Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.076
Filtrar
1.
J R Soc Interface ; 21(214): 20230658, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38774960

RESUMO

Skeletal muscle powers animal movement through interactions between the contractile proteins, actin and myosin. Structural variation contributes greatly to the variation in mechanical performance observed across muscles. In vertebrates, gross structural variation occurs in the form of changes in the muscle cross-sectional area : fibre length ratio. This results in a trade-off between force and displacement capacity, leaving work capacity unaltered. Consequently, the maximum work per unit volume-the work density-is considered constant. Invertebrate muscle also varies in muscle ultrastructure, i.e. actin and myosin filament lengths. Increasing actin and myosin filament lengths increases force capacity, but the effect on muscle fibre displacement, and thus work, capacity is unclear. We use a sliding-filament muscle model to predict the effect of actin and myosin filament lengths on these mechanical parameters for both idealized sarcomeres with fixed actin : myosin length ratios, and for real sarcomeres with known filament lengths. Increasing actin and myosin filament lengths increases stress without reducing strain capacity. A muscle with longer actin and myosin filaments can generate larger force over the same displacement and has a higher work density, so seemingly bypassing an established trade-off. However, real sarcomeres deviate from the idealized length ratio suggesting unidentified constraints or selective pressures.


Assuntos
Modelos Biológicos , Músculo Esquelético , Miosinas , Animais , Músculo Esquelético/fisiologia , Músculo Esquelético/ultraestrutura , Músculo Esquelético/metabolismo , Miosinas/metabolismo , Contração Muscular/fisiologia , Actinas/metabolismo , Sarcômeros/metabolismo , Sarcômeros/ultraestrutura , Sarcômeros/fisiologia , Fenômenos Biomecânicos
2.
Neuromuscul Disord ; 39: 10-18, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38669730

RESUMO

Recessive desminopathies are rare and often present as severe early-onset myopathy. Here we report a milder phenotype in three unrelated patients from southern India (2 M, 1F) aged 16, 21, and 22 years, who presented with childhood-onset, gradually progressive, fatigable limb-girdle weakness, ptosis, speech and swallowing difficulties, without cardiac involvement. Serum creatine kinase was elevated, and repetitive nerve stimulation showed decrement in all. Clinical improvement was noted with pyridostigmine and salbutamol in two patients. All three patients had a homozygous substitution in intron 5: DES(NM_001927.4):c.1023+5G>A, predicted to cause a donor splice site defect. Muscle biopsy with ultrastructural analysis suggested myopathy with myofibrillar disarray, and immunohistochemistry showed partial loss of desmin with some residual staining, while western blot analysis showed reduced desmin. RT-PCR of patient muscle RNA revealed two transcripts: a reduced normal desmin transcript and a larger abnormal transcript suggesting leaky splicing at the intron 5 donor site. Sequencing of the PCR products confirmed the inclusion of intron 5 in the longer transcript, predicted to cause a premature stop codon. Thus, we provide evidence for a leaky splice site causing partial loss of desmin associated with a unique phenotypic presentation of a milder form of desmin-related recessive myopathy overlapping with congenital myasthenic syndrome.


Assuntos
Desmina , Humanos , Masculino , Desmina/genética , Desmina/metabolismo , Feminino , Adulto Jovem , Adolescente , Músculo Esquelético/patologia , Músculo Esquelético/ultraestrutura , Músculo Esquelético/metabolismo , Sítios de Splice de RNA/genética , Transmissão Sináptica , Fenótipo , Mutação
3.
Microsc Res Tech ; 87(8): 1733-1741, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38501548

RESUMO

The peripheral nerve injury (PNI) affects the morphology of the whole locomotor apparatus, which can reach the myotendinous junction (MTJ) interface. In the injury condition, the skeletal muscle satellite cells (SC) are triggered, activated, and proliferated to repair their structure, and in the MTJ, the telocytes (TC) are associated to support the interface with the need for remodeling; in that way, these cells can be associated with SC. The study aimed to describe the SC and TC relationship after PNI at the MTJ. Sixteen adult Wistar rats were divided into Control Group (C, n = 8) and PNI Group (PNI, n = 8), PNI was performed by the constriction of the sciatic nerve. The samples were processed for transmission electron microscopy and immunostaining analysis. In the C group was evidenced the arrangement of sarcoplasmic evaginations and invaginations, the support collagen layer with a TC inside it, and an SC through vesicles internally and externally to then. In the PNI group were observed the disarrangement of invaginations and evaginations and sarcomeres degradation at MTJ, as the disposition of telopodes adjacent and in contact to the SC with extracellular vesicles and exosomes in a characterized paracrine activity. These findings can determine a link between the TCs and the SCs at the MTJ remodeling. RESEARCH HIGHLIGHTS: Peripheral nerve injury promotes the myotendinous junction (MTJ) remodeling. The telocytes (TC) and the satellite cells (SC) are present at the myotendinous interface. TC mediated the SC activity at MTJ.


