Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 322
Filtrar
1.
Medicine (Baltimore) ; 103(33): e39288, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39151541

RESUMO

This study aimed to investigate the predictive value of real-time shear wave elastography (SWE) for spontaneous preterm birth (SPB). This study prospectively selected 175 women with singleton pregnancies at 16 to 36 weeks of gestation. Cervical length (CL) and uterocervical angle (UCA) were measured using transvaginal ultrasonography. Real-time shear wave elastography was used to measure Young's modulus values, including the average Young's modulus (Emean) and the maximum Young's modulus (Emax) at 4 points: point A on the inner lip of the cervical os, point B on the outer lip of the cervical os, point C on the inner lip of the external os, and point D on the outer lip of the external os. Receiver operating characteristic (ROC) curve analysis was performed to compare the accuracy of Young's modulus values at the 4 points, CL, and UCA in predicting SPB. Significant variables were used to construct a binary logistic regression model to predict the multifactorial predictive value of SPB, which was evaluated using an ROC curve. A total 176 valid cases, including 160 full-term pregnancies and 16 SPB, were included in this study. Receiver operating characteristic curve analysis revealed that Emean at point A, as well as Emean and Emax at point D, had a relatively high accuracy in diagnosing SPB, with area under the curve values of 0.704, 0.708, and 0.706, respectively followed by CL (0.670), SWE at point C (Emean 0.615, Emax 0.565), SWE at point B (Emean 0.577, Emax 0.584), and UCA (0.476). Binary logistic regression analysis showed that comorbidities during pregnancy (including diabetes mellitus, hypertension, cholestasis and thyroid dysfunction), CL, and Emean at point A were independent predictors of preterm birth. In addition, the AUC value of the logistic regression model's ROC curve was 0.892 (95% CI: 0.804-0.981), with a sensitivity of 0.867, specificity of 0.792, and Youden's index of 0.659, indicating that the regression model has good predictive ability for SPB. Real-time shear wave elastography showed a higher predictive value for SPB than CL and UCA. The SWE combined with CL and comorbidities during pregnancy model has a good predictive ability for SPB.


Assuntos
Técnicas de Imagem por Elasticidade , Nascimento Prematuro , Curva ROC , Humanos , Técnicas de Imagem por Elasticidade/métodos , Feminino , Gravidez , Nascimento Prematuro/diagnóstico por imagem , Adulto , Estudos Prospectivos , Valor Preditivo dos Testes , Módulo de Elasticidade , Colo do Útero/diagnóstico por imagem , Ultrassonografia Pré-Natal/métodos , Medida do Comprimento Cervical/métodos
2.
Clin Oral Investig ; 28(9): 496, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39177835

RESUMO

OBJECTIVES: To evaluate the marginal integrity (MI%) and to characterize specific properties of a thermoviscous bulk-fill resin composite, two regular bulk-fill resin composites, and a non-bulk-fill resin composite. MATERIALS AND METHODS: VisCalor bulk (VBF), Filtek One Bulk Fill (OBF), and Aura Bulk Fill (ABF) were evaluated. Filtek Z250 XT (ZXT) was used as non-bulk-fill control. MI% was evaluated in standardized cylindrical cavities restored with the composites by using a 3D laser confocal microscope. The following properties were characterized: volumetric polymerization shrinkage (VS%), polymerization shrinkage stress (Pss), degree of conversion (DC%), microhardness (KHN), flexural strength (FS), and elastic modulus (EM). Data were analyzed by one-way and two-way ANOVA, and Tukey HSD post-hoc test (α = 0.05). RESULTS: VBF presented the highest MI% and the lowest VS% and Pss (p < 0.05). DC% ranged from 59.4% (OBF) to 71.0% (ZXT). ZXT and VBF presented similar and highest KHN than OBF and ABF (p < 0.05). ABF presented the lowest FS (p < 0.05). EM ranged from 5.5 GPa to 7.7 GPa, with the values of ZXT and VBF being similar and statistically higher than those of OBF and ABF (p < 0.05). CONCLUSIONS: Thermoviscous technology employed by VisCalor bulk was able to improve its mechanical behavior comparatively to regular bulk-fill resin composites and to contribute to a better marginal integrity in restorations built up in cylindrical cavities with similar geometry to a class I cavity as well. Although presenting overall better physicomechanical properties, Z250 XT presented the worst MI%. CLINICAL RELEVANCE: The marginal integrity, which is pivotal for the success of resin composite restorations, could be improved using VisCalor bulk-fill. The worst MI% presented by Z250 XT reinforces that non-bulk-fill resin composites shall not be bulk-inserted in the cavity to be restored.


