Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 482
Filtrar
1.
Antimicrob Agents Chemother ; 68(5): e0009324, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38597636

RESUMO

Capillary samples offer practical benefits compared with venous samples for the measurement of drug concentrations, but the relationship between the two measures varies between different drugs. We measured the concentrations of lumefantrine, mefloquine, piperaquine in 270 pairs of venous plasma and concurrent capillary plasma samples collected from 270 pregnant women with uncomplicated falciparum or vivax malaria. The median and range of venous plasma concentrations included in this study were 447.5 ng/mL (8.81-3,370) for lumefantrine (day 7, n = 76, median total dose received 96.0 mg/kg), 17.9 ng/mL (1.72-181) for desbutyl-lumefantrine, 1,885 ng/mL (762-4,830) for mefloquine (days 3-21, n = 90, median total dose 24.9 mg/kg), 641 ng/mL (79.9-1,950) for carboxy-mefloquine, and 51.8 ng/mL (3.57-851) for piperaquine (days 3-21, n = 89, median total dose 52.2 mg/kg). Although venous and capillary plasma concentrations showed a high correlation (Pearson's correlation coefficient: 0.90-0.99) for all antimalarials and their primary metabolites, they were not directly interchangeable. Using the concurrent capillary plasma concentrations and other variables, the proportions of venous plasma samples predicted within a ±10% precision range was 34% (26/76) for lumefantrine, 36% (32/89) for desbutyl-lumefantrine, 74% (67/90) for mefloquine, 82% (74/90) for carboxy-mefloquine, and 24% (21/89) for piperaquine. Venous plasma concentrations of mefloquine, but not lumefantrine and piperaquine, could be predicted by capillary plasma samples with an acceptable level of agreement. Capillary plasma samples can be utilized for pharmacokinetic and clinical studies, but caution surrounding cut-off values is required at the individual level.CLINICAL TRIALSThis study is registered with ClinicalTrials.gov as NCT01054248.


Assuntos
Antimaláricos , Lumefantrina , Malária Falciparum , Malária Vivax , Mefloquina , Piperazinas , Quinolinas , Humanos , Feminino , Mefloquina/sangue , Mefloquina/uso terapêutico , Mefloquina/farmacocinética , Antimaláricos/sangue , Antimaláricos/uso terapêutico , Antimaláricos/farmacocinética , Gravidez , Quinolinas/sangue , Quinolinas/farmacocinética , Quinolinas/uso terapêutico , Lumefantrina/uso terapêutico , Lumefantrina/sangue , Malária Falciparum/tratamento farmacológico , Malária Falciparum/sangue , Adulto , Malária Vivax/tratamento farmacológico , Malária Vivax/sangue , Adulto Jovem , Etanolaminas/sangue , Etanolaminas/farmacocinética , Etanolaminas/uso terapêutico , Fluorenos/sangue , Fluorenos/uso terapêutico , Fluorenos/farmacocinética , Adolescente
2.
Int J Parasitol Drugs Drug Resist ; 24: 100532, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38520842

RESUMO

Artemether-lumefantrine (AL) is the most widely used antimalarial drug for treating uncomplicated falciparum malaria. This study evaluated whether the K65Q mutation in the Plasmodium falciparum cysteine desulfurase IscS (Pfnfs1) gene was associated with alternated susceptibility to lumefantrine using clinical parasite samples from Ghana and the China-Myanmar border area. Parasite isolates from the China-Myanmar border had significantly higher IC50 values to lumefantrine than parasites from Ghana. In addition, the K65 allele was significantly more prevalent in the Ghanaian parasites (34.5%) than in the China-Myanmar border samples (6.8%). However, no difference was observed in the lumefantrine IC50 value between the Pfnfs1 reference K65 allele and the non reference 65Q allele in parasites from the two regions. These data suggest that the Pfnfs1 K65Q mutation may not be a reliable marker for reduced susceptibility to lumefantrine.


Assuntos
Antimaláricos , Artemisininas , Malária Falciparum , Humanos , Lumefantrina/farmacologia , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Plasmodium falciparum , Combinação Arteméter e Lumefantrina/uso terapêutico , Gana , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Artemeter/uso terapêutico , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Mutação , Etanolaminas/farmacologia , Etanolaminas/uso terapêutico , Resistência a Medicamentos/genética
3.
Malar J ; 23(1): 71, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461239

