Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 21477, 2024 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-39277666

RESUMO

To investgate the effects of potassium (K) application on the agronomic traits and fruit quality of Lycium barbarum L. (Goji), three levels of K fertilizer, namely LK (25 g/plant), CK (50 g/plant), and HK (75 g/plant), were applied to plants in phytotron for observing and measuring relevant indicators. The investigation involved seven agronomic traits: plant height, plant stem diameter, new branch increment, yield of fresh fruits per plant, dry fruit quantity within 50 g, ratio of different grade fruits, and ratio of longitudinal diameter to transverse diameter of Goji fruits. The results showed that K application level had significant effect on ratio of the longitudinal diameter to the transverse diameter of fresh Goji fruits, and that the influence on other agronomic traits was slight. In the meanwhile, the concentrations of amino acids, betaine, polysaccharides and flavonoids of Goji fruits in different levels of K fertilizer were tested. The K treatment increased the content of glutamic acid, and decreased that of flavonoids (P < 0.05), whereas the content of other amino acids, polysaccharides and betaine were unaffected. A total of 132 flavonoid metabolites was identified. Among them, K treatment up-regulated 36 metabolites and down-regulated 30 metabolites (P < 0.05). The results provided a basis for balanced K supply to regulate the agronomic traits and nutrients of Goji fruits.


Assuntos
Fertilizantes , Frutas , Lycium , Potássio , Lycium/crescimento & desenvolvimento , Lycium/metabolismo , Potássio/metabolismo , Potássio/análise , Frutas/metabolismo , Frutas/efeitos dos fármacos , Fertilizantes/análise , Flavonoides/análise , Flavonoides/metabolismo
2.
Sci Rep ; 14(1): 21554, 2024 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-39284876

RESUMO

To investigate the effects of different typical exogenous salt concentrations on total soil salinity and the growth of Lycium barbarum under brackish water irrigation, and to determine the salinity threshold of irrigated brackish water that is conducive to the normal growth of Lycium barbarum while mitigating soil salinity accumulation. Four typical exogenous salts (NaCl, CaCl2, NaHCO3, Na2SO4) were selected and set at four concentrations (0.1, 0.5, 2.0, 4.0 g L-1) to conduct a field crossover experiments in the downstream region of the Hetao Irrigation District. The results showed that in the same fertility period, the growth rates of new branches, ground diameter, and crown width first increased and then decreased with rising concentrations of NaCl, CaCl2, and Na2SO4, but showed an inverse relationship with NaHCO3 concentrations. Furthermore, increasing salt concentrations linearly reduced the yield of dry fruits from Lycium barbarum and led to a notable accumulation of total soil salts. Utilizing an experimental research approach, a comprehensive analysis of involving multiple growth indices, stable yield, and soil salinity control of Lycium barbarum revealed that optimal growth occurs at salt concentrations of 0.1-0.5 g L-1 for different water quality areas within the irrigation area; using the method of path analysis identified the total soil salt and crown width as the primary direct and indirect factors influencing the yield of Lycium barbarum. The results of this study provide scientific basis and significant theoretical support for the safe and rational utilization of brackish water and cultivation of Lycium barbarum in typical regions with varying saline water qualities of Hetao irrigation area.


Assuntos
Irrigação Agrícola , Lycium , Rizosfera , Águas Salinas , Salinidade , Solo , Lycium/crescimento & desenvolvimento , Lycium/metabolismo , Irrigação Agrícola/métodos , Solo/química , Cloreto de Sódio/farmacologia
4.
J Agric Food Chem ; 72(22): 12752-12761, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38779924

RESUMO

This study investigated the transformation of polyphenols, including free and bound polyphenols during the fermentation of wolfberry juice by Lactobacillus plantarum NCU137. Results indicated that fermentation significantly increased the free polyphenols content and released bound polyphenols, enhancing the antioxidant activity. Analysis showed that there were 19 free polyphenols, mainly scopoletin, pyrogallol, and dihydroferulic acid, and 16 bound polyphenols, especially p-coumaric acid, feruloyl hexoside, and caffeic acid. A significant correlation was observed between the generation and degradation of polyphenols, and specific bound polyphenols peaked during the 24-48 h fermentation. Furthermore, reduced surface roughness and galacturonic acid content in wolfberry residue, along with increased pectinase activity, suggested substantial pectin degradation in the cell wall, which may be associated with the release of polyphenols, due to pectin serving as carriers for bound polyphenols. The fermentation also increased polyphenol oxidase and peroxidase activity, contributing to polyphenol breakdown. These findings provide insights for improving wolfberry juice production.