Assuntos
Vesículas Extracelulares , Microscopia Eletrônica de Transmissão , Ratos Wistar , Células Satélites de Músculo Esquelético , Telócitos , Animais , Telócitos/fisiologia , Telócitos/ultraestrutura , Células Satélites de Músculo Esquelético/fisiologia , Células Satélites de Músculo Esquelético/citologia , Ratos , Vesículas Extracelulares/ultraestrutura , Vesículas Extracelulares/metabolismo , Traumatismos dos Nervos Periféricos/patologia , Traumatismos dos Nervos Periféricos/metabolismo , Masculino , Nervo Isquiático/ultraestrutura , Tendões/fisiologia , Músculo Esquelético/ultraestrutura , Junção Miotendínea
4.
Hum Mol Genet ; 33(13): 1107-1119, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38507070

RESUMO

The dystrophin-glycoprotein complex (DGC) plays a crucial role in maintaining the structural integrity of the plasma membrane and the neuromuscular junction. In this study, we investigated the impact of the deficiency of α-dystrobrevin (αdbn), a component of the DGC, on the homeostasis of intracellular organelles, specifically mitochondria and the sarcoplasmic reticulum (SR). In αdbn deficient muscles, we observed a significant increase in the membrane-bound ATP synthase complex levels, a marker for mitochondria in oxidative muscle fiber types compared to wild-type. Furthermore, examination of muscle fibers deficient in αdbn using electron microscopy revealed profound alterations in the organization of mitochondria and the SR within certain myofibrils of muscle fibers. This included the formation of hyper-branched intermyofibrillar mitochondria with extended connections, an extensive network spanning several myofibrils, and a substantial increase in the number/density of subsarcolemmal mitochondria. Concurrently, in some cases, we observed significant structural alterations in mitochondria, such as cristae loss, fragmentation, swelling, and the formation of vacuoles and inclusions within the mitochondrial matrix cristae. Muscles deficient in αdbn also displayed notable alterations in the morphology of the SR, along with the formation of distinct anomalous concentric SR structures known as whorls. These whorls were prevalent in αdbn-deficient mice but were absent in wild-type muscles. These results suggest a crucial role of the DGC αdbn in regulating intracellular organelles, particularly mitochondria and the SR, within muscle cells. The remodeling of the SR and the formation of whorls may represent a novel mechanism of the unfolded protein response (UPR) in muscle cells.


Assuntos
Proteínas Associadas à Distrofina , Distrofina , Mitocôndrias , Retículo Sarcoplasmático , Animais , Camundongos , Distrofina/genética , Distrofina/metabolismo , Distrofina/deficiência , Proteínas Associadas à Distrofina/genética , Proteínas Associadas à Distrofina/metabolismo , Glicoproteínas/metabolismo , Glicoproteínas/genética , Glicoproteínas/deficiência , Camundongos Knockout , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Mitocôndrias/genética , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/ultraestrutura , Músculo Esquelético/metabolismo , Músculo Esquelético/ultraestrutura , Miofibrilas/metabolismo , Miofibrilas/ultraestrutura , Retículo Sarcoplasmático/metabolismo , Retículo Sarcoplasmático/ultraestrutura
5.
J Morphol ; 285(1): e21667, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38100741

RESUMO

Serial block-face scanning electron microscopy of the tail tip of post-metamorphic amphioxus (Branchiostoma floridae) revealed some terminal myomeres never been seen before with other techniques. The morphology of these myomeres differed markedly from the chevron shapes of their more anterior counterparts. Histologically, these odd-shaped myomeres ranged from empty vesicles bordered by undifferentiated cells to ventral sacs composed of well-developed myotome, dermatome, and sclerotome. Strikingly, several of these ventral sacs gave rise to a nipple-like dorsal projection composed either entirely of sclerotome or a mixture of sclerotome and myotome. Considered as a whole, from posterior to anterior, these odd-shaped posterior myomeres suggested that their more substantial ventral part may represent the ventral limb of a chevron, while the delicate projection represents a nascent dorsal limb. This scenario contrasts with formation of chevron-shaped myomeres along most of the antero-posterior axis. Although typical chevron formation in amphioxus is surprisingly poorly studied, it seems to be attained by a dorso-ventral extension of the myomere accompanied by the assumption of a V-shape; this is similar to what happens (at least superficially) in developing fishes. Another unusual feature of the odd-shaped posterior myomeres of amphioxus is their especially distended sclerocoels. One possible function for these might be to protect the posterior end of the central nervous system from trauma when the animals burrow into the substratum.