RESUMO

BACKGROUND: Therapeutic efficacy studies (TESs) and detection of molecular markers of drug resistance are recommended by the World Health Organization (WHO) to monitor the efficacy of artemisinin-based combination therapy (ACT). This study assessed the trends of molecular markers of artemisinin resistance and/or reduced susceptibility to lumefantrine using samples collected in TES conducted in Mainland Tanzania from 2016 to 2021. METHODS: A total of 2,015 samples were collected during TES of artemether-lumefantrine at eight sentinel sites (in Kigoma, Mbeya, Morogoro, Mtwara, Mwanza, Pwani, Tabora, and Tanga regions) between 2016 and 2021. Photo-induced electron transfer polymerase chain reaction (PET-PCR) was used to confirm presence of malaria parasites before capillary sequencing, which targeted two genes: Plasmodium falciparum kelch 13 propeller domain (k13) and P. falciparum multidrug resistance 1 (pfmdr1). RESULTS: Sequencing success was ≥ 87.8%, and 1,724/1,769 (97.5%) k13 wild-type samples were detected. Thirty-seven (2.1%) samples had synonymous mutations and only eight (0.4%) had non-synonymous mutations in the k13 gene; seven of these were not validated by the WHO as molecular markers of resistance. One sample from Morogoro in 2020 had a k13 R622I mutation, which is a validated marker of artemisinin partial resistance. For pfmdr1, all except two samples carried N86 (wild-type), while mutations at Y184F increased from 33.9% in 2016 to about 60.5% in 2021, and only four samples (0.2%) had D1246Y mutations. pfmdr1 haplotypes were reported in 1,711 samples, with 985 (57.6%) NYD, 720 (42.1%) NFD, and six (0.4%) carrying minor haplotypes (three with NYY, 0.2%; YFD in two, 0.1%; and NFY in one sample, 0.1%). Between 2016 and 2021, NYD decreased from 66.1% to 45.2%, while NFD increased from 38.5% to 54.7%. CONCLUSION: This is the first report of the R622I (k13 validated mutation) in Tanzania. N86 and D1246 were nearly fixed, while increases in Y184F mutations and NFD haplotype were observed between 2016 and 2021. Despite the reports of artemisinin partial resistance in Rwanda and Uganda, this study did not report any other validated mutations in these study sites in Tanzania apart from R622I suggesting that intensified surveillance is urgently needed to monitor trends of drug resistance markers and their impact on the performance of ACT.


Assuntos
Antimaláricos , Artemisininas , Carrubicina/análogos & derivados , Malária Falciparum , Humanos , Lumefantrina/farmacologia , Lumefantrina/uso terapêutico , Plasmodium falciparum/genética , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Tanzânia , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Artemeter/uso terapêutico , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Combinação Arteméter e Lumefantrina/farmacologia , Combinação Arteméter e Lumefantrina/uso terapêutico , Malária Falciparum/epidemiologia , Biomarcadores , Resistência a Medicamentos/genética , Proteínas de Protozoários/genética , Proteínas de Protozoários/uso terapêutico
4.
Am J Trop Med Hyg ; 110(4): 653-655, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38377612

RESUMO

Partial artemisinin resistance has emerged in East Africa, posing a threat to malaria control across the continent. The Democratic Republic of the Congo carries one of the heaviest malaria burdens globally, and the South Kivu province directly borders current artemisinin resistance hot spots, but indications of such resistance have not been observed so far. We assessed molecular markers of antimalarial drug resistance in 256 Plasmodium falciparum isolates collected in 2022 in South Kivu, Democratic Republic of the Congo. One isolate carried the P. falciparum Kelch-13 469Y variant, a marker associated with partial artemisinin resistance and decreased lumefantrine susceptibility in Uganda. In addition, the multidrug resistance-1 mutation pattern suggested increased lumefantrine tolerance.


Assuntos
Antimaláricos , Artemisininas , Malária Falciparum , Humanos , Plasmodium falciparum , República Democrática do Congo/epidemiologia , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Malária Falciparum/tratamento farmacológico , Malária Falciparum/epidemiologia , Lumefantrina/uso terapêutico , Uganda , Resistência a Medicamentos/genética , Proteínas de Protozoários/genética
5.
Antimicrob Agents Chemother ; 68(4): e0153423, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38411062

RESUMO

Malaria remains a leading cause of morbidity and mortality in Burkina Faso, which utilizes artemether-lumefantrine as the principal therapy to treat uncomplicated malaria and seasonal malaria chemoprevention with monthly sulfadoxine-pyrimethamine plus amodiaquine in children during the transmission season. Monitoring the activities of available antimalarial drugs is a high priority. We assessed the ex vivo susceptibility of Plasmodium falciparum to 11 drugs in isolates from patients presenting with uncomplicated malaria in Bobo-Dioulasso in 2021 and 2022. IC50 values were derived using a standard 72 h growth inhibition assay. Parasite DNA was sequenced to characterize known drug resistance-mediating polymorphisms. Isolates were generally susceptible, with IC50 values in the low-nM range, to chloroquine (median IC5010 nM, IQR 7.9-24), monodesethylamodiaquine (22, 14-46) piperaquine (6.1, 3.6-9.2), pyronaridine (3.0, 1.3-5.5), quinine (50, 30-75), mefloquine (7.1, 3.7-10), lumefantrine (7.1, 4.5-12), dihydroartemisinin (3.7, 2.2-5.5), and atovaquone (0.2, 0.1-0.3) and mostly resistant to cycloguanil (850, 543-1,290) and pyrimethamine (33,200, 18,400-54,200), although a small number of outliers were seen. Considering genetic markers of resistance to aminoquinolines, most samples had wild-type PfCRT K76T (87%) and PfMDR1 N86Y (95%) sequences. For markers of resistance to antifolates, established PfDHFR and PfDHPS mutations were highly prevalent, the PfDHPS A613S mutation was seen in 19% of samples, and key markers of high-level resistance (PfDHFR I164L; PfDHPS K540E) were absent or rare (A581G). Mutations in the PfK13 propeller domain known to mediate artemisinin partial resistance were not detected. Overall, our results suggest excellent susceptibilities to drugs now used to treat malaria and moderate, but stable, resistance to antifolates used to prevent malaria.