Assuntos
Resinas Compostas , Adaptação Marginal Dentária , Módulo de Elasticidade , Resistência à Flexão , Teste de Materiais , Polimerização , Propriedades de Superfície , Resinas Compostas/química , Dureza , Microscopia Confocal , Técnicas In Vitro , Restauração Dentária Permanente/métodos , Análise do Estresse Dentário
3.
BMC Oral Health ; 24(1): 929, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39127617

RESUMO

BACKGROUND: To evaluate the flexural strength of digitally milled and printed denture base materials. METHODS: The materials tested were Lucitone 199 denture base disc (Dentsply Sirona), AvaDent denture base puck (AvaDent), KeyMill denture base disc (Keystone), Lucitone digital print denture base resin (Dentsply Sirona), Formlab denture base resin (Formlabs), and Dentca base resin II (Dentca). Sixty bar-shaped specimens of each material were prepared for flexural strength testing and were divided into five groups: control, thermocycled, fatigue cycled, and repair using two different materials. The flexural strength and modulus were tested using a 3-point bend test performed on an Instron Universal Testing Machine with a 1kN load cell. The specimens were centered under a loading apparatus with a perpendicular alignment. The loading rate was a crosshead speed of 0.5 mm/min. Each specimen was loaded with a force until failure occurred. A one-way ANOVA test was used to analyze the data, followed by Tukey's HSD test (α = 0.05). RESULTS: The milled materials exhibited higher flexural strength than the printed materials. Thermocycling and fatigue reduce the flexural strengths of printed and milled materials. The repaired groups exhibited flexural strengths of 32.80% and 30.67% of the original flexural strengths of printed and milled materials, respectively. Nevertheless, the type of repair material affected the flexural strength of the printed materials; the composite resin exhibited higher flexural strength values than the acrylic resin. CONCLUSIONS: The milled denture base materials showed higher flexural strength than the printed ones.


Assuntos
Resinas Acrílicas , Análise do Estresse Dentário , Bases de Dentadura , Resistência à Flexão , Teste de Materiais , Resinas Acrílicas/química , Materiais Dentários/química , Módulo de Elasticidade , Planejamento de Dentadura , Propriedades de Superfície , Estresse Mecânico , Maleabilidade , Humanos , Reparação em Dentadura , Impressão Tridimensional , Desenho Assistido por Computador
4.
PLoS One ; 19(8): e0307878, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39146261

RESUMO

To simulate the nonlinear stress-strain curve of rocks under static loads and contribute to the design and construction of rock engineering structures, a constitutive model has been proposed based on the elastic modulus E decreasing with the increase in longitudinal cracks. This constitutive equation offers numerous advantages, with the most noteworthy being that the simulation of stress-strain curves for rocks necessitates only three equations (Eqs 1-3) and four parameters (A, k0, C and εs). Following this, we employ the constitutive equation to analyze the stress distribution around a thick-walled cylinder and explore the impact of its four parameters on the stress distribution surrounding the thick-walled cylinder. Parameter A primarily affects the range of the plastic zone and the magnitude of the maximum tangential stress; parameter C mainly influences the magnitude of the maximum tangential stress; parameter εs mainly affects the range of the plastic zone and the magnitude of the maximum tangential stress; parameter k0 primarily influences the magnitude of the maximum tangential stress. We got the similar results with Bray model, but distribution of stress around the tunnel are different present that the shape of stress-strain curves are different.


Assuntos
Estresse Mecânico , Modelos Teóricos , Módulo de Elasticidade
5.
Acta Neurochir (Wien) ; 166(1): 343, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39167233

RESUMO

BACKGROUND: The intraoperative differentiation between tumour tissue, healthy brain tissue, and any sensitive structure of the central nervous system is carried out in modern neurosurgery using various multimodal technologies such as neuronavigation, fluorescent dyes, intraoperative ultrasound or the use of intraoperative MRI, but also the haptic experience of the neurosurgeon. Supporting the surgeon by developing instruments with integrated haptics could provide a further objective dimension in the intraoperative recognition of healthy and diseased tissue. METHODS: In this study, we describe intraoperative mechanical indentation measurements of human brain tissue samples of different tumours taken during neurosurgical operation and measured directly in the operating theatre, in a time frame of maximum five minutes. We present an overview of the Young's modulus for the different brain tumour entities and potentially differentiation between them. RESULTS: We examined 238 samples of 75 tumour removals. Neither a clear distinction of tumour tissue against healthy brain tissue, nor differentiation of different tumour entities was possible on solely the Young's modulus. Correlation between the stiffness grading of the surgeon and our measurements could be found. CONCLUSION: The mechanical behaviour of brain tumours given by the measured Young's modulus corresponds well to the stiffness assessment of the neurosurgeon and can be a great tool for further information on mechanical characteristics of brain tumour tissue. Nevertheless, our findings imply that the information gained through indentation is limited.