Assuntos
Anfioxos , Músculo Esquelético , Cauda , Microscopia Eletrônica de Volume , Animais , Peixes , Anfioxos/ultraestrutura , Mesoderma/diagnóstico por imagem , Mesoderma/ultraestrutura , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/ultraestrutura , Cauda/diagnóstico por imagem , Cauda/ultraestrutura
6.
Ultrastruct Pathol ; 46(5): 401-412, 2022 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-35994513

RESUMO

In this study, we investigated the effect of transcranial magnetic stimulation (TMS) on the ultrastructure of muscle fibers and satellite cells in rats with experimental autoimmune encephalomyelitis (EAE). EAE-induced animals were treated with TMS (60 Hz at 0.7 mT) for 2 hours in the morning, once a day, 5 days a week, for 3 weeks, starting on day 15 post-immunization. The rats were sacrificed on day 36 post-immunization, and the soleus muscles were evaluated by light microscopy and transmission electron microscopy. Findings were compared with a non-treated EAE group. Electron microscopy analysis showed the presence of degenerated mitochondria, autophagic vacuoles, and altered myofibrils in non-treated EAE group. This correlates with the presence of acid phosphatase activity in muscle fibers and core-targetoid lesions with desmin immunohistochemistry. Most myonuclei in the EAE group showed apoptotic features. In contrast, EAE induced-TMS treated animals had less ultrastructural changes in the mitochondria and the myofibrils, together with less frequent apoptotic nuclear features. Peripheral desmin+ protrusions, as a marker of active satellite cells, were significantly increased in TMS-treated group. This correlates ultrastructurally with the presence of active features in satellite cells in the TMS group. In conclusion, the attenuation of ultrastructural alterations in muscle fibers and activation response of satellite cells caused by EAE indicated that skeletal muscle had a regenerative response to TMS.


Assuntos
Encefalomielite Autoimune Experimental , Fosfatase Ácida , Animais , Desmina , Encefalomielite Autoimune Experimental/patologia , Encefalomielite Autoimune Experimental/terapia , Fibras Musculares Esqueléticas/patologia , Músculo Esquelético/ultraestrutura , Ratos , Estimulação Magnética Transcraniana
7.
J S Afr Vet Assoc ; 93(1): 38a-38h, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35950808

RESUMO

ABSTRACT: Nemaline myopathy - a clinically and genetically complex heterogenous group of disorders - is described uncommonly in humans and rarely in animals, and is characterised by progressive muscle weakness. The diagnosis is confirmed by histological and/or ultrastructural identification of subsarcolemmal, thread-like, rod-shaped structures called nemaline rod bodies within more than 40% of skeletal muscle fibres. These rods contain the Z-line protein, α-actinin, that can be effectively stained in skeletal muscles using Gomori or Masson trichrome and negatively stained with periodic acid-Schiff. Similar rod-like bodies have been found in smaller numbers in dogs with endocrine disorders and occasionally in other conditions in humans. This report is of a six-monthold Pomeranian dog which had progressive exercise intolerance over a two-month period associated with severe disuse muscle atrophy of the thoracic limbs, as well as gradual pelvic limb weakness and regurgitation of food. Baseline diagnostics ruled out endocrinopathies and after histological and ultrastructural evaluation of thoracic limb muscles and nerve biopsies confirmed nemaline myopathy. The clinical course, diagnostic test results, ultrastructure of skeletal muscle and peripheral nerve, gross necropsy findings and histopathology using various stains are described and illustrated.


Assuntos
Doenças do Cão , Miopatias da Nemalina , Animais , Doenças do Cão/diagnóstico , Doenças do Cão/patologia , Cães , Humanos , Debilidade Muscular/veterinária , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Músculo Esquelético/ultraestrutura , Miopatias da Nemalina/complicações , Miopatias da Nemalina/diagnóstico , Miopatias da Nemalina/veterinária
8.
J Vis Exp ; (184)2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35758675