Assuntos
Antimaláricos , Antagonistas do Ácido Fólico , Malária Falciparum , Malária , Criança , Humanos , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Plasmodium falciparum , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Combinação Arteméter e Lumefantrina/uso terapêutico , Antagonistas do Ácido Fólico/farmacologia , Burkina Faso , Artemeter/uso terapêutico , Pirimetamina/farmacologia , Pirimetamina/uso terapêutico , Malária/tratamento farmacológico , Lumefantrina/farmacologia , Lumefantrina/uso terapêutico , Combinação de Medicamentos , Polimorfismo Genético/genética , Resistência a Medicamentos/genética , Proteínas de Protozoários/genética , Proteínas de Protozoários/uso terapêutico
6.
mBio ; 15(3): e0316923, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38323831

RESUMO

Malaria parasites have adaptive mechanisms to modulate their intracellular redox status to tolerate the enhanced oxidizing effects created by malaria fever, hemoglobinopathies and other stress conditions, including antimalaria drugs. Emerging artemisinin (ART) resistance in Plasmodium falciparum is a complex phenotype linked to the parasite's tolerance of the activated drug's oxidative damage along with changes in vesicular transport, lipid metabolism, DNA repair, and exported proteins. In an earlier study, we discovered that many of these metabolic processes are induced in P. falciparum to respond to the oxidative damage caused by artemisinin, which exhibited a highly significant overlap with the parasite's adaptive response mechanisms to survive febrile temperatures. In addition, there was a significant overlap with the parasite's survival responses to oxidative stress. In this study, we investigated these relationships further using an in vitro model to evaluate if oxidative stress and heat-shock conditions could alter the parasite's response to artemisinin. The results revealed that compared to ideal culture conditions, the antimalarial efficacy of artemisinin was significantly reduced in parasites growing in intraerythrocytic oxidative stress but not in heat-shock condition. In contrast, heat shock significantly reduced the efficacy of lumefantrine that is an important ART combination therapy partner drug. We propose that prolonged exposure to intraerythrocytic microenvironmental oxidative stress, as would occur in endemic regions with high prevalence for sickle trait and other hemoglobinopathies, can predispose malaria parasites to develop tolerance to the oxidative damage caused by antimalarial drugs like artemisinin. IMPORTANCE: Emerging resistance to the frontline antimalarial drug artemisinin represents a significant threat to worldwide malaria control and elimination. The patterns of parasite changes associated with emerging resistance represent a complex array of metabolic processes evident in various genetic mutations and altered transcription profiles. Genetic factors identified in regulating P. falciparum sensitivity to artemisinin overlap with the parasite's responses to malarial fever, sickle trait, and other types of oxidative stresses, suggesting conserved inducible survival responses. In this study we show that intraerythrocytic stress conditions, oxidative stress and heat shock, can significantly decrease the sensitivity of the parasite to artemisinin and lumefantrine, respectively. These results indicate that an intraerythrocytic oxidative stress microenvironment and heat-shock condition can alter antimalarial drug efficacy. Evaluating efficacy of antimalarial drugs under ideal in vitro culture conditions may not accurately predict drug efficacy in all malaria patients.


Assuntos
Anemia Falciforme , Antimaláricos , Artemisininas , Antagonistas do Ácido Fólico , Hemoglobinopatias , Malária Falciparum , Malária , Humanos , Antimaláricos/farmacologia , Plasmodium falciparum/genética , Artemisininas/farmacologia , Malária Falciparum/tratamento farmacológico , Malária/tratamento farmacológico , Lumefantrina/farmacologia , Lumefantrina/uso terapêutico , Combinação de Medicamentos , Proteínas de Protozoários/genética , Antagonistas do Ácido Fólico/farmacologia , Estresse Oxidativo , Hemoglobinopatias/tratamento farmacológico , Anemia Falciforme/tratamento farmacológico , Resistência a Medicamentos/genética
7.
Drug Deliv ; 31(1): 2299594, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38180033

RESUMO

Lipophilic drugs require more advance formulation, especially if the intention is to make solutions or semisolid formulations. This also accounts for most antimalarial drugs. Although some of these antimalarial drugs are soluble in lipid vehicles, few of them, such as lumefantrine (LF), are also poorly soluble in oily vehicles. Trying to dissolve and formulate LF as a liquid formulation together with other antimalarial drugs is, therefore, a major task. When mixed in solution together with artemether (AR), precipitation occurs, sometimes with LF precipitating out on its own, and sometimes with AR precipitating out alongside LF. In this study, it was hypothesized that the use of fatty acids could lead to enhanced solubility in lipid formulation. Addition of the fatty acid solved the dissolution challenges, making LF soluble for over a year at room temperature (21-23 °C); but further research is needed to test the mechanism of action of the fatty acid. In addition, design of experiments (MODDE® 13) revealed that the amount of fatty acid in the formulation was the only significant factor for LF precipitation.