Assuntos
Neoplasias Encefálicas , Módulo de Elasticidade , Procedimentos Neurocirúrgicos , Humanos , Neoplasias Encefálicas/cirurgia , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Procedimentos Neurocirúrgicos/métodos , Encéfalo/cirurgia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia
6.
Orthod Fr ; 95(2): 169-175, 2024 08 06.
Artigo em Francês | MEDLINE | ID: mdl-39106191

RESUMO

Introduction: The aligner is a thermoformed plastic device composed of various chemical components: polyurethane, polyethylene terephthalate glycol, polypropylene… All these plastics must be sufficiently resistant to abrasion and translucent for aesthetic purposes, but their solubility to salivary enzymes, insertion-disinsertion fatigue and recyclability vary according to material. From an orthodontic point of view, they must facilitate tooth movement. However, their behavior differs from that of orthodontic archwires: their Young's modulus, resilience and unloading curve are distinct, resulting in mechanical properties that fall significantly below the orthodontic requirements of multi-bracket systems. Objective: The aim of this article was to review the chemical composition, recycling and mechanical properties of aligners, and to put them into perspective with therapeutic indications. Materials and Methods: Literature data were approximated to orthodontic needs. Results: Neither plastic nor direct printing can match the mechanical properties of our archwires or the procedures of a reliable vestibular multi-attachment appliance. Discussion: Aligners remain an interesting tool in targeted indications.


Introduction: L'aligneur est un dispositif en plastique thermoformé dont la composition chimique est diverse : polyuréthane, polyéthylène téréphtalate glycol, polypropylène… Tous ces plastiques doivent être suffisamment résistants à l'abrasion et translucides pour être esthétiques mais ils présentent une solubilité aux enzymes salivaires, une fatigue liée à l'insertion-désinsertion et une recyclabilité qui sont variables selon le matériau. D'un point de vue orthodontique, ils doivent permettre de déplacer les dents. Mais leur comportement ne ressemble pas à celui des arcs orthodontiques : leur module de Young, leur résilience et leur courbe de décharge en sont éloignés et confèrent des propriétés mécaniques très inférieures aux exigences orthodontiques des appareils multi-attaches. Objectif: L'objectif de l'article était de faire le point sur la composition chimique, le recyclage, les propriétés mécaniques des aligneurs et de les mettre en perspective avec les indications thérapeutiques. Matériel et méthode: Les données de la littérature sont approchées des besoins orthodontiques. Résultats: Ni le plastique, ni l'impression directe ne sont en capacité de rivaliser avec les propriétés mécaniques de nos arcs ou avec les procédures d'un appareil multi-attache vestibulaire fiables. Discussion: Les aligneurs restent un outil intéressant dans des indications ciblées.


Assuntos
Técnicas de Movimentação Dentária , Humanos , Técnicas de Movimentação Dentária/métodos , Técnicas de Movimentação Dentária/instrumentação , Reciclagem/métodos , Poliuretanos/química , Fios Ortodônticos , Desenho de Aparelho Ortodôntico , Módulo de Elasticidade , Polietilenoglicóis/química , Teste de Materiais/métodos , Polietilenotereftalatos
7.
Nat Commun ; 15(1): 6774, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39117721

RESUMO

Without intervention, cardiac arrhythmias pose a risk of fatality. However, timely intervention can be challenging in environments where transporting a large, heavy defibrillator is impractical, or emergency surgery to implant cardiac stimulation devices is not feasible. Here, we introduce an injectable cardiac stimulator, a syringe loaded with a nanoparticle solution comprising a conductive polymer and a monomer that, upon injection, forms a conductive structure around the heart for cardiac stimulation. Following treatment, the electrode is cleared from the body, eliminating the need for surgical extraction. The mixture adheres to the beating heart in vivo without disrupting its normal rhythm. The electrofunctionalized injectable cardiac stimulator demonstrates a tissue-compatible Young's modulus of 21 kPa and a high conductivity of 55 S/cm. The injected electrode facilitates electrocardiogram measurements, regulates heartbeat in vivo, and rectifies arrhythmia. Conductive functionality is maintained for five consecutive days, and no toxicity is observed at the organism, organ, or cellular levels.