RESUMO

Skeletal muscle lipid infiltration, known as myosteatosis, increases with obesity and ageing. Myosteatosis has also recently been discovered as a negative prognostic factor for several other disorders such as cardiovascular disease and cancer. Excessive lipid infiltration decreases muscle mass and strength. It also results in lipotoxicity and insulin resistance depending on total intramyocellular lipid content, lipid droplet (LD) morphology, and subcellular distribution. Fiber type (oxidative vs glycolytic) is also important, since oxidative fibers have a greater capacity to utilize lipids. Because of their crucial implications in pathophysiology, in-depth studies on LD dynamics and function in a fiber type-specific manner are warranted. Herein, a complete protocol is presented for the quantification of intramyocellular lipid content and analysis of LD morphology and subcellular distribution in a fiber type-specific manner. To this end, serial muscle cryosections were stained with the fluorescent dye Bodipy and antibodies against myosin heavy chain isoforms. This protocol enables the simultaneous processing of different muscles, saving time and avoiding possible artifacts and, thanks to a personalized macro created in Fiji, the automatization of LD analysis is also possible.


Assuntos
Resistência à Insulina , Gotículas Lipídicas , Humanos , Gotículas Lipídicas/química , Lipídeos/análise , Músculo Esquelético/ultraestrutura , Cadeias Pesadas de Miosina
9.
Nat Commun ; 13(1): 424, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-35058456

RESUMO

Mitochondrial dysfunction is implicated in skeletal muscle insulin resistance. Syntaxin 4 (STX4) levels are reduced in human diabetic skeletal muscle, and global transgenic enrichment of STX4 expression improves insulin sensitivity in mice. Here, we show that transgenic skeletal muscle-specific STX4 enrichment (skmSTX4tg) in mice reverses established insulin resistance and improves mitochondrial function in the context of diabetogenic stress. Specifically, skmSTX4tg reversed insulin resistance caused by high-fat diet (HFD) without altering body weight or food consumption. Electron microscopy of wild-type mouse muscle revealed STX4 localisation at or proximal to the mitochondrial membrane. STX4 enrichment prevented HFD-induced mitochondrial fragmentation and dysfunction through a mechanism involving STX4-Drp1 interaction and elevated AMPK-mediated phosphorylation at Drp1 S637, which favors fusion. Our findings challenge the dogma that STX4 acts solely at the plasma membrane, revealing that STX4 localises at/proximal to and regulates the function of mitochondria in muscle. These results establish skeletal muscle STX4 enrichment as a candidate therapeutic strategy to reverse peripheral insulin resistance.


Assuntos
Dinaminas/metabolismo , Exocitose , Resistência à Insulina , Dinâmica Mitocondrial , Músculo Esquelético/metabolismo , Proteínas Qa-SNARE/metabolismo , Adenilato Quinase/metabolismo , Animais , Respiração Celular , Ciclo do Ácido Cítrico , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Dieta Hiperlipídica , Doxiciclina/farmacologia , Feminino , Glucose/metabolismo , Homeostase , Masculino , Metaboloma , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Músculo Esquelético/ultraestrutura , Especificidade de Órgãos , Fosforilação , Fosfosserina/metabolismo , Condicionamento Físico Animal
10.
J Nutr Biochem ; 100: 108902, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34748920

RESUMO

A diet high in saturated fat leads to skeletal muscle deteriorations including insulin resistance, mitochondrial dysfunction and muscle fiber atrophy. Consumption of long-chain polyunsaturated fatty acids and exercise have shown promise in ameliorating high-fat diet (HFD)-induced oxidative stress and inflammation. However, the impact of extra virgin olive oil (EVOO) on mitochondrial homeostasis in muscle is largely unknown. This study aimed to investigate whether 12 wks of EVOO feeding alone and in conjunction with endurance training could protect against metabolic and mitochondrial dysfunction rat muscle with HFD. Female Sprague-Dawley rats were divided into 4 groups fed a control diet (C), HFD, EVOO diet, and EVOO diet with training (EVOO+T). Mitochondrial enzyme activity and protein content decreased with HFD compared to C, but were restored with EVOO and EVOO+T. EVOO+T elevated muscle cytochrome c and PGC-1α levels. HFD increased muscle proteolytic markers and protein ubiquitination, whereas these effects were not seen in EVOO and EVOO+T. HFD suppressed mitochondrial fusion protein level while increasing fission protein levels, but were restored with EVOO and EVOO+T. Mitophagy marker PINK1 content decreased with HFD, but was unchanged in EVOO and EVOO+T. EVOO+T upregulated autophagy markers, along with decreased phosphorylated/dephosphorylated FoxO3 ratio. Antioxidants enzyme levels were upregulated by EVOO and EVOO+T, and EVOO+T reduced HFD-induced lipid peroxidation. In conclusion, HFD impaired muscle oxidative capacity, promoted protein ubiquitination and mitochondrial fission, and upregulated autophagy markers. Replacement of HFD with EVOO corrected the observed adverse effects, while exercise training in conjunction with EVOO provided additional protection to the muscle.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Azeite de Oliva , Condicionamento Físico Animal , Animais , Antioxidantes/metabolismo , Autofagia , Peso Corporal , Colesterol/sangue , Feminino , Insulina/sangue , Mitocôndrias Musculares/ultraestrutura , Dinâmica Mitocondrial , Músculo Esquelético/ultraestrutura , Oxirredução , Proteólise , Ratos , Ratos Sprague-Dawley , Ubiquitinação
11.
Am J Pathol ; 192(1): 160-177, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34710383