Assuntos
Antioxidantes , Fermentação , Sucos de Frutas e Vegetais , Frutas , Lactobacillus plantarum , Lycium , Polifenóis , Lactobacillus plantarum/metabolismo , Lactobacillus plantarum/química , Polifenóis/metabolismo , Polifenóis/química , Antioxidantes/metabolismo , Antioxidantes/química , Sucos de Frutas e Vegetais/análise , Frutas/química , Frutas/metabolismo , Frutas/microbiologia , Lycium/química , Lycium/metabolismo , Pectinas/metabolismo , Pectinas/química
5.
Food Chem ; 453: 139659, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-38776792

RESUMO

There is a lack of research on how Tibetan kefir grains fermentation alters the physicochemical properties and biological activity of Lycium barbarum pulp polysaccharides, despite some reports that fermentation can affect the structure and activity of plant polysaccharides. This study demonstrated that, through fermentation, the molecular weight of polysaccharides decreased from 25.33 to 15.11 kg/mol while the contents of total sugar and uronic acid increased by 19.11% and 40.38%, respectively. Furthermore, after fermentation, the polysaccharides exhibited an uneven and rough surface along with a reduced number of branched chains and triple helix structures. Tibetan kefir grains fermentation enhanced the antioxidant activity of polysaccharides, which may be attributed to an increase in arabinose, galactose, and uronic acid content and a decrease in polysaccharide molecular weight. This research offers an alternative viewpoint on the potential application of Tibetan kefir grains-fermented Lycium barbarum pulp polysaccharides in functional foods.


Assuntos
Antioxidantes , Fermentação , Kefir , Lycium , Polissacarídeos , Lycium/química , Lycium/metabolismo , Antioxidantes/química , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Kefir/microbiologia , Kefir/análise , Polissacarídeos/química , Polissacarídeos/metabolismo , Polissacarídeos/farmacologia , Peso Molecular , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/metabolismo , Medicamentos de Ervas Chinesas
6.
Sci Rep ; 14(1): 10586, 2024 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719951

RESUMO

Carotenoids play essential roles in plant growth and development and provide plants with a tolerance to a series of abiotic stresses. In this study, the function and biological significance of lycopene ß-cyclase, lycopene ε-cyclase, and ß-carotene hydroxylase, which are responsible for the modification of the tetraterpene skeleton procedure, were isolated from Lycium chinense and analyzed. The overexpression of lycopene ß-cyclase, lycopene ε-cyclase, and ß-carotene hydroxylase promoted the accumulation of total carotenoids and photosynthesis enhancement, reactive oxygen species scavenging activity, and proline content of tobacco seedlings after exposure to the salt stress. Furthermore, the expression of the carotenoid biosynthesis genes and stress-related genes (ascorbate peroxidase, catalase, peroxidase, superoxide dismutase, and pyrroline-5-carboxylate reductase) were detected and showed increased gene expression level, which were strongly associated with the carotenoid content and reactive oxygen species scavenging activity. After exposure to salt stress, the endogenous abscisic acid content was significantly increased and much higher than those in control plants. This research contributes to the development of new breeding aimed at obtaining stronger salt tolerance plants with increased total carotenoids and vitamin A content.


Assuntos
Carotenoides , Regulação da Expressão Gênica de Plantas , Lycium , Nicotiana , Proteínas de Plantas , Tolerância ao Sal , Carotenoides/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Tolerância ao Sal/genética , Lycium/genética , Lycium/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Espécies Reativas de Oxigênio/metabolismo , Liases Intramoleculares/genética , Liases Intramoleculares/metabolismo , Fotossíntese/genética , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Ácido Abscísico/metabolismo
7.
Nat Commun ; 15(1): 4588, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816433

RESUMO

Lycibarbarspermidines are unusual phenolamide glycosides characterized by a dicaffeoylspermidine core with multiple glycosyl substitutions, and serve as a major class of bioactive ingredients in the wolfberry. So far, little is known about the enzymatic basis of the glycosylation of phenolamides including dicaffeoylspermidine. Here, we identify five lycibarbarspermidine glycosyltransferases, LbUGT1-5, which are the first phenolamide-type glycosyltransferases and catalyze regioselective glycosylation of dicaffeoylspermidines to form structurally diverse lycibarbarspermidines in wolfberry. Notably, LbUGT3 acts as a distinctive enzyme that catalyzes a tandem sugar transfer to the ortho-dihydroxy group on the caffeoyl moiety to form the unusual ortho-diglucosylated product, while LbUGT1 accurately discriminates caffeoyl and dihydrocaffeoyl groups to catalyze a site-selective sugar transfer. Crystal structure analysis of the complexes of LbUGT1 and LbUGT3 with UDP, combined with molecular dynamics simulations, revealed the structural basis of the difference in glycosylation selectivity between LbUGT1 and LbUGT3. Site-directed mutagenesis illuminates a conserved tyrosine residue (Y389 in LbUGT1 and Y390 in LbUGT3) in PSPG box that plays a crucial role in regulating the regioselectivity of LbUGT1 and LbUGT3. Our study thus sheds light on the enzymatic underpinnings of the chemical diversity of lycibarbarspermidines in wolfberry, and expands the repertoire of glycosyltransferases in nature.