Assuntos
Arritmias Cardíacas , Animais , Arritmias Cardíacas/terapia , Arritmias Cardíacas/fisiopatologia , Condutividade Elétrica , Coração/fisiologia , Nanopartículas/química , Eletrocardiografia , Humanos , Camundongos , Frequência Cardíaca , Polímeros/química , Masculino , Injeções , Módulo de Elasticidade , Terapia por Estimulação Elétrica/instrumentação , Terapia por Estimulação Elétrica/métodos , Eletrodos Implantados
8.
BMC Oral Health ; 24(1): 901, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39107754

RESUMO

BACKGROUND: Mechanical complications affect the stability of implant restorations and are a key concern for clinicians, especially with the frequent introduction of new implant designs featuring various structures and materials. This study evaluated the effect of different prosthetic index structure types and implant materials on the stress distribution of implant restorations using both in silico and in vitro methods. METHODS: Four finite element analysis (FEA) models of implant restorations were created, incorporating two prosthetic index structures (cross-fit (CF) and torc-fit (TF)) and two implant materials (titanium and titanium-zirconium). A static load was applied to each group. An in vitro study using digital image correlation (DIC) with a research scenario identical to that of the FEA was conducted for validation. The primary strain, sensitivity index, and equivalent von Mises stress were used to evaluate the outcomes. RESULTS: Changing the implant material from titanium to titanium-zirconium did not significantly affect the stress distribution or maximum stress value of other components, except for the implant itself. In the CF group, implants with a lower elastic modulus increased the stress on the screw. The TF group showed better stress distribution on the abutment and a lower stress value on the screw. The TF group demonstrated similar sensitivity for all components. DIC analysis revealed significant differences between TF-TiZr and CF-Ti in terms of the maximum (P < 0.001) and minimum principal strains (P < 0.05) on the implants and the minimum principal strains on the investment materials in both groups (P < 0.001). CONCLUSIONS: Changes in the implant material significantly affected the maximum stress of the implant. The TF group exhibited better structural integrity and reliability.


Assuntos
Implantes Dentários , Materiais Dentários , Análise do Estresse Dentário , Análise de Elementos Finitos , Titânio , Zircônio , Zircônio/química , Humanos , Materiais Dentários/química , Análise do Estresse Dentário/métodos , Estresse Mecânico , Planejamento de Prótese Dentária , Módulo de Elasticidade , Simulação por Computador , Imageamento Tridimensional
9.
Sensors (Basel) ; 24(15)2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39124008

RESUMO

Ultrasound elastography has been available on most modern systems; however, the implementation of quality processes tends to be ad hoc. It is essential for a medical physicist to benchmark elastography measurements on each system and track them over time, especially after major software upgrades or repairs. This study aims to establish baseline data using phantoms and monitor them for quality assurance in elastography. In this paper, we utilized two phantoms: a set of cylinders, each with a composite material with varying Young's moduli, and an anthropomorphic abdominal phantom containing a liver modeled to represent early-stage fibrosis. These phantoms were imaged using three ultrasound manufacturers' elastography functions with either point or 2D elastography. The abdominal phantom was also imaged using magnetic resonance elastography (MRE) as it is recognized as the non-invasive gold standard for staging liver fibrosis. The scaling factor was determined based on the data acquired using MR and US elastography from the same vendor. The ultrasound elastography measurements showed inconsistency between different manufacturers, but within the same manufacturer, the measurements showed high repeatability. In conclusion, we have established baseline data for quality assurance procedures and specified the criteria for the acceptable range in liver fibrosis phantoms during routine testing.