RESUMO

Sigma 1 receptor (Sigmar1) is a widely expressed, multitasking molecular chaperone protein that plays functional roles in several cellular processes. Mutations in the Sigmar1 gene are associated with several distal neuropathies with strong manifestation in skeletal muscle dysfunction with phenotypes like muscle wasting and atrophy. However, the physiological function of Sigmar1 in skeletal muscle remains unknown. Herein, the physiological role of Sigmar1 in skeletal muscle structure and function in gastrocnemius, quadriceps, soleus, extensor digitorum longus, and tibialis anterior muscles was determined. Quantification of myofiber cross-sectional area showed altered myofiber size distribution and changes in myofiber type in the skeletal muscle of the Sigmar1-/- mice. Interestingly, ultrastructural analysis by transmission electron microscopy showed the presence of abnormal mitochondria, and immunostaining showed derangements in dystrophin localization in skeletal muscles from Sigmar1-/- mice. In addition, myopathy in Sigmar1-/- mice was associated with an increased number of central nuclei, increased collagen deposition, and fibrosis. Functional studies also showed reduced endurance and exercise capacity in the Sigmar1-/- mice without any changes in voluntary locomotion, markers for muscle denervation, and muscle atrophy. Overall, this study shows, for the first time, a potential physiological function of Sigmar1 in maintaining healthy skeletal muscle structure and function.


Assuntos
Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatologia , Receptores sigma/deficiência , Animais , Colágeno/metabolismo , Distrofina/metabolismo , Fibrose , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Fibras Musculares Esqueléticas/patologia , Músculo Esquelético/ultraestrutura , Condicionamento Físico Animal , Transporte Proteico , Receptores sigma/metabolismo , Receptor Sigma-1
12.
Toxins (Basel) ; 13(12)2021 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-34941726

RESUMO

Equinovarus foot is one of the most commonly spasticity related conditions in stroke survivors, leading to an impaired gait and poor functional performances. Notably, spastic muscles undergo a dynamic evolution following typical pathophysiological patterns. Botulinum Neurotoxin Type A (BoNT-A) is the gold standard for focal spasticity treatment, and ultrasound (US) imaging is widely recommended to guide injections and monitor muscle evolution. The role of BoNT-A in influencing muscle fibroadipose degeneration is still unclear. In this study, we analyzed medial gastrocnemius (MG) and soleus (SOL) US characteristics (cross-sectional area, muscle thickness, pennation angle, and mean echo intensity) in 53 patients. MG and SOL alterations, compared to the unaffected side, depend on the spasticity only and not on the BoNT-A treatment. In functionally preserved patients (functional ambulation classification, FAC > 3; modified Ashworth scale, MAS ≤ 2), the ultrasonographic changes of MG compared to ipsilateral SOL observed in the paretic limb alone seems to be due to histological, anatomical, pathophysiological, and biomechanical differences between the two muscles. In subjects with poor walking capability and more severe spasticity, such ipsilateral difference was found in both calves. In conclusion, BoNT-A does not seem to influence muscle degeneration. Similar muscles undergo different evolution depending on the grade of walking deficit and spasticity.