Assuntos
Glicosiltransferases , Lycium , Glicosiltransferases/metabolismo , Glicosiltransferases/química , Glicosiltransferases/genética , Glicosilação , Lycium/enzimologia , Lycium/metabolismo , Lycium/química , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/química , Glicosídeos/metabolismo , Glicosídeos/química , Cristalografia por Raios X , Piperidinas/metabolismo , Piperidinas/química , Especificidade por Substrato
8.
Plant Physiol ; 195(2): 1461-1474, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38431527

RESUMO

Black goji berry (Lycium ruthenicum Murray) contains a rich source of health-promoting anthocyanins which are used in herbal medicine and nutraceutical foods in China. A natural variant producing white berries allowed us to identify two key genes involved in the regulation of anthocyanin biosynthesis in goji berries: one encoding a MYB transcription factor (LrAN2-like) and one encoding a basic helix-loop-helix (bHLH) transcription factor (LrAN1b). We previously found that LrAN1b expression was lost in the white berry variant, but the molecular basis for this phenotype was unknown. Here, we identified the molecular mechanism for loss of anthocyanins in white goji berries. In white goji, the LrAN1b promoter region has a 229 bp deletion that removes three MYB-binding elements and one bHLH-binding element, which are key to its expression. Complementation of the white goji berry LrAN1b allele with the LrAN1b promoter restored pigmentation. Virus-induced gene silencing of LrAN1b in black goji berry reduced fruit anthocyanin biosynthesis. Molecular analyses showed that LrAN2-like and another bHLH transcription factor LrJAF13 can activate LrAN1b by binding directly to the MYB-recognizing element and bHLH-recognizing element of its promoter-deletion region. LrAN1b expression is enhanced by the interaction of LrAN2-like with LrJAF13 and the WD40 protein LrAN11. LrAN2-like and LrAN11 interact with either LrJAF13 or LrAN1b to form two MYB-bHLH-WD40 complexes, which hierarchically regulate anthocyanin biosynthesis in black goji berry. This study on a natural variant builds a comprehensive anthocyanin regulatory network that may be manipulated to tailor goji berry traits.


Assuntos
Antocianinas , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Frutas , Regulação da Expressão Gênica de Plantas , Lycium , Proteínas de Plantas , Regiões Promotoras Genéticas , Antocianinas/biossíntese , Antocianinas/metabolismo , Regiões Promotoras Genéticas/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Frutas/genética , Frutas/metabolismo , Lycium/genética , Lycium/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Deleção de Sequência , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
9.
BMC Plant Biol ; 24(1): 82, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38302892

RESUMO

BACKGROUND: Wolfberry is well-known for its high nutritional value and medicinal benefits. Due to the continuous ripening nature of Goji berries and the fact that they can be commercially harvested within a few weeks, their phytochemical composition may change during the harvesting process at different periods. RESULT: The involved molecular mechanisms of difference in fruit quality of ripe Lycium barbarum L. harvested at four different periods were investigated by transcriptomic and metabolomics analyses for the first time. According to the results we obtained, it was found that the appearance quality of L. barbarum fruits picked at the beginning of the harvesting season was superior, while the accumulation of sugar substances in L. barbarum fruits picked at the end of the harvesting season was better. At the same time the vitamin C and carotenoids content of wolfberry fruits picked during the summer harvesting season were richer. Ascorbic acid, succinic acid, glutamic acid, and phenolic acids have significant changes in transcription and metabolism levels. Through the network metabolic map, we found that ascorbic acid, glutamic acid, glutamine and related enzyme genes were differentially accumulated and expressed in wolfberry fruits at different harvesting periods. Nevertheless, these metabolites played important roles in the ascorbate-glutathione recycling system. Ascorbic acid, phenolic substances and the ascorbate-glutathione recycling system have antioxidant effects, which makes the L. barbarum fruits harvested in the summer more in line with market demand and health care concepts. CONCLUSION: This study laid the foundation for understanding the molecular regulatory mechanisms of quality differences of ripe wolfberry fruits harvested at different periods, and provides a theoretical basis for enhancing the quality of L. barbarum fruits.