Assuntos
Técnicas de Imagem por Elasticidade , Imagens de Fantasmas , Técnicas de Imagem por Elasticidade/métodos , Técnicas de Imagem por Elasticidade/instrumentação , Humanos , Fígado/diagnóstico por imagem , Fígado/patologia , Módulo de Elasticidade , Imageamento por Ressonância Magnética/métodos , Cirrose Hepática/diagnóstico por imagem , Cirrose Hepática/patologia
10.
Invest Ophthalmol Vis Sci ; 65(8): 8, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38958968

RESUMO

Purpose: The purpose of this study was to evaluate the biomechanical and hydration differences in scleral tissue after two modalities of collagen cross-linking. Methods: Scleral tissue from 40 adult white rabbit eyes was crosslinked by application of 0.1% Rose Bengal solution followed by 80 J/cm2 green light irradiation (RGX) or by application of 0.1% riboflavin solution followed by 5.4 J/cm2 ultraviolet A irradiation (UVX). Posterior scleral strips were excised from treated and untreated sclera for tensile and hydration-tensile tests. For tensile tests, the strips were subjected to uniaxial extension after excision. For hydration-tensile tests, the strips were dehydrated, rehydrated, and then tested. Young's modulus at 8% strain and swelling rate were estimated. ANOVAs were used to test treated-induced differences in scleral biomechanical and hydration properties. Results: Photo-crosslinked sclera tissue was stiffer (Young's modulus at 8% strain: 10.7 ± 4.5 MPa, on average across treatments) than untreated scleral tissue (7.1 ± 4.0 MPa). Scleral stiffness increased 132% after RGX and 90% after UVX compared to untreated sclera. Scleral swelling rate was reduced by 11% after RGX and by 13% after UVX. The stiffness of the treated sclera was also associated with the tissue hydration level. The lower the swelling, the higher the Young's modulus of RGX (-3.8% swelling/MPa) and UVX (-3.5% swelling/MPa) treated sclera. Conclusions: Cross-linking with RGX and UVX impacted the stiffness and hydration of rabbit posterior sclera. The Rose Bengal with green light irradiation may be an alternative method to determine the efficacy and suitability of inducing scleral tissue stiffening in the treatment of myopia.


Assuntos
Reagentes de Ligações Cruzadas , Fármacos Fotossensibilizantes , Riboflavina , Rosa Bengala , Esclera , Raios Ultravioleta , Animais , Coelhos , Reagentes de Ligações Cruzadas/farmacologia , Fármacos Fotossensibilizantes/farmacologia , Riboflavina/farmacologia , Rosa Bengala/farmacologia , Resistência à Tração , Fenômenos Biomecânicos , Módulo de Elasticidade , Colágeno/metabolismo , Elasticidade
11.
ACS Biomater Sci Eng ; 10(7): 4525-4540, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38973308

RESUMO

Lumenogenesis within the epiblast represents a critical step in early human development, priming the embryo for future specification and patterning events. However, little is known about the specific mechanisms that drive this process due to the inability to study the early embryo in vivo. While human pluripotent stem cell (hPSC)-based models recapitulate many aspects of the human epiblast, most approaches for generating these 3D structures rely on ill-defined, reconstituted basement membrane matrices. Here, we designed synthetic, nonadhesive polyethylene glycol (PEG) hydrogel matrices to better understand the role of matrix mechanical cues in iPSC morphogenesis, specifically elastic modulus. First, we identified a narrow range of hydrogel moduli that were conducive to the hPSC viability, pluripotency, and differentiation. We then used this platform to investigate the effects of the hydrogel modulus on lumenogenesis, finding that matrices of intermediate stiffness yielded the most epiblast-like aggregates. Conversely, stiffer matrices impeded lumen formation and apico-basal polarization, while the softest matrices yielded polarized but aberrant structures. Our approach offers a simple, modular platform for modeling the human epiblast and investigating the role of matrix cues in its morphogenesis.


Assuntos
Diferenciação Celular , Hidrogéis , Morfogênese , Polietilenoglicóis , Humanos , Hidrogéis/química , Hidrogéis/farmacologia , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Diferenciação Celular/efeitos dos fármacos , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/efeitos dos fármacos , Camadas Germinativas/citologia , Módulo de Elasticidade , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos
12.
J Oral Sci ; 66(3): 182-188, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39010166

RESUMO

PURPOSE: To evaluate the influence of the polymerization distance of monowave and polywave light curing units (LCUs) on the measured irradiance relative to the value reported by the manufacturer in relation to the physical properties of resin-based composites (RBCs). METHODS: Four LCUs were used: one monowave and three polywave. The irradiance was measured with a digital radiometer. Depth of cure (DC) and flexural strength (FS) tests were performed according to ISO 4049:2019 at polymerization distances of 0 mm and 5 mm. RESULTS: The irradiance of all LCUs was higher than that reported by the manufacturer (>25-64%). The irradiance of the four LCUs was reduced when polymerization was performed at between 0 to 5 mm (paired t-test, P < 0.001). The DC at 0 mm was similar in all groups but was significantly decreased at 5 mm distance (ANOVA P < 0.001). FS showed differences among the LCUs at 0 mm (ANOVA P < 0.001) and was affected by the polymerization distance. The elastic modulus was unaffected by the LCU used or the distance (ANOVA P > 0.001). CONCLUSIONS: The LCU must be positioned as near as possible to RBCs during the polymerization process, as increased distance negatively affects the depth of cure and flexural strength.