Assuntos
Toxinas Botulínicas Tipo A/uso terapêutico , Pé Torto Equinovaro/tratamento farmacológico , Espasticidade Muscular/tratamento farmacológico , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/ultraestrutura , Fármacos Neuromusculares/uso terapêutico , Acidente Vascular Cerebral/complicações , Idoso , Feminino , Humanos , Injeções Intramusculares , Itália , Masculino , Pessoa de Meia-Idade , Reabilitação do Acidente Vascular Cerebral , Resultado do Tratamento
13.
Aging (Albany NY) ; 13(22): 24524-24541, 2021 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-34839281

RESUMO

The authors examined the ultrastructure of mitochondrial apparatus of skeletal muscles of naked mole rats (Heterocephalus glaber) from the age of 6 months to 11 years. The obtained results have demonstrated that the mitochondria in skeletal muscles of naked mole rats aged below 5 years is not well-developed and represented by few separate small mitochondria. Mitochondrial reticulum is absent. Starting from the age of 5 years, a powerful mitochondrial structure is developed. By the age of 11 years, it become obvious that the mitochondrial apparatus formed differs from that in the skeletal muscle of adult rats and mice, but resembles that of cardiomyocytes of rats or naked mole rats cardiomyocytes. From the age of 6 months to 11 years, percentage area of mitochondria in the skeletal muscle of naked mole rat is increasing by five times. The growth of mitochondria is mainly driven by increased number of organelles. Such significant growth of mitochondria is not associated with any abnormal changes in mitochondrial ultrastructure. We suppose that specific structure of mitochondrial apparatus developed in the skeletal muscle of naked mole rats by the age of 11 years is necessary for continual skeletal muscle activity of these small mammals burrowing very long holes in stony earth, resembling continual activity of heart muscle. In any case, ontogenesis of naked mole rat skeletal muscles is much slower than of rats and mice (one more example of neoteny).


Assuntos
Envelhecimento/fisiologia , Mitocôndrias/ultraestrutura , Músculo Esquelético/ultraestrutura , Fenômenos Fisiológicos Musculoesqueléticos , Animais , Microscopia Eletrônica , Ratos-Toupeira/fisiologia
14.
Cells ; 10(11)2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34831044

RESUMO

Calsequestrin 1 (CASQ1) in skeletal muscle buffers and senses Ca2+ in the sarcoplasmic reticulum (SR). CASQ1 also regulates store-operated Ca2+ entry (SOCE) by binding to stromal interaction molecule 1 (STIM1). Abnormal SOCE and/or abnormal expression or mutations in CASQ1, STIM1, or STIM2 are associated with human skeletal, cardiac, or smooth muscle diseases. However, the functional relevance of CASQ1 along with STIM2 has not been studied in any tissue, including skeletal muscle. First, in the present study, it was found by biochemical approaches that CASQ1 is bound to STIM2 via its 92 N-terminal amino acids (C1 region). Next, to examine the functional relevance of the CASQ1-STIM2 interaction in skeletal muscle, the full-length wild-type CASQ1 or the C1 region was expressed in mouse primary skeletal myotubes, and the myotubes were examined using single-myotube Ca2+ imaging experiments and transmission electron microscopy observations. The CASQ1-STIM2 interaction via the C1 region decreased SOCE, increased intracellular Ca2+ release for skeletal muscle contraction, and changed intracellular Ca2+ distributions (high Ca2+ in the SR and low Ca2+ in the cytosol were observed). Furthermore, the C1 region itself (which lacks Ca2+-buffering ability but has STIM2-binding ability) decreased the expression of Ca2+-related proteins (canonical-type transient receptor potential cation channel type 6 and calmodulin 1) and induced mitochondrial shape abnormalities. Therefore, in skeletal muscle, CASQ1 plays active roles in Ca2+ movement and distribution by interacting with STIM2 as well as Ca2+ sensing and buffering.


Assuntos
Calsequestrina/metabolismo , Músculo Esquelético/metabolismo , Molécula 2 de Interação Estromal/metabolismo , Animais , Cálcio/metabolismo , Calsequestrina/química , Citosol/metabolismo , Dinaminas/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Humanos , Espaço Intracelular/metabolismo , Camundongos , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Modelos Moleculares , Contração Muscular , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/ultraestrutura , Ligação Proteica , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo
15.
Front Endocrinol (Lausanne) ; 12: 697204, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34594301

RESUMO

Skeletal muscles secrete various factors, such as proteins/peptides, nucleotides, and metabolites, which are referred to as myokines. Many of these factors are transported into extracellular bodily fluids in a free or protein-bound form. Furthermore, several secretory factors have been shown to be wrapped up by small vesicles, particularly exosomes, secreted into circulation, and subsequently regulate recipient cells. Thus, exosome contents can be recognized as myokines. In recipient cells, proteins, microRNAs, and metabolites in exosomes can regulate the expression and activity of target proteins associated with nutrient metabolism and immune function. The levels of circulating exosomes and their contents are altered in muscle disorders and metabolic-related states, such as metabolic dysfunction, sarcopenia, and physical fitness. Therefore, such circulating factors could mediate various interactions between skeletal muscle and other organs and may be useful as biomarkers reflecting physiological and pathological states associated with muscular function. Here, this review summarizes secretory regulation of muscle-derived exosomes. Their metabolic and immunological roles and the significance of their circulating levels are also discussed.