Assuntos
Antimaláricos , Malária , Humanos , Malária/tratamento farmacológico , Lumefantrina , Artemeter , Ácidos Graxos
8.
Assay Drug Dev Technol ; 22(2): 63-72, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38193797

RESUMO

Antimalarial drugs are being encapsulated in nanotechnology-based carriers because there are not enough new treatment options and people are becoming more resistant to the ones that are already available. This approach uses two or more biochemical targets of malarial parasites. The codelivery of artemether and lumefantrine (AL) combines the synergistic effect of artemether for an early onset of action followed by the prolonged effect of lumefantrine. The bioavailability of artemether and lumefantrine is low due to their low solubility. Thus, an alternative lipidic formulation, namely nanocochleate, was developed for the selected drugs by adding calcium ions into preformed nanoliposomes (AL-loaded liposomes). Using phospholipon 90H and cholesterol, a thin-film hydration method produced drug-loaded liposomes. The synthesized AL-loaded liposomes were further incorporated into nanocochleates. The formulations were evaluated for in vitro and in vivo parameters. Nanocochleates had a particle size of 200.7 nm, a zeta potential of -9.4 mV, and an entrapment efficiency of 73.12% ± 1.82% and 61.46% ± 0.78%, respectively, for artemether and lumefantrine. Whereas liposomes had a particle size of 210 nm and an entrapment efficiency of 67.34% ± 1.52% and 53.24% ± 0.78%, respectively, for artemether and lumefantrine. An X-ray diffraction study confirmed the amorphous state of artemether and lumefantrine in liposomes and nanocochleate. Nanocochleate showed a controlled release profile for loaded drugs. When compared with free drugs, nanocochleate showed low tissue distribution and a 20-fold increase in bioavailability in rats. Thus, nanocochleate offers an interesting alternative to an existing dosage form for the treatment of malaria.


Assuntos
Antimaláricos , Malária , Humanos , Ratos , Animais , Lumefantrina/uso terapêutico , Artemeter/uso terapêutico , Lipossomos , Antimaláricos/uso terapêutico , Malária/tratamento farmacológico , Malária/parasitologia , Combinação Arteméter e Lumefantrina/uso terapêutico
9.
Antimicrob Agents Chemother ; 68(1): e0129923, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38092677

RESUMO

In 2023, we updated data collected since 2010 on Plasmodium falciparum K13 and MDR1 drug resistance markers in Huye district, southern Rwanda. Artemisinin resistance-associated PfK13 markers occurred in 17.5% of 212 malaria patients (561H, 9.0%; 675V, 5.7%; and 469F, 2.8%), nearly double the frequency from 2019. PfMDR1 N86, linked with lumefantrine tolerance, was close to fixation at 98%. In southern Rwanda, markers signaling resistance to artemisinin and lumefantrine are increasing, albeit at a relatively slow rate.


Assuntos
Antimaláricos , Artemisininas , Malária Falciparum , Humanos , Plasmodium falciparum/genética , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Malária Falciparum/tratamento farmacológico , Malária Falciparum/epidemiologia , Ruanda/epidemiologia , Prevalência , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Lumefantrina/uso terapêutico , Resistência a Medicamentos/genética , Proteínas de Protozoários/genética , Proteínas de Protozoários/uso terapêutico
10.
Biomed Chromatogr ; 38(1): e5762, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37845823

RESUMO

A simple external calibration liquid chromatography-diode array detector method was developed, validated, and applied for the determination of lumefantrine (Lum) in dried blood spot (DBS) samples collected from malaria patients in Botswana. The samples were validated in accordance with the United States Food and Drug Administration guidelines for bioanalytical methods after sample preparation using solid-liquid extraction. Separation was achieved using an XTerra C18 column (50 × 4.6 mm, 5 µm), and a binary solvent system of acetonitrile and water adjusted to pH 2.3 was used as the mobile phase. The validated method was applied for the determination of Lum in DBS samples collected from malaria patients infected with Plasmodium falciparum in Botswana. The calibration curve was linear between 0.5 and 12 µg/mL with a coefficient of determination (R2 ) of 0.9996. The limit of detection and the lower limit of quantification were 0.5 and 1.4 µg/mL, respectively. The efficiency of extraction measured as percentage recovery ranged between 84.2% and 107.8% at the three quality control (QC) levels, that is, low QC, mid QC, and high QC. In conclusion, data suggest that the method is suitable for the determination of trace Lum in biofluids and can also be used for therapeutic drug monitoring and pharmacokinetic profiling.


Assuntos
Malária , Humanos , Lumefantrina , Cromatografia Líquida de Alta Pressão/métodos , Calibragem , Botsuana
11.
Clin Infect Dis ; 78(2): 445-452, 2024 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-38019958

RESUMO

BACKGROUND: Recent cases of clinical failure in malaria patients in the United Kingdom (UK) treated with artemether-lumefantrine have implications for malaria chemotherapy worldwide. METHODS: Parasites were isolated from an index case of confirmed Plasmodium falciparum treatment failure after standard treatment, and from comparable travel-acquired UK malaria cases. Drug susceptibility in vitro and genotypes at 6 resistance-associated loci were determined for all parasite isolates and compared with clinical outcomes for each parasite donor. RESULTS: A traveler, who returned to the UK from Uganda in 2022 with Plasmodium falciparum malaria, twice failed treatment with full courses of artemether-lumefantrine. Parasites from the patient exhibited significantly reduced susceptibility to artemisinin (ring-stage survival, 17.3% [95% confidence interval {CI}, 13.6%-21.1%]; P < .0001) and lumefantrine (effective concentration preventing 50% of growth = 259.4 nM [95% CI, 130.6-388.2 nM]; P = .001). Parasite genotyping identified an allele of pfk13 encoding both the A675V variant in the Pfk13 propeller domain and a novel L145V nonpropeller variant. In vitro susceptibility testing of 6 other P. falciparum lines of Ugandan origin identified reduced susceptibility to artemisinin and lumefantrine in 1 additional line, also from a 2022 treatment failure case. These parasites did not harbor a pfk13 propeller domain variant but rather the novel nonpropeller variant T349I. Variant alleles of pfubp1, pfap2mu, and pfcoronin were also identified among the 7 parasite lines. CONCLUSIONS: We confirm, in a documented case of artemether-lumefantrine treatment failure imported from Uganda, the presence of pfk13 mutations encoding L145V and A675V. Parasites with reduced susceptibility to both artemisinin and lumefantrine may be emerging in Uganda.