Assuntos
Resinas Compostas , Lâmpadas de Polimerização Dentária , Polimerização , Resinas Compostas/química , Teste de Materiais , Resistência à Flexão , Módulo de Elasticidade
13.
Tissue Eng Part C Methods ; 30(7): 314-322, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38946581

RESUMO

Current tissue engineering (TE) methods utilize chondrocytes primarily from costal or articular sources. Despite the robust mechanical properties of neocartilages sourced from these cells, the lack of elasticity and invasiveness of cell collection from these sources negatively impact clinical translation. These limitations invited the exploration of naturally elastic auricular cartilage as an alternative cell source. This study aimed to determine if auricular chondrocytes (AuCs) can be used for TE scaffold-free neocartilage constructs and assess their biomechanical properties. Neocartilages were successfully generated from a small quantity of primary neonatal AuCs of three minipig donors (n = 3). Neocartilage constructs had instantaneous moduli of 200.5 kPa ± 43.34 and 471.9 ± 92.8 kPa at 10% and 20% strain, respectively. TE constructs' relaxation moduli (Er) were 36.99 ± 6.47 kPa Er and 110.3 ± 16.99 kPa at 10% and 20% strain, respectively. The Young's modulus was 2.0 MPa ± 0.63, and the ultimate tensile strength was 0.619 ± 0.177 MPa. AuC-derived neocartilages contained 0.144 ± 0.011 µg collagen, 0.185 µg ± 0.002 glycosaminoglycans per µg dry weight, and 1.7e-3 µg elastin per µg dry weight. In conclusion, this study shows that AuCs can be used as a reliable and easily accessible cell source for TE of biomimetic and mechanically robust elastic neocartilage implants.


Assuntos
Condrócitos , Cartilagem da Orelha , Cartilagem Elástica , Engenharia Tecidual , Alicerces Teciduais , Animais , Engenharia Tecidual/métodos , Condrócitos/citologia , Condrócitos/metabolismo , Suínos , Cartilagem da Orelha/citologia , Cartilagem da Orelha/fisiologia , Cartilagem Elástica/citologia , Alicerces Teciduais/química , Porco Miniatura , Módulo de Elasticidade , Células Cultivadas , Resistência à Tração
14.
PLoS One ; 19(7): e0300516, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39008493

RESUMO

To improve the accuracy of the Hami melon discrete element model, the parameters of the Hami melon seed discrete element model were calibrated by combining practical experiments and simulation tests. The basic physical parameters of Hami melon seeds were obtained through physical experiments, including triaxial size, 100-grain mass, moisture content, density, Poisson's ratio, Young's modulus, shear modulus, angle of repose, suspension speed and various contact parameters. Taking the repose angle of seed simulation as an index, the parameters of each simulation model were significantly screened by the Plackett-Burman test. The results showed that the recovery coefficient, static friction coefficient and rolling friction coefficient of Hami melon seeds had significant effects on repose angle. Based on the steepest climbing test and quadratic regression orthogonal rotation combination test, it was determined that the significant order of the influence of various contact parameters on the angle of repose was static friction coefficient, collision recovery coefficient, and rolling friction coefficient. The optimal parameter combination was obtained through the mathematical regression model between the angle of repose and various contact parameters, namely, the collision recovery coefficient of Hami melon seeds was 0.518, the static friction coefficient of Hami melon seeds was 0.585 and the rolling friction coefficient of Hami melon seeds was 0.337. Under this condition, three static seed-dropping experiments and dynamic rolling accumulation experiments were carried out. The average simulated angle of repose was 31.93°, and the relative error with the actual value was only 1.71%. The average simulated rolling accumulation angle was 51.98°, and the relative error with the actual value was only 1.92%.


