJEO) was employed in the high-temperature (65℃) accelerated preservation of sunflower oil. In the present investigation, the addition of the essential oil at a concentration of 800 ppm significantly inhibited the decrease in the oxidative stability of sunflower oil. This positive effect was achieved by significantly hindering the reduction in acidity value (AV), peroxide value (PV), p-anisidine value (AnV), the total oxidation value (TOTOX) (p < 0.01), and the levels of thiobarbituric acid reactive substance (TBARS), the absorbance at 232/268 nm (K232/K268) and total polar compounds (TPC) (p < 0.01). Besides, it also significantly enhances the sensory attributes of Maye, including taste, flavor, and appearance, improving its overall acceptability through the addition of certain potential fragrance molecules (p < 0.01). Furthermore, one of the primary chemical compounds in LJEO, eugenol, has demonstrated significant natural antioxidant properties in the traditional deep-frying procedure for the product, Maye. Consequently, together with eugenol, the essential oil LJEO could be employed as a possible effective antioxidant for the typical long-term preservation and even the traditional deep-frying procedures, and developed as effective antioxidant extracted from plants for the whole food industry.


Assuntos
Antioxidantes , Culinária , Flores , Temperatura Alta , Lonicera , Óleos Voláteis , Oxirredução , Óleo de Girassol , Óleos Voláteis/farmacologia , Óleos Voláteis/isolamento & purificação , Óleos Voláteis/química , Flores/química , Óleo de Girassol/química , Lonicera/química , Antioxidantes/farmacologia , Culinária/métodos , Oxirredução/efeitos dos fármacos , Eugenol/farmacologia , Conservação de Alimentos/métodos , Paladar , Óleos de Plantas/farmacologia , Óleos de Plantas/química , Óleos de Plantas/isolamento & purificação , Substâncias Reativas com Ácido Tiobarbitúrico
15.
Ecology ; 105(9): e4384, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39039740

RESUMO

Seasonal variation in animal activity influences fitness and the intensity of ecological interactions (e.g., competition, predation), yet aspects of global change in the Anthropocene may catalyze shifts in seasonal activity. Invasive plants are components of global change and can modify animal daily activity, but their influence on animal seasonal activity is less understood. We examined how invasive woody shrubs (Autumn olive [Elaeagnus umbellata] and Amur honeysuckle [Lonicera maackii]) affect seasonal activity of three common small-mammal species by coupling experimental shrub removal with autumnal camera trapping for two consecutive years at six paired forest sites (total 12 plots). Eastern chipmunks (Tamias striatus) foraged more, and foraging was observed at least 20 days longer, in shrub-invaded forests. White-footed mice (Peromyscus leucopus) foraged more in invaded than cleared plots in one study year, but P. leucopus autumn activity timing did not differ between shrub-removal treatments. Fox squirrel (Sciurus niger) activity displayed year-specific responses to shrub removal suggesting intraannual cues (e.g., temperature) structure S. niger autumnal activity. Our work highlights how plant invasions can have species-specific effects on seasonal animal activity, may modify the timing of physiological processes (e.g., torpor), and could generate variation in animal-mediated interactions such as seed dispersal or granivory.


Assuntos
Espécies Introduzidas , Lonicera , Estações do Ano , Animais , Lonicera/fisiologia , Sciuridae/fisiologia , Elaeagnaceae/fisiologia , Especificidade da Espécie , Comportamento Alimentar
16.
Plant Physiol Biochem ; 215: 108978, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39084169