Assuntos
Exossomos/fisiologia , Músculo Esquelético/imunologia , Músculo Esquelético/metabolismo , Animais , Biomarcadores/metabolismo , Comunicação Celular/genética , Comunicação Celular/imunologia , Metabolismo Energético/genética , Metabolismo Energético/fisiologia , Humanos , Sistema Imunitário/metabolismo , Sistema Imunitário/fisiologia , MicroRNAs/genética , MicroRNAs/metabolismo , Músculo Esquelético/citologia , Músculo Esquelético/ultraestrutura
16.
J Cell Biol ; 220(12)2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34633413

RESUMO

The cavin proteins are essential for caveola biogenesis and function. Here, we identify a role for the muscle-specific component, Cavin4, in skeletal muscle T-tubule development by analyzing two vertebrate systems, mouse and zebrafish. In both models, Cavin4 localized to T-tubules, and loss of Cavin4 resulted in aberrant T-tubule maturation. In zebrafish, which possess duplicated cavin4 paralogs, Cavin4b was shown to directly interact with the T-tubule-associated BAR domain protein Bin1. Loss of both Cavin4a and Cavin4b caused aberrant accumulation of interconnected caveolae within the T-tubules, a fragmented T-tubule network enriched in Caveolin-3, and an impaired Ca2+ response upon mechanical stimulation. We propose a role for Cavin4 in remodeling the T-tubule membrane early in development by recycling caveolar components from the T-tubule to the sarcolemma. This generates a stable T-tubule domain lacking caveolae that is essential for T-tubule function.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Sarcolema/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Cavéolas/metabolismo , Linhagem Celular , Embrião não Mamífero/metabolismo , Imageamento Tridimensional , Camundongos Endogâmicos C57BL , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/ultraestrutura , Músculo Esquelético/ultraestrutura , Ligação Proteica , Sarcolema/ultraestrutura , Peixe-Zebra/embriologia
17.
Nutrients ; 13(10)2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34684660

RESUMO

Decreased energy expenditure and chronically positive energy balance contribute to the prevalence of obesity and associated metabolic dysfunctions, such as dyslipidemia, hepatic fat accumulation, inflammation, and muscle mitochondrial defects. We investigated the effects of Chrysanthemum morifolium Ramat flower extract (CE) on obesity-induced inflammation and muscle mitochondria changes. Sprague-Dawley rats were randomly divided into four groups and fed either a normal diet, 45% high-fat diet (HF), HF containing 0.2% CE, or 0.4% CE for 13 weeks. CE alleviated HF-increased adipose tissue mass and size, dyslipidemia, hepatic fat deposition, and systematic inflammation, and increased energy expenditure. CE significantly decreased gene expression involved in adipogenesis, pro-inflammation, and the M1 macrophage phenotype, as well as glycerol-3-phosphate dehydrogenase (GPDH) and nuclear factor-kappa B (NF-kB) activities in epididymal adipose tissue. Moreover, CE supplementation improved hepatic fat accumulation and modulated gene expression related to fat synthesis and oxidation with an increase in adenosine monophosphate-activated protein kinase (AMPK) activity in the liver. Furthermore, CE increased muscle mitochondrial size, mitochondrial DNA (mtDNA) content, and gene expression related to mitochondrial biogenesis and function, including sirtuin 1 (SIRT1), peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), and PGC-1α-target genes, along with AMPK-SIRT1 activities in the skeletal muscle. These results suggest that CE attenuates obesity-associated inflammation by modulating the muscle AMPK-SIRT1 pathway.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Chrysanthemum/química , Flores/química , Inflamação/tratamento farmacológico , Mitocôndrias Musculares/metabolismo , Obesidade/complicações , Extratos Vegetais/uso terapêutico , Sirtuína 1/metabolismo , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Adipócitos/patologia , Adipogenia/efeitos dos fármacos , Adipogenia/genética , Tecido Adiposo Branco/metabolismo , Animais , Peso Corporal/efeitos dos fármacos , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Dieta Hiperlipídica , Dislipidemias/complicações , Metabolismo Energético/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Hipertrofia , Inflamação/etiologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Mitocôndrias Musculares/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/ultraestrutura , Extratos Vegetais/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley
18.
Int J Mol Sci ; 22(19)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34638903