Assuntos
Cucurbitaceae , Sementes , Cucurbitaceae/fisiologia , Sementes/fisiologia , Calibragem , Simulação por Computador , Módulo de Elasticidade , Modelos Teóricos , Fricção
15.
J Mech Behav Biomed Mater ; 157: 106654, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39042972

RESUMO

This study aims to investigate tissue differentiation during mandibular reconstruction with particulate cancellous bone marrow (PCBM) graft healing using biphasic mechanoregulation theory under four bite force magnitudes and four implant elastic moduli to examine its implications on healing rate, implant stress distribution, new bone elastic modulus, mandible equivalent stiffness, and load-sharing progression. The finite element model of a half Canis lupus mandible, symmetrical about the midsagittal plane, with two marginal defects filled by PCBM graft and stabilized by porous implants, was simulated for 12 weeks. Eight different scenarios, which consist of four bite force magnitudes and four implant elastic moduli, were tested. It was found that the tissue differentiation pattern corroborates the experimental findings, where the new bone propagates from the superior side and the buccal and lingual sides in contact with the native bone, starting from the outer regions and progressing inward. Faster healing and quicker development of bone graft elastic modulus and mandible equivalent stiffness were observed in the variants with lower bite force magnitude and or larger implant elastic modulus. A load-sharing condition was found as the healing progressed, with M3 (Ti6Al4V) being better than M4 (stainless steel), indicating the higher stress shielding potentials of M4 in the long term. This study has implications for a better understanding of mandibular reconstruction mechanobiology and demonstrated a novel in silico framework that can be used for post-operative planning, failure prevention, and implant design in a better way.


Assuntos
Força de Mordida , Módulo de Elasticidade , Análise de Elementos Finitos , Reconstrução Mandibular , Animais , Mandíbula/cirurgia , Mandíbula/fisiologia , Simulação por Computador , Cicatrização , Cães , Próteses e Implantes , Transplante de Medula Óssea , Osso Esponjoso/fisiologia , Fenômenos Biomecânicos , Estresse Mecânico
16.
Food Res Int ; 191: 114626, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39059897

RESUMO

The controllable formation of anisotropic gel structures is presently sought for the development of foods with novel textures. Here, we used unidirectional freezing to generate agar gels consisting of a honeycomb-like porous network of elongated and aligned pores. A custom-built Peltier system allowed for control of the freezing front velocity throughout the agar gels. A higher freezing velocity (10 µm/s) led to smaller pore sizes compared to the slower freezing velocity tested (2 µm/s). Texture analysis highlighted the significantly higher Young's modulus in the gels when compressed in the axial vs. radial direction - a direct consequence of the unidirectional freezing. The proton spin-spin relaxation time revealed greater water mobility in the unidirectionally frozen gel with larger pores. This study serves as the basis for the development of anisotropic hydrocolloid gels with a tunable microstructure and texture.


Assuntos
Ágar , Congelamento , Géis , Ágar/química , Géis/química , Anisotropia , Módulo de Elasticidade , Porosidade , Água/química
17.
Sci Rep ; 14(1): 15695, 2024 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977824

RESUMO

Hydrogels are extensively explored as biomaterials for tissue scaffolds, and their controlled fabrication has been the subject of wide investigation. However, the tedious mechanical property adjusting process through formula control hindered their application for diverse tissue scaffolds. To overcome this limitation, we proposed a two-step process to realize simple adjustment of mechanical modulus over a broad range, by combining digital light processing (DLP) and post-processing steps. UV-curable hydrogels (polyacrylamide-alginate) are 3D printed via DLP, with the ability to create complex 3D patterns. Subsequent post-processing with Fe3+ ions bath induces secondary crosslinking of hydrogel scaffolds, tuning the modulus as required through soaking in solutions with different Fe3+ concentrations. This innovative two-step process offers high-precision (10 µm) and broad modulus adjusting capability (15.8-345 kPa), covering a broad range of tissues in the human body. As a practical demonstration, hydrogel scaffolds with tissue-mimicking patterns were printed for cultivating cardiac tissue and vascular scaffolds, which can effectively support tissue growth and induce tissue morphologies.