Assuntos
Lycium , Lycium/genética , Lycium/metabolismo , Frutas/metabolismo , Perfilação da Expressão Gênica , Metaboloma , Ácido Ascórbico/metabolismo , Glutationa/metabolismo , Glutamatos/metabolismo
10.
Carbohydr Polym ; 330: 121882, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38368089

RESUMO

Structurally defined arabinogalactan (LBP-3) from Lycium barbarum have effect on improving intestinal barrier function. However, whether its intestinal barrier function depended on the changes of intestinal mucin O-glycans have not been investigated. A dextran sodium sulfate-induced acute colitis mouse model was employed to test prevention and treatment with LBP-3. The intestinal microbiota as well as colonic mucin O-glycan profiles were analyzed. Supplementation with LBP-3 inhibited harmful bacteria, including Desulfovibrionaceae, Enterobacteriaceae, and Helicobacteraceae while significantly increased the abundance of beneficial bacteria (e.g., Lachnospiraceae, Ruminococcaceae, and Lactobacillaceae). Notably, LBP-3 augmented the content of neutral O-glycans by stimulating the fucosylation glycoforms (F1H1N2 and F1H2N2), short-chain sulfated O-glycans (S1F1H1N2, S1H1N2, and S1H2N3), and sialylated medium- and long-chain O-glycans (F1H2N2A1, H2N3A1, and F1H3N2A1). In summary, we report that supplement LBP-3 significantly reduced pathological symptoms, restored the bacterial community, and promoted the expression of O-glycans to successfully prevent and alleviate colitis in a mouse model, especially in the LBP-3 prevention testing group. The underlying mechanism of action was investigated using glycomics to better clarify which the structurally defined LBP-3 were responsible for its beneficial effect against ulcerative colitis and assess its use as a functional food or pharmaceutical supplement.


Assuntos
Colite , Galactanos , Lycium , Camundongos , Animais , Mucinas/metabolismo , Lycium/metabolismo , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Polissacarídeos/efeitos adversos , Bactérias/metabolismo , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
11.
J Ethnopharmacol ; 325: 117889, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38336183

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The fruit of Lycium barbarum L. (goji berry) is a traditional Chinese medicine and is often used to improve vision. While various goji cultivars may differentially treat retinal degeneration, however their comparative effectiveness remains unclear. AIM OF THE STUDY: To evaluate the protective effects of four goji cultivars on NaIO3-induced retinal degeneration mouse model and identify the most therapeutically potent cultivar. MATERIALS AND METHODS: The principal compounds in the extracts of four goji cultivars were characterized by UPLC-Q-TOF/MS. A retinal degeneration mouse model was established via NaIO3 injection. Dark-light transition and TUNEL assays were used to assess visual function and retinal apoptosis. The levels of antioxidative, inflammatory, and angiogenic markers in serums and eyeballs were measured. Hierarchical cluster analysis, principal component analysis and partial least squares-discriminant analysis were used to objectively compare the treatment responses. RESULTS: Sixteen compounds were identified in goji berry extracts. All goji berry extracts could reverse NaIO3-induced visual impairment, retinal damage and apoptosis. The samples from the cultivar of Ningqi No.1 significantly modulated oxidative stress, inflammation, and vascular endothelial growth factor levels, which are more effectively than the other cultivars based on integrated multivariate profiling. CONCLUSION: Ningqi No.1 demonstrated a stronger protective effect on mouse retina than other goji cultivars, and is a potential variety for further research on the treatment of retinal degeneration.


Assuntos
Lycium , Degeneração Retiniana , Camundongos , Animais , Degeneração Retiniana/induzido quimicamente , Degeneração Retiniana/tratamento farmacológico , Lycium/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antioxidantes/metabolismo , Estresse Oxidativo , Modelos Animais de Doenças
12.
Food Funct ; 15(3): 1612-1626, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38240339