RESUMO

Lonicera japonica plays a significant role in traditional Chinese medicine and as a food source, making it a focus of studies on protein succinylation and its potential role in regulating secondary metabolism during flower development. This study aimed to clarify the regulatory mechanism of protein succinylation on phenylpropanoid-related phenotypic changes by conducting a global lysine succinylation proteomic analysis across different flowering stages. A total of 586 lysine succinylated peptides in 303 proteins were identified during early and late floral stages. Functional enrichment analysis revealed that succinylated proteins primarily participated in the tricarboxylic acid (TCA) cycle, amino acid metabolism, and secondary metabolism. The abundance of succinylated aspartate transaminase (AT), 4-coumarate-CoA ligase (4CL), and phenylalanine N-hydroxylase (CYP79A2) in phenylpropanoid metabolism varied during flower development. In vitro experiments demonstrated that succinylation increased AT activity while inhibited 4CL activity. Decreased levels of total flavonoids and phenolic acids indicated significant alterations in phenylpropanoid metabolism during later floral stages. These results suggest that succinylation of TCA cycle proteins not only influences flower development but also, together with AT-4CL-CYP79A2 co-succinylation, redirects phenylpropanoid metabolism during flower development in L. japonica.


Assuntos
Flores , Lonicera , Lisina , Proteínas de Plantas , Flores/metabolismo , Flores/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Lisina/metabolismo , Lonicera/metabolismo , Lonicera/crescimento & desenvolvimento , Processamento de Proteína Pós-Traducional , Ácido Succínico/metabolismo , Proteômica/métodos
17.
Food Chem ; 457: 140150, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38905837

RESUMO

The taste of blue honeysuckle (Lonicera caerulea L.) berries is wrapped in bitterness, and awareness about the essence of bitterness is lacking. In the current study, 7-ketologanin, sweroside and loganin were isolated and identified as key bitter compounds using sensory-guided analysis. The bitterness thresholds of these compounds were determined to be 11.9 µg/mL, 33.5 µg/mL and 60.2 µg/mL. Subsequently, the differences in bitterness among 16 blue honeysuckle varieties were evaluated. The wild varieties A1 and A2 exhibited the highest bitter intensity. 7-Ketologanin, with the highest concentration of 34.70-37.11 mg/100 g and taste activity values of 29.16-31.18 in A1 and A2, was first identified as a bitter contributor in blue honeysuckle. There was no significant difference in bitter intensity between the reconstitution model and the original sample, confirming the contribution of the three bitter compounds. This study lays the foundation for the bitter improvement and variety selection of blue honeysuckle resources.


Assuntos
Frutas , Lonicera , Paladar , Lonicera/química , Frutas/química , Humanos , Extratos Vegetais/química , Masculino , Adulto , Feminino
18.
Int J Biol Macromol ; 275(Pt 1): 133426, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38936574

RESUMO

The structure and bioactivities of a novel polysaccharide from Lonicera caerulea L. var. edulis Turcz. ex Herd. fruit (THP-3) were investigated. The crude polysaccharides of Turcz. ex Herd. (THP) were extracted by hot water extraction. After purification, the chemical structure of polysaccharides was identified. Then, a mouse model of acute drug-induced liver injury was constructed using 4-acetamidophenol (APAP) and pretreated with THP. The number-average molecular weight of THP-3 was 48.89 kDa and the mass average molar mass was 97.87 kDa. THP-3 was mainly composed of arabinose (42.54 %), glucose (27.62 %), galacturonic acid and galactose (29.84 %). The main linkage types of THP-3 were 1-linked Araf, 1,4-linked Glcp, and 1,3,6-linked Galp. In addition, after THP treatment, serum Alanine aminotransferase (ALT), Aspartate aminotransferase (AST) and γ-glutamyl transpeptidase (γGT) in AILI mice were successfully down-regulated. The results showed that THP could prevent the characteristic morphological changes of hepatic lobular injury and lipid depletion caused by APAP, reduced the level of oxidative damage in mice, increased the expression of APAP-induced hypolipidemia and related inflammatory indicators, and improved the detoxification function of liver. In general, the newly extracted THP polysaccharide has a good liver protection effect and is an ideal natural medicine for the treatment of liver diseases.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Frutas , Lonicera , Polissacarídeos , Substâncias Protetoras , Animais , Lonicera/química , Camundongos , Polissacarídeos/farmacologia , Polissacarídeos/química , Polissacarídeos/isolamento & purificação , Frutas/química , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Doença Hepática Induzida por Substâncias e Drogas/patologia , Substâncias Protetoras/farmacologia , Substâncias Protetoras/química , Substâncias Protetoras/isolamento & purificação , Acetaminofen/efeitos adversos , Fígado/efeitos dos fármacos , Fígado/patologia , Fígado/lesões , Fígado/metabolismo , Masculino , Alanina Transaminase/sangue , Modelos Animais de Doenças , Peso Molecular
19.
Molecules ; 29(11)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38893434