Assuntos
Antimaláricos , Artemisininas , Malária Falciparum , Malária , Humanos , Lumefantrina/farmacologia , Lumefantrina/uso terapêutico , Plasmodium falciparum , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Combinação Arteméter e Lumefantrina/farmacologia , Combinação Arteméter e Lumefantrina/uso terapêutico , Uganda , Resistência a Medicamentos , Artemeter/farmacologia , Artemeter/uso terapêutico , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Malária/tratamento farmacológico , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Falha de Tratamento , Reino Unido , Proteínas de Protozoários/genética
12.
J Travel Med ; 31(3)2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38157311

RESUMO

BACKGROUND: Failure of artemisinin-based combination therapy is increasingly reported in patients with Plasmodium falciparum malaria in sub-Saharan Africa. We aimed to describe the clinical and genomic characteristics of recent cases of P. falciparum malaria failing artemether-lumefantrine in Belgium. METHODS: Travel-related cases of malaria confirmed at the national reference laboratory of the Institute of Tropical Medicine, Antwerp, Belgium, were reviewed. All cases for which attending clinicians reported persistence (beyond Day 3 post-treatment initiation, i.e. early failure) or recrudescence (from Day 7 to 42, i.e. late failure) of P. falciparum parasites despite adequate drug intake were analysed. Both initial and persistent/recurrent samples were submitted to next generation sequencing to investigate resistance-conferring mutations. RESULTS: From July 2022 to June 2023, eight P. falciparum cases of failure with artemether-lumefantrine therapy were reported (early failure = 1; late failure = 7). All travellers were returning from sub-Saharan Africa, most (6/8) after a trip to visit friends and relatives. PfKelch13 (PF3D7_1343700) mutations associated with resistance to artemisinin were found in two travellers returning from East Africa, including the validated marker R561H in the patient with early failure and the candidate marker A675V in a patient with late failure. Additional mutations were detected that could contribute to decreased susceptibility to artemisinin in another three cases, lumefantrine in six cases and proguanil in all eight participants. Various regimens were used to treat the persistent/recrudescent cases, with favourable outcome. CONCLUSION: Within a 12-month period, we investigated eight travellers returning from sub-Saharan Africa with P. falciparum malaria and in whom artemether-lumefantrine failure was documented. Mutations conferring resistance to antimalarials were found in all analysed blood samples, especially against lumefantrine and proguanil, but also artemisinin. There is a pressing need for systematic genomic surveillance of resistance to antimalarials in international travellers with P. falciparum malaria, especially those experiencing treatment failure.


Assuntos
Antimaláricos , Artemisininas , Malária Falciparum , Malária , Humanos , Antimaláricos/farmacologia , Artemeter/farmacologia , Combinação Arteméter e Lumefantrina/farmacologia , Artemisininas/farmacologia , Bélgica , Combinação de Medicamentos , Genômica , Lumefantrina/farmacologia , Malária/tratamento farmacológico , Malária Falciparum/tratamento farmacológico , Malária Falciparum/epidemiologia , Plasmodium falciparum/genética , Proguanil/farmacologia , Viagem , Doença Relacionada a Viagens
14.
Malar J ; 22(1): 330, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37919734

RESUMO

BACKGROUND: The emergence of resistance to artemisinin derivatives in Southeast Asia constitutes a serious threat for other malaria endemic areas, particularly in Côte d'Ivoire. To delay this resistance, the application of the control measures recommended by the National Malaria Control Programme (NMCP) for a correct management, in the private pharmacies, is a necessity. The purpose of this study was, therefore, to assess the level of knowledge and practices of private pharmacy auxiliary in Abidjan about the management of malaria. METHODS: A descriptive cross-sectional study was conducted from April to November 2015. It included auxiliaries of private pharmacies in Abidjan. Data collection material was a structured an open pretested questionnaire. Data analysis was carried out using Package for Social Science (SPSS) software version 21.1. Chi square test was used to compare proportions for a significance threshold of 0.05 for the p value. RESULTS: A total, 447 auxiliaries from 163 private pharmacies were interviewed. It was noted that the auxiliaries had a good knowledge of clinical signs of uncomplicated malaria (99.1%), biological examinations (54.6% for the thick film and 40.7% for rapid diagnostic tests (RDTs) and anti-malarial drugs (99.3% for artemether + lumefantrine, AL). The strategies of vector control (long-lasting insecticide-treated mosquito nets (LLITNs, Repellent ointments, cleaning gutters, elimination of larvae breeding site and intermittent preventive treatment with sulfadoxine-pyrimethamine (IPTp-SP) in pregnant women were also known by the auxiliaries, respectively 99.8% and 77.4%. However, the malaria pathogen (25.1%) and the NMCP recommendations (e.g. use of AL or AS + AQ as first-line treatment for uncomplicated malaria and IPTp-SP in pregnant women) were not well known by the auxiliaries (28.2% and 26.9% for uncomplicated and severe malaria). Concerning the practices of the auxiliaries, 91.1% offered anti-malarial drugs to patients without a prescription and 47.3% mentioned incorrect dosages. The combination artemether + lumefantrine was the most recommended (91.3%). The delivery of anti-malarial drugs was rarely accompanied by advice on malaria prevention, neither was it carried out on the result of an RDT. CONCLUSION: The epidemiology and the NMCP recommendations for the diagnostic and therapeutic management of malaria, are not well known to auxiliaries, which may have implications for their practices. These results show the need to sensitize and train private pharmacy auxiliaries, and also to involve them in NMCP activities.