RESUMO

Juice fermented with lactic acid bacteria (LAB) has received attention due to its health benefits, such as antioxidant and anti-inflammatory. Previous research on LAB-fermented goji juice mainly focused on exploring the changes in the metabolite profile and antioxidant activity in vitro, whereas the liver protection properties of LAB-fermented goji juice in vivo are still unknown. This study aimed to investigate the effects of Lacticaseibacillus paracasei E10-fermented goji juice (E10F), Lactiplantibacillus plantarum M-fermented goji juice (MF), Lacticaseibacillus rhamnosus LGG-fermented goji juice (LGGF) on preventing acute alcoholic liver injury with physiology, gut microbial, and metabolic profiles in mice. Compared with goji juice, E10F, MF, and LGGF enhanced the protective effect against liver injury by reducing serum alanine transaminase (ALT) levels, improving the hepatic glutathione (GSH) antioxidant system, and attenuating inflammation by decreasing the levels of interleukin (IL)-1ß, IL-6, tumor necrosis factor (TNF)-α, and transforming growth factor (TGF)-ß. Furthermore, E10F, MF, and LGGF increased intestinal integrity, restructured the gut microbiota including Bacteroides and Lactobacillus, and altered gut microbial metabolites including kyotorphin, indolelactic acid, and N-methylserotonin. Pretreatment of different LAB-fermented goji juice in mice showed significant differences in gut microbiota and metabolism. The correlation analysis demonstrated that the increase of Lactobacillus, indolelactic acid, and N-methylserotonin by E10F, MF, and LGGF was positively correlated with reduced inflammation and improved liver and gut function. Taken together, E10F, MF, and LGGF all have the potential to be converted into dietary interventions to combat acute alcoholic liver injury. It provided a reference for the study of the hepatoprotective effect of LAB-fermented goji juice.


Assuntos
Microbioma Gastrointestinal , Lactobacillales , Lycium , Serotonina/análogos & derivados , Camundongos , Animais , Lycium/metabolismo , Antioxidantes/metabolismo , Fermentação , Ácido Láctico/metabolismo , Lactobacillus/metabolismo , Lactobacillales/metabolismo , Fígado/metabolismo , Inflamação/metabolismo , Etanol/metabolismo
13.
Plant Biotechnol J ; 22(6): 1435-1452, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38194521

RESUMO

Wolfberry is a plant with medicinal and food values. However, its bioactive ingredients and the corresponding genetic bases have not been determined. Here, we de novo generated a chromosome-level genome assembly for wolfberry, yielding a genome sequence of ~1.77 Gb with contig N50 of 50.55 Mb and 39 224 predicted gene models. A variation map, using 307 re-sequenced accessions, was called based on this genome assembly. Furthermore, the fruit metabolome of these accessions was profiled using 563 annotated metabolites, which separated Lycium barbarum L. and non-L. barbarum L. The flavonoids, coumarins, alkaloids and nicotinic acid contents were higher in the former than in the latter. A metabolite-based genome-wide association study mapped 156 164 significant single nucleotide polymorphisms corresponding to 340 metabolites. This included 19 219 unique lead single nucleotide polymorphisms in 1517 significant association loci, of which three metabolites, flavonoids, betaine and spermidine, were highlighted. Two candidate genes, LbUGT (evm.TU.chr07.2692) and LbCHS (evm.TU.chr07.2738), with non-synonymous mutations, were associated with the flavonoids content. LbCHS is a structural gene that interacts with a nearby MYB transcription factor (evm.TU.chr07.2726) both in L. barbarum and L. ruthenicum. Thus, these three genes might be involved in the biosynthesis/metabolism of flavonoids. LbSSADH (evm.TU.chr09.627) was identified as possibly participating in betaine biosynthesis/metabolism. Four lycibarbarspermidines (E-G and O) were identified, and only the lycibarbarspermidines O content was higher in L. barbarum varieties than in non-L. barbarum varieties. The evm.TU.chr07.2680 gene associated with lycibarbarspermidines O was annotated as an acetyl-CoA-benzylalcohol acetyltransferase, suggesting that it is a candidate gene for spermidine biosynthesis. These results provide novel insights into the specific metabolite profile of non-L. barbarum L. and the genetic bases of flavonoids, betaine and spermidine biosynthesis/metabolism.


Assuntos
Betaína , Flavonoides , Estudo de Associação Genômica Ampla , Lycium , Polimorfismo de Nucleotídeo Único , Espermidina , Flavonoides/metabolismo , Lycium/genética , Lycium/metabolismo , Espermidina/metabolismo , Betaína/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Genoma de Planta/genética , Frutas/genética , Frutas/metabolismo
14.
Biol Pharm Bull ; 47(1): 138-144, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38171773

RESUMO

Sjögren's syndrome (SS) is an autoimmune disorder characterized by oral dryness that is primarily attributed to tumor necrosis factor alpha (TNF-α)-mediated reduction in saliva production. In traditional Chinese medicine, goji berries are recognized for their hydrating effect and are considered suitable to address oral dryness associated with Yin deficiency. In the present study, we used goji berry juice (GBJ) to investigate the potential preventive effect of goji berries on oral dryness caused by SS. Pretreatment of human salivary gland cells with GBJ effectively prevented the decrease in aquaporin-5 (AQP-5) mRNA and protein levels induced by TNF-α. GBJ also inhibited histone H4 deacetylation and suppressed the generation of intracellular reactive oxygen species (ROS). Furthermore, GBJ pretreatment reserved mitochondrial membrane potential and suppressed the upregulation of Bax and caspase-3, indicating that GBJ exerted an antiapoptotic effect. These findings suggest that GBJ provides protection against TNF-α in human salivary gland cells and prevents the reduction of AQP-5 expression on the cell membrane. Altogether, these results highlight the potential role of GBJ in preventing oral dryness caused by SS.