RESUMO

Lonicera macranthoides, the main source of traditional Chinese medicine Lonicerae Flos, is extensively cultivated in Southwest China. However, the quality of L. macranthoides produced in this region significantly varies due to its wide distribution and various cultivation breeds. Herein, 50 Lonicerae Flos samples derived from different breeds of L. macranthoides cultivated in Southwest China were collected for quality evaluation. Six organic acids and three saponin compounds were quantitatively analyzed using HPLC. Furthermore, the antioxidant activity of a portion of samples was conducted with 2,2'-Azinobis-(3-ethylbenzthiazoline-6-sulphonate) (ABTS) and 1,1-diphenyl-2-picryl-hydrazyl (DPPH) radical scavenging experiments. According to the quantitative results, all samples met the quality standards outlined in the Chinese Pharmacopoeia. The samples from Guizhou, whether derived from unopened or open wild-type breeds, exhibited high quality, while the wild-type samples showed relatively significant fluctuation in quality. The samples from Chongqing and Hunan demonstrated similar quality, whereas those from Sichuan exhibited relatively lower quality. These samples demonstrated significant abilities in clearing ABTS and DPPH radicals. The relationship between HPLC chromatograms and antioxidant activity, as elucidated by multivariate analysis, indicated that chlorogenic acid, isochlorogenic acid A, isochlorogenic acid B, and isochlorogenic acid C are active components and can serve as Q-markers for quality evaluation.


Assuntos
Antioxidantes , Lonicera , Cromatografia Líquida de Alta Pressão/métodos , Lonicera/química , Antioxidantes/química , Antioxidantes/farmacologia , Antioxidantes/análise , China , Picratos/química , Picratos/antagonistas & inibidores , Compostos de Bifenilo/antagonistas & inibidores , Compostos de Bifenilo/química , Ácidos Sulfônicos/química , Ácidos Sulfônicos/antagonistas & inibidores , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/normas , Controle de Qualidade , Benzotiazóis/química , Saponinas/química , Saponinas/análise , Extratos Vegetais
20.
Sci Rep ; 14(1): 13729, 2024 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877134

RESUMO

The aim of this study was to investigate the fertility of "Huajin 6" and the effect of exogenous methyl jasmonate on its fertility. In this study, "Huajin 6", "Huajin 6" treated with methyl jasmonate and "Damaohua" were used as the research objects, the stamen phenotypes and the shape of pollen grains were observed, pollen viability and stigma receptivity were measured. The results showed that the pistil structure and function were normal, and although the stamen anthers did not dehisce, they were still capable of producing pollen with a certain amount of vigor. Methyl jasmonate could promote the opening of the flowers of "Huajin 6" and improve the development of pollen grains to a certain extent, but it could not promote anthers dehiscence of "Huajin 6". This study can provide theoretical guidance for the cultivation of new honeysuckle varieties using "Huajin 6".


Assuntos
Ciclopentanos , Fertilidade , Flores , Oxilipinas , Pólen , Oxilipinas/farmacologia , Fertilidade/efeitos dos fármacos , Ciclopentanos/farmacologia , Acetatos/farmacologia , Lonicera/fisiologia , Lonicera/efeitos dos fármacos , Polinização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...