Assuntos
Antimaláricos , Malária , Farmácias , Farmácia , Humanos , Feminino , Gravidez , Antimaláricos/uso terapêutico , Côte d'Ivoire , Estudos Transversais , Malária/epidemiologia , Combinação de Medicamentos , Inquéritos e Questionários , Lumefantrina/uso terapêutico , Artemeter/uso terapêutico
15.
Food Chem Toxicol ; 181: 114065, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37769895

RESUMO

Artemether-lumefantrine is an artemisinin-based combination therapy for the treatment of malaria, which are primarily metabolized by cytochrome P450 3A4. Therapeutic difference caused by gene polymorphisms of CYP3A4 may lead to uncertain adverse side effects or treatment failure. The aim of this study was to evaluate the effect of CYP3A4 gene polymorphism on artemether-lumefantrine metabolism in vitro. Enzyme kinetics assay was performed using recombinant human CYP3A4 cell microsomes. The analytes, dihydroartimisinin and desbutyl-lumefantrine, were detected by ultra-performance liquid chromatography tandem mass spectrometry. The results demonstrated that compared to CYP3A4.1, the intrinsic clearance of CYP3A4.4, 5, 9, 16, 18, 23, 24, 28, 31-34 significantly reduced for artemether (58.5%-93.3%), and CYP3A4.17 almost loss catalytic activity. Simultaneously, CYP3A4.5, 14, 17, 24 for lumefantrine were decreased by 56.1%-99.6%, and CYP3A4.11, 15, 18, 19, 23, 28, 29, 31-34 for lumefantrine was increased by 51.7%-296%. The variation in clearance rate indicated by molecular docking could be attributed to the disparity in the binding affinity of artemether and lumefantrine with CYP3A4. The data presented here have enriched our understanding of the effect of CYP3A4 gene polymorphism on artemether-lumefantrine metabolizing. These findings serve as a valuable reference and provide insights for guiding the treatment strategy involving artemether-lumefantrine.


Assuntos
Antimaláricos , Malária Falciparum , Humanos , Antimaláricos/efeitos adversos , Artemeter/uso terapêutico , Citocromo P-450 CYP3A/genética , Simulação de Acoplamento Molecular , Combinação Arteméter e Lumefantrina/uso terapêutico , Lumefantrina/uso terapêutico , Fluorenos/efeitos adversos , Malária Falciparum/induzido quimicamente , Malária Falciparum/tratamento farmacológico
16.
Sci Rep ; 13(1): 12172, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37500724

RESUMO

We investigated the impact of Coartem™ (COA) and aflatoxin B1 (AFB1) on rats' hypothalamus, epididymis, and testis. Male rats were randomly grouped (n = 5 rats) and treated: control group (corn oil), AFB1 (70 µg/kg), COA (5 mg/kg), COA + AFB1 (5 + 0.035 mg/kg) and COA + AFB1 (5 + 0.07 mg/kg) for 28 days. Blood samples were collected for serum prolactin, testosterone, follicle-stimulating and luteinising hormones (FSH and LH) assay upon sacrifice. The semen, hypothalamus, epididymis, and testes were harvested for morphological, biochemical, and histopathology determination of oxidative, inflammation stress, genomic integrity, and pathological alterations. Exposure to the COA and AFB1 caused the cauda epididymal spermatozoa to display low motility, viability, and volume, with increased abnormalities. Hormonal disruption ensued in animals exposed to COA and AFB1 alone or together, exemplified by increased prolactin, and decreased testosterone, FSH and LH levels. Treatment-related reduction in biomarkers of testicular metabolism-acid and alkaline phosphatases, glucose-6-phosphate dehydrogenase, and lactate dehydrogenase-were observed. Also, COA and AFB1 treatment caused reductions in antioxidant (Glutathione and total thiols) levels and antioxidant enzyme (Catalase, superoxide dismutase, glutathione peroxidase, and glutathione-S-transferase) activities in the examined organs. At the same time, treatment-related increases in DNA damage (p53), oxidative stress (xanthine oxidase, reactive oxygen and nitrogen species and lipid peroxidation), inflammation (nitric oxide and tumour necrosis factor-alpha), and apoptosis (caspase-9, and -3) were observed. Chronic exposure to COA and AFB1 led to oxidative stress, inflammation, and DNA damage in male rats' hypothalamic-reproductive axis, which might potentiate infertility if not contained.