RESUMO

Aging is characterized by a progressive decline of skeletal muscle (SM) mass and strength which may lead to sarcopenia in older persons. To date, a limited number of studies have been performed in the old SM looking at the whole, complex network of the extracellular matrix (i.e., matrisome) and its aging-associated changes. In this study, skeletal muscle proteins were isolated from whole gastrocnemius muscles of adult (12 mo.) and old (24 mo.) mice using three sequential extractions, each one analyzed by liquid chromatography with tandem mass spectrometry. Muscle sections were investigated using fluorescence- and transmission electron microscopy. This study provided the first characterization of the matrisome in the old SM demonstrating several statistically significantly increased matrisome proteins in the old vs. adult SM. Several proteomic findings were confirmed and expanded by morphological data. The current findings shed new light on the mutually cooperative interplay between cells and the extracellular environment in the aging SM. These data open the door for a better understanding of the mechanisms modulating myocellular behavior in aging (e.g., by altering mechano-sensing stimuli as well as signaling pathways) and their contribution to age-dependent muscle dysfunction.


Assuntos
Envelhecimento/metabolismo , Matriz Extracelular/metabolismo , Músculo Esquelético/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Fatores Etários , Animais , Cromatografia Líquida , Colágeno/metabolismo , Laminina/metabolismo , Masculino , Camundongos Endogâmicos BALB C , Microscopia Eletrônica de Transmissão , Músculo Esquelético/ultraestrutura , Isoformas de Proteínas/metabolismo , Subunidades Proteicas/metabolismo , Espectrometria de Massas em Tandem
19.
Science ; 374(6565): 355-359, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34648328

RESUMO

Regeneration of skeletal muscle is a highly synchronized process that requires muscle stem cells (satellite cells). We found that localized injuries, as experienced through exercise, activate a myofiber self-repair mechanism that is independent of satellite cells in mice and humans. Mouse muscle injury triggers a signaling cascade involving calcium, Cdc42, and phosphokinase C that attracts myonuclei to the damaged site via microtubules and dynein. These nuclear movements accelerate sarcomere repair and locally deliver messenger RNA (mRNA) for cellular reconstruction. Myofiber self-repair is a cell-autonomous protective mechanism and represents an alternative model for understanding the restoration of muscle architecture in health and disease.


Assuntos
Núcleo Celular/fisiologia , Fibras Musculares Esqueléticas/fisiologia , Músculo Esquelético/lesões , Músculo Esquelético/fisiologia , Regeneração , Sarcômeros/fisiologia , Animais , Cálcio/metabolismo , Dineínas/metabolismo , Camundongos , Microtúbulos/metabolismo , Contração Muscular , Fibras Musculares Esqueléticas/ultraestrutura , Músculo Esquelético/ultraestrutura , RNA Mensageiro/metabolismo , Transdução de Sinais , Proteína cdc42 de Ligação ao GTP/metabolismo
20.
JCI Insight ; 6(17)2021 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-34494555

RESUMO

Stromal interaction molecule 1 (STIM1), the sarcoplasmic reticulum (SR) transmembrane protein, activates store-operated Ca2+ entry (SOCE) in skeletal muscle and, thereby, coordinates Ca2+ homeostasis, Ca2+-dependent gene expression, and contractility. STIM1 occupies space in the junctional SR membrane of the triads and the longitudinal SR at the Z-line. How STIM1 is organized and is retained in these specific subdomains of the SR is unclear. Here, we identified desmin, the major type III intermediate filament protein in muscle, as a binding partner for STIM1 based on a yeast 2-hybrid screen. Validation of the desmin-STIM1 interaction by immunoprecipitation and immunolocalization confirmed that the CC1-SOAR domains of STIM1 interact with desmin to enhance STIM1 oligomerization yet limit SOCE. Based on our studies of desmin-KO mice, we developed a model wherein desmin connected STIM1 at the Z-line in order to regulate the efficiency of Ca2+ refilling of the SR. Taken together, these studies showed that desmin-STIM1 assembles a cytoskeletal-SR connection that is important for Ca2+ signaling in skeletal muscle.


Assuntos
Desmina/genética , Regulação da Expressão Gênica , Músculo Esquelético/metabolismo , RNA/genética , Molécula 1 de Interação Estromal/genética , Animais , Sinalização do Cálcio , Células Cultivadas , Desmina/biossíntese , Proteínas de Membrana/biossíntese , Proteínas de Membrana/genética , Camundongos , Microscopia Eletrônica de Transmissão , Modelos Animais , Músculo Esquelético/ultraestrutura , Retículo Sarcoplasmático/metabolismo , Molécula 1 de Interação Estromal/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...