Assuntos
Lycium , Síndrome de Sjogren , Xerostomia , Humanos , Fator de Necrose Tumoral alfa/metabolismo , Lycium/metabolismo , Glândulas Salivares/metabolismo , Glândulas Salivares/patologia , Xerostomia/induzido quimicamente , Xerostomia/prevenção & controle , Xerostomia/complicações , Síndrome de Sjogren/complicações , Síndrome de Sjogren/metabolismo , Síndrome de Sjogren/patologia , Aquaporina 5/genética
15.
Anticancer Agents Med Chem ; 24(2): 132-145, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37957869

RESUMO

INTRODUCTION: The increasing number of studies have shown that Lycium barbarum polysaccharides possess anti-tumor effects. However, the determination of the active ingredients and their mechanism against melanoma inhibition are still unknown. METHODS: In this study, we aimed to investigate the mechanisms of action of Lycium barbarum active glycopeptide (LBAG) on melanoma. LBAG was extracted and isolated from the fruit of Lycium barbarum using aqueous alcoholic precipitation and identified using ultra-performance liquid chromatography-quadrupole-time of flightmass spectrometry. Various assays including cell apoptosis, cell cycle analysis, colony formation assay, cell scratch test, flow cytometry, and Western blot were performed to evaluate the effects of LBAG on melanoma. RESULTS: The results showed that LBAG has a molecular weight of 10-15 kDa and contains Man, Rha, GlcA, Glc, Gal, and Ara18 amino acids. Treatment with LBAG significantly decreased B16 cell proliferation and induced cell cycle arrest at the G0/G phase, accompanied by the accumulation of reactive oxygen species. Western blot analysis revealed that the phosphorylation of P38-MAPK and AKT, as well as the expression of N-acetyl-Lcysteine, were related to cell apoptosis and cell cycle regulation. In mouse xenografts, LBAG inhibited tumor growth through the P38-MAPK and AKT signaling pathways. CONCLUSION: In conclusion, the anti-melanoma activity of LBAG may induce apoptosis in cancer cells through ROSmediated activation of the P38-MAPK and AKT signaling pathways. These findings provide a foundation for further research on the anti-melanoma potential of LBAG.


Assuntos
Lycium , Melanoma , Masculino , Humanos , Animais , Camundongos , Lycium/química , Lycium/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Melanoma/tratamento farmacológico , Transdução de Sinais , Pontos de Checagem do Ciclo Celular , Apoptose
16.
Tree Physiol ; 44(1)2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-38079510

RESUMO

Trichoderma can promote plant growth under saline stress, but the mechanisms remain to be revealed. In this study, we investigate photosynthetic gas exchange, photosystem II (PSII) performance, nitrogen absorption and accumulation in a medicinal plant wolfberry (Lycium chinense) in saline soil supplemented with Trichoderma biofertilizer (TF). Larger nitrogen and biomass accumulation were found in plants supplemented with TF than with organic fertilizer (OF), suggesting that Trichoderma asperellum promoted plant growth and nitrogen accumulation under saline stress. T. asperellum strengthened root nitrogen (N) absorption according to greater increased root NH4+ and NO3- influxes under supplement with TF than OF, while nitrogen assimilative enzymes such as nitrate reductase, nitrite reductase and glutamine synthetase activities in roots and leaves were also stimulated. Thus, the elevated N accumulation derived from the induction of T. asperellum on nitrogen absorption and assimilation. Greater increased photosynthetic rate (Pn) and photosynthetic N-use efficiency under supplement with TF than OF illustrated that T. asperellum enhanced photosynthetic capacity and N utilization under saline stress. Although increased leaf stomatal conductance contributed to carbon (C) isotope fractionation under TF supplement, leaf 13C abundance was significantly increased by supplement with TF rather than OF, indicating that T. asperellum raised CO2 assimilation to a greater extent, reducing C isotope preference. Trichoderma asperellum optimized electron transport at PSII donor and acceptor sides under saline stress because of lower K and J steps in chlorophyll fluorescence transients under supplement with TF than OF. The amount of PSII active reaction centers was also increased by T. asperellum. Thus, PSII performance was upgraded, consistent with greater heightened delayed chlorophyll fluorescence transients and I1 peak under supplement with TF than OF. In summary, TF acted to increase N nutrient acquisition and photosynthetic C fixation resulting in enhanced wolfberry growth under saline soil stress.