Assuntos
Antimaláricos , Antioxidantes , Ratos , Masculino , Animais , Antioxidantes/metabolismo , Antimaláricos/farmacologia , Aflatoxina B1/metabolismo , Artesunato/farmacologia , Lumefantrina/farmacologia , Prolactina/metabolismo , Testículo/metabolismo , Estresse Oxidativo , Glutationa/metabolismo , Testosterona , Hormônio Foliculoestimulante , Inflamação/metabolismo
17.
Malar J ; 22(1): 171, 2023 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-37270589

RESUMO

BACKGROUND: Pfcrt gene has been associated with chloroquine resistance and the pfmdr1 gene can alter malaria parasite susceptibility to lumefantrine, mefloquine, and chloroquine. In the absence of chloroquine (CQ) and extensive use of artemether-lumefantrine (AL) from 2004 to 2020 to treat uncomplicated falciparum malaria, pfcrt haplotype, and pfmdr1 single nucleotide polymorphisms (SNPs) were determined in two sites of West Ethiopia with a gradient of malaria transmission. METHODS: 230 microscopically confirmed P. falciparum isolates were collected from Assosa (high transmission area) and Gida Ayana (low transmission area) sites, of which 225 of them tested positive by PCR. High-Resolution Melting Assay (HRM) was used to determine the prevalence of pfcrt haplotypes and pfmdr1 SNPs. Furthermore, the pfmdr1 gene copy number (CNV) was determined using real-time PCR. A P-value of less or equal to 0.05 was considered significant. RESULTS: Of the 225 samples, 95.5%, 94.4%, 86.7%, 91.1%, and 94.2% were successfully genotyped with HRM for pfcrt haplotype, pfmdr1-86, pfmdr1-184, pfmdr1-1042 and pfmdr1-1246, respectively. The mutant pfcrt haplotypes were detected among 33.5% (52/155) and 80% (48/60) of isolates collected from the Assosa and Gida Ayana sites, respectively. Plasmodium falciparum with chloroquine-resistant haplotypes was more prevalent in the Gida Ayana area compared with the Assosa area (COR = 8.4, P = 0.00). Pfmdr1-N86Y wild type and 184F mutations were found in 79.8% (166/208) and 73.4% (146/199) samples, respectively. No single mutation was observed at the pfmdr1-1042 locus; however, 89.6% (190/212) of parasites in West Ethiopia carry the wild-type D1246Y variants. Eight pfmdr1 haplotypes at codons N86Y-Y184F-D1246Y were identified with the dominant NFD 61% (122/200). There was no difference in the distribution of pfmdr1 SNPs, haplotypes, and CNV between the two study sites (P > 0.05). CONCLUSION: Plasmodium falciparum with the pfcrt wild-type haplotype was prevalent in high malaria transmission site than in low transmission area. The NFD haplotype was the predominant haplotype of the N86Y-Y184F-D1246Y. A continuous investigation is needed to closely monitor the changes in the pfmdr1 SNPs, which are associated with the selection of parasite populations by ACT.


Assuntos
Antimaláricos , Malária Falciparum , Malária , Humanos , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Etiópia/epidemiologia , Combinação Arteméter e Lumefantrina/uso terapêutico , Artemeter/uso terapêutico , Malária Falciparum/parasitologia , Cloroquina/farmacologia , Cloroquina/uso terapêutico , Malária/tratamento farmacológico , Lumefantrina/uso terapêutico , Plasmodium falciparum , Polimorfismo de Nucleotídeo Único , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas de Protozoários/genética , Proteínas de Protozoários/uso terapêutico , Resistência a Medicamentos/genética
19.
Lancet Infect Dis ; 23(9): 1051-1061, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37327809