Assuntos
Hidrogéis , Impressão Tridimensional , Engenharia Tecidual , Alicerces Teciduais , Alicerces Teciduais/química , Hidrogéis/química , Engenharia Tecidual/métodos , Humanos , Alginatos/química , Materiais Biocompatíveis/química , Resinas Acrílicas/química , Módulo de Elasticidade , Luz
18.
J Biomech ; 172: 112209, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38986274

RESUMO

Micro-Finite Element analysis (µFEA) has become widely used in biomechanical research as a reliable tool for the prediction of bone mechanical properties within its microstructure such as apparent elastic modulus and strength. However, this method requires substantial computational resources and processing time. Here, we propose a computationally efficient alternative to FEA that can provide an accurate estimation of bone trabecular mechanical properties in a fast and quantitative way. A lattice element method (LEM) framework based on the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) open-source software package is employed to calculate the elastic response of trabecular bone cores. A novel procedure to handle pore-material boundaries is presented, referred to as the Firm and Floppy Boundary LEM (FFB-LEM). Our FFB-LEM calculations are compared to voxel- and geometry-based FEA benchmarks incorporating bovine and human trabecular bone cores imaged by micro Computed Tomography (µCT). Using 14 computer cores, the apparent elastic modulus calculation of a trabecular bone core from a µCT-based input with FFB-LEM required about 15 min, including conversion of the µCT data into a LAMMPS input file. In contrast, the FEA calculations on the same system including the mesh generation, required approximately 30 and 50 min for voxel- and geometry-based FEA, respectively. There were no statistically significant differences between FFB-LEM and voxel- or geometry-based FEA apparent elastic moduli (+24.3% or +7.41%, and +0.630% or -5.29% differences for bovine and human samples, respectively).


Assuntos
Osso Esponjoso , Módulo de Elasticidade , Análise de Elementos Finitos , Osso Esponjoso/fisiologia , Osso Esponjoso/diagnóstico por imagem , Humanos , Animais , Bovinos , Módulo de Elasticidade/fisiologia , Microtomografia por Raio-X , Estresse Mecânico , Software , Modelos Biológicos , Fenômenos Biomecânicos , Força Compressiva/fisiologia
19.
J Mech Behav Biomed Mater ; 157: 106648, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38996625

RESUMO

Mechanical properties are essential for the biological activities of cells, and they have been shown to be affected by diseases. Therefore, accurate mechanical characterization is important for studying the cell lifecycle, cell-cell interactions, and disease diagnosis. While the cytoskeleton and actin cortex are typically the primary structural stiffness contributors in most live cells, oocytes possess an additional extracellular layer known as the vitelline membrane (VM), or envelope, which can significantly impact their overall mechanical properties. In this study, we utilized nanoindentation via an atomic force microscope to measure the Young's modulus of Xenopus laevis oocytes at different force setpoints and explored the influence of the VM by conducting measurements on oocytes with the membrane removed. The findings revealed that the removal of VM led to a significant decrease in the apparent Young's modulus of the oocytes, highlighting the pivotal role of the VM as the main structural component responsible for the oocyte's shape and stiffness. Furthermore, the mechanical behavior of VM was investigated through finite element (FE) simulations of the nanoindentation process. FE simulations with the VM Young's modulus in the range 20-60 MPa resulted in force-displacement curves that closely resemble experimental in terms of shape and maximum force for a given indentation depth.


Assuntos
Módulo de Elasticidade , Fenômenos Mecânicos , Microscopia de Força Atômica , Oócitos , Xenopus laevis , Animais , Oócitos/citologia , Fenômenos Biomecânicos , Análise de Elementos Finitos , Testes Mecânicos , Teste de Materiais
20.
ACS Appl Mater Interfaces ; 16(31): 41583-41595, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39046871

RESUMO

Conductive hydrogels are widely used in flexible sensors owing to their adjustable structure, good conductivity, and flexibility. The performance of excellent mechanical properties, high sensitivity, and elastic modulus compatible with human tissues is of great interest in the field of flexible sensors. In this paper, the functional groups of trisodium citrate dihydrate (SC) and MXene form multiple hydrogen bonds in the polymer network to prepare a hydrogel with mechanical properties (Young's modulus (23.5-92 kPa) of similar human tissue (0-100 kPa)), sensitivity (stretched GF is 4.41 and compressed S1 is 5.15 MPa-1), and durability (1000 cycles). The hydrogel is able to sensitively detect deformations caused by strain and stress and can be used in flexible sensors to detect human movement in real time such as fingers, wrists, and walking. In addition, the combination of matrix sensing and machine learning was successfully used for handwriting recognition with an accuracy of 0.9744. The combination of machine learning and flexible sensors shows great potential in areas such as healthcare, information security, and smart homes.


Assuntos
Escrita Manual , Hidrogéis , Aprendizado de Máquina , Hidrogéis/química , Humanos , Módulo de Elasticidade , Dispositivos Eletrônicos Vestíveis , Pele/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...