Assuntos
Hypocreales , Lycium , Lycium/metabolismo , Clorofila , Nitrogênio , Solo , Fotossíntese , Folhas de Planta/metabolismo , Complexo de Proteína do Fotossistema II , Isótopos
17.
J Proteomics ; 290: 105033, 2024 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-37879564

RESUMO

In order to better understand the mechanism of betaine accumulation in Lycium barbarum L. (LBL), we used iTRAQ (Isotope relative and absolute quantitative labeling) proteomics to screen and identify differentially abundant proteins (DAPs) at five stages (S1-young fruit stage, S2-green fruit stage, S3-early yellowing stage, S4-late yellowing stage, S5-ripening stage). A total of 1799 DAPs and 171 betaine-related DAPs were identified, and phosphatidylethanolamine N-methyltransferase (NMT), choline monooxygenase (CMO), and betaine aldehyde dehydrogenase (BADH) were found to be the key enzymes related to betaine metabolism. These proteins are mainly involved in carbohydrates, amino acids and their derivatives, fatty acids, carboxylic acids, photosynthesis and photoprotection, isoquinoline alkaloid biosynthesis, peroxisomes, and glycine, serine, and threonine metabolism. Three of the key enzymes were also up- and down-regulated to different degrees at the mRNA level. The study provide new insights into the of mechanism of betaine accumulation in LBL. SIGNIFICANCE: Betaine, a class of naturally occurring, water-soluble alkaloids, has been found to be widespread in animals, higher plants, and microbes. In addition to being an osmotic agent, betaine has biological functions such as hepatoprotection, neuroprotection, and antioxidant activity. Betaine metabolism (synthesis and catabolism) is complexly regulated by developmental and environmental signals throughout the life cycle of plant fruit maturation. As a betaine-accumulating plant, little has been reported about the regulatory mechanisms of betaine metabolism during the growth and development of Lycium barbarum L. (LBL) fruit. Therefore, this study used iTRAQ quantitative proteomics technology to investigate the abundance changes of betaine-related proteins in LBL fruit, screen and analyze the differential abundance proteins related to betaine metabolism, and provide theoretical references for the in-depth study of the mechanism of betaine metabolism in LBL fruit.


Assuntos
Betaína , Lycium , Animais , Betaína/metabolismo , Lycium/química , Lycium/metabolismo , Proteômica , Carboidratos , Ácidos Carboxílicos/metabolismo
18.
PLoS One ; 18(11): e0286349, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37910530

RESUMO

OBJECTIVE: Berberis lycium is an indigenous plant of Pakistan that is known for its medicinal properties. In the current study, we investigated the anti-Alzheimer's effect of berberine isolated from Berberis lycium. METHODS: Root extract of B. lycium was subjected to acetylcholinesterase inhibition assay and column chromatography for bioassays guided isolation of a compound. The neuroprotective and memory improving effects of isolated compound were evaluated by aluminium chloride induced Alzheimer's disease rat model, elevated plus maze (EPM) and Morris water maze (MWM) tests., Levels of dopamine and serotonin in rats brains were determined using HPLC. Moreover, western blot and docking were performed to determine interaction between berberine and ß-secretase. RESULTS: During fractionation, ethyl acetate and methanol (3:7) fraction was collected from solvent mixture of ethyl acetate and methanol. This fraction showed the highest anti-acetylcholinesterase activity and was alkaloid positive. The results of TLC and HPLC analysis indicated the presence of the isolated compound as berberine. Additionally, the confirmation of isolated compound as berberine was carried out using FTIR and NMR analysis. In vivo EPM and MWM tests showed improved memory patterns after berberine treatment in Alzheimer's disease model. The levels of dopamine, serotonin and activity of antioxidant enzymes were significantly (p<0.05) enhanced in brain tissue homogenates of berberine treated group. This was supported by decreased expression of ß-secretase in berberine treated rat brain homogenates and good binding affinity of berberine with ß-secretase in docking studies. Binding energies for interaction of ß-secretase with berberine and drug Rivastigmine is -7.0 kcal/mol and -5.8 kcal/mol respectively representing the strong interactions. The results of docked complex of secretase with berberine and Rivastigmine was carried out using Gromacs which showed significant stability of complex in terms of RMSD and radius of gyration. Overall, the study presents berberine as a potential drug against Alzheimer's disease by providing evidence of its effects in improving memory, neurotransmitter levels and reducing ß-secretase expression in the Alzheimer's disease model.