RESUMO

BACKGROUND: Emergence of drug resistance demands novel antimalarial drugs with new mechanisms of action. We aimed to identify effective and well tolerated doses of ganaplacide plus lumefantrine solid dispersion formulation (SDF) in patients with uncomplicated Plasmodium falciparum malaria. METHODS: This open-label, multicentre, parallel-group, randomised, controlled, phase 2 trial was conducted at 13 research clinics and general hospitals in ten African and Asian countries. Patients had microscopically-confirmed uncomplicated P falciparum malaria (>1000 and <150 000 parasites per µL). Part A identified the optimal dose regimens in adults and adolescents (aged ≥12 years) and in part B, the selected doses were assessed in children (≥2 years and <12 years). In part A, patients were randomly assigned to one of seven groups (once a day ganaplacide 400 mg plus lumefantrine-SDF 960 mg for 1, 2, or 3 days; ganaplacide 800 mg plus lumefantrine-SDF 960 mg as a single dose; once a day ganaplacide 200 mg plus lumefantrine-SDF 480 mg for 3 days; once a day ganaplacide 400 mg plus lumefantrine-SDF 480 mg for 3 days; or twice a day artemether plus lumefantrine for 3 days [control]), with stratification by country (2:2:2:2:2:2:1) using randomisation blocks of 13. In part B, patients were randomly assigned to one of four groups (once a day ganaplacide 400 mg plus lumefantrine-SDF 960 mg for 1, 2, or 3 days, or twice a day artemether plus lumefantrine for 3 days) with stratification by country and age (2 to <6 years and 6 to <12 years; 2:2:2:1) using randomisation blocks of seven. The primary efficacy endpoint was PCR-corrected adequate clinical and parasitological response at day 29, analysed in the per protocol set. The null hypothesis was that the response was 80% or lower, rejected when the lower limit of two-sided 95% CI was higher than 80%. This study is registered with EudraCT (2020-003284-25) and ClinicalTrials.gov (NCT03167242). FINDINGS: Between Aug 2, 2017, and May 17, 2021, 1220 patients were screened and of those, 12 were included in the run-in cohort, 337 in part A, and 175 in part B. In part A, 337 adult or adolescent patients were randomly assigned, 326 completed the study, and 305 were included in the per protocol set. The lower limit of the 95% CI for PCR-corrected adequate clinical and parasitological response on day 29 was more than 80% for all treatment regimens in part A (46 of 50 patients [92%, 95% CI 81-98] with 1 day, 47 of 48 [98%, 89-100] with 2 days, and 42 of 43 [98%, 88-100] with 3 days of ganaplacide 400 mg plus lumefantrine-SDF 960 mg; 45 of 48 [94%, 83-99] with ganaplacide 800 mg plus lumefantrine-SDF 960 mg for 1 day; 47 of 47 [100%, 93-100] with ganaplacide 200 mg plus lumefantrine-SDF 480 mg for 3 days; 44 of 44 [100%, 92-100] with ganaplacide 400 mg plus lumefantrine-SDF 480 mg for 3 days; and 25 of 25 [100%, 86-100] with artemether plus lumefantrine). In part B, 351 children were screened, 175 randomly assigned (ganaplacide 400 mg plus lumefantrine-SDF 960 mg once a day for 1, 2, or 3 days), and 171 completed the study. Only the 3-day regimen met the prespecified primary endpoint in paediatric patients (38 of 40 patients [95%, 95% CI 83-99] vs 21 of 22 [96%, 77-100] with artemether plus lumefantrine). The most common adverse events were headache (in seven [14%] of 51 to 15 [28%] of 54 in the ganaplacide plus lumefantrine-SDF groups and five [19%] of 27 in the artemether plus lumefantrine group) in part A, and malaria (in 12 [27%] of 45 to 23 [44%] of 52 in the ganaplacide plus lumefantrine-SDF groups and 12 [50%] of 24 in the artemether plus lumefantrine group) in part B. No patients died during the study. INTERPRETATION: Ganaplacide plus lumefantrine-SDF was effective and well tolerated in patients, especially adults and adolescents, with uncomplicated P falciparum malaria. Ganaplacide 400 mg plus lumefantrine-SDF 960 mg once daily for 3 days was identified as the optimal treatment regimen for adults, adolescents, and children. This combination is being evaluated further in a phase 2 trial (NCT04546633). FUNDING: Novartis and Medicines for Malaria Venture.


Assuntos
Antimaláricos , Artemisininas , Malária Falciparum , Malária , Adulto , Adolescente , Criança , Humanos , Lumefantrina/farmacologia , Lumefantrina/uso terapêutico , Fluorenos/uso terapêutico , Fluorenos/farmacologia , Etanolaminas/uso terapêutico , Etanolaminas/farmacologia , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Artemeter/farmacologia , Artemeter/uso terapêutico , Malária/tratamento farmacológico , Combinação de Medicamentos , Plasmodium falciparum , Resultado do Tratamento
20.
Malar J ; 22(1): 165, 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37237283

RESUMO

BACKGROUND: Substandard anti-malarial agents pose a significant challenge to effective malaria control and elimination efforts especially in sub-Saharan Africa. The quality of anti-malarials in most low-and-middle income countries (LMICs) is affected by several factors including inadequate regulation and limited resources. In this study, the pharmacopeial quality of artemether-lumefantrine (AL) in low and high malaria transmission settings in Uganda was assessed. METHODS: This was a cross-sectional study conducted among randomly selected private drug outlets. The AL anti-malarials available in drug outlets were purchased using overt method. The samples were screened for quality using visual inspection, weight uniformity, content assay and dissolution tests. The assay test was done using liquid chromatography-mass spectrometry (LC-MS). The samples were considered substandard if the active pharmaceutical ingredient (API) content was outside 90-110% range of the label claim. Dissolution test was conducted following United States Pharmacopoeia (USP) method. Data was analysed using descriptive statistics and presented as means with standard deviations, frequencies, and proportions. Correlation between medicine quality and independent variables was determined using Fisher's exact test of independence at 95% level of significance. RESULTS: A total of 74 AL anti-malarial samples were purchased from high (49/74; 66.2%) and low (25/74; 33.8%) malaria transmission settings. The most common batch of AL was LONART, 32.4% (24/74), with 33.8% (25/74) being 'Green leaf'. Overall prevalence of substandard quality artemether-lumefantrine was 18.9% (14/74; 95% CI: 11.4-29.7). Substandard quality AL was significantly associated with setting (p = 0.002). A total of 10 samples (13.5%) failed artemether content assay test while, 4 samples (5.4%, 4/74) failed the lumefantrine assay test. One sample from a high malaria transmission setting failed both artemether and lumefantrine assay content test. Of the samples that failed artemether assay test, 90% had low (< 90%) artemether content. All the samples passed visual inspection and dissolution tests. CONCLUSION: Artemether-lumefantrine agents, the recommended first-line treatment for uncomplicated malaria with APIs outside the recommended pharmacopeial content assay limit is common especially in high malaria transmission settings. There is need for continuous surveillance and monitoring of the quality of artemisinin-based anti-malarials across the country by the drug regulatory agency.


Assuntos
Antimaláricos , Malária Falciparum , Malária , Humanos , Antimaláricos/análise , Combinação Arteméter e Lumefantrina/uso terapêutico , Combinação Arteméter e Lumefantrina/análise , Artemeter/uso terapêutico , Uganda , Estudos Transversais , Malária/prevenção & controle , Lumefantrina/uso terapêutico , Malária Falciparum/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...