Assuntos
Doença de Alzheimer , Berberina , Berberis , Lycium , Fármacos Neuroprotetores , Ratos , Animais , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Berberina/farmacologia , Berberina/uso terapêutico , Berberis/química , Berberis/metabolismo , Cloreto de Alumínio , Lycium/metabolismo , Simulação de Acoplamento Molecular , Rivastigmina/farmacologia , Rivastigmina/uso terapêutico , Acetilcolinesterase/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Dopamina , Metanol , Serotonina/uso terapêutico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico
19.
J Transl Med ; 21(1): 770, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37907930

RESUMO

BACKGROUND: Lycium barbarum polysaccharide (LBP) is an active ingredient extracted from Lycium barbarum that inhibits neuroinflammation, and Lycium barbarum glycopeptide (LbGp) is a glycoprotein with immunological activity that was purified and isolated from LBP. Previous studies have shown that LbGp can regulate the immune microenvironment, but its specific mechanism of action remains unclear. AIMS: In this study, we aimed to explore the mechanism of action of LbGp in the treatment of spinal cord injury through metabolomics and molecular experiments. METHODS: SD male rats were randomly assigned to three experimental groups, and after establishing the spinal cord hemisection model, LbGp was administered orally. Spinal cord tissue was sampled on the seventh day after surgery for molecular and metabolomic experiments. In vitro, LbGp was administered to mimic the inflammatory microenvironment by activating microglia, and its mechanism of action in suppressing neuroinflammation was further elaborated using metabolomics and molecular biology techniques such as western blotting and q-PCR. RESULTS: In vivo and in vitro experiments found that LbGp can improve the inflammatory microenvironment by inhibiting the NF-kB and pyroptosis pathways. Furthermore, LbGp induced the secretion of docosahexaenoic acid (DHA) by microglia, and DHA inhibited neuroinflammation through the MAPK/NF-κB and pyroptosis pathways. CONCLUSIONS: In summary, we hypothesize that LbGp improves the inflammatory microenvironment by regulating the secretion of DHA by microglia and thereby inhibiting the MAPK/NF-κB and pyroptosis pathways and promoting nerve repair and motor function recovery. This study provides a new direction for the treatment of spinal cord injury and elucidates the potential mechanism of action of LbGp.


Assuntos
Medicamentos de Ervas Chinesas , Lycium , Traumatismos da Medula Espinal , Animais , Masculino , Ratos , Ácidos Docosa-Hexaenoicos/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Glicopeptídeos , Lycium/química , Lycium/metabolismo , Doenças Neuroinflamatórias , NF-kappa B/metabolismo , Piroptose , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/tratamento farmacológico
20.
Ultrason Sonochem ; 101: 106696, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37988957

RESUMO

To improve the protein dissolution rate and the quality of fresh Lycium barbarum pulp (LBP), we optimized the slit dual-frequency ultrasound-assisted pulping process, explored the dissolution kinetics of Lycium barbarum protein (LBPr), and established a near-infrared spectroscopy in situ real-time monitoring model for LBPr dissolution through spectral information analysis and chemometric methods. The results showed that under optimal conditions (dual-frequency 28-33 kHz, 300 W, 31 min, 40 °C, interval ratio 5:2 s/s), ultrasonic treatment not only significantly increased LBPr dissolution rate (increased by 71.48 %, p < 0.05), improved other nutrient contents and color, but also reduced the protein particle size, changed the amino acid composition ratio and protein structure, and increased the surface hydrophobicity, zeta potential, and free sulfhydryl content of protein, as well as the antioxidant activity of LBPr. In addition, ultrasonication significantly improved the functional properties of the protein, including thermal stability, foaming, emulsification and oil absorption capacity. Furthermore, the real-time monitoring model of the dissolution process was able to quantitatively predict the dissolution rate of LBPr with good calibration and prediction performance (Rc = 0.9835, RMSECV = 2.174, Rp = 0.9841, RMSEP = 1.206). These findings indicated that dual-frequency ultrasound has great potential to improve the quality of LBP and may provide a theoretical basis for the establishment of an intelligent control system in the industrialized production of LBP and the functional development of LBPr.


Assuntos
Medicamentos de Ervas Chinesas , Lycium , Antioxidantes/química , Lycium/química , Lycium/metabolismo , Medicamentos de Ervas Chinesas/metabolismo , Medicamentos de Ervas Chinesas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...