Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.735
Filtrar
1.
Bull Exp Biol Med ; 177(1): 68-73, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38955855

RESUMO

Substances of silver nanoparticles dialyzed through a 13 kDa membrane, synthesized in a medium of humic ligands modified with hydroquinone and 2-hydroxynaphthoquinone from PowHumus brown coal, specifically enhance the M2 properties of peritoneal macrophages due to inhibition of NO synthase and significant activation of arginase, thus enhancing anti-inflammatory properties of cells. In small, but effective concentrations, they do not have cytotoxic properties and do not contain pyrogenic impurities. The studied humates are able to influence the mechanisms of immune response formation and are an effective means for correcting inflammation and regeneration.


Assuntos
Arginase , Arginina , Substâncias Húmicas , Macrófagos Peritoneais , Prata , Animais , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/metabolismo , Camundongos , Arginina/farmacologia , Arginina/química , Arginase/metabolismo , Prata/química , Prata/farmacologia , Nanopartículas Metálicas/química , Hidroquinonas/farmacologia , Hidroquinonas/química , Masculino , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase/metabolismo , Naftoquinonas/farmacologia , Naftoquinonas/química
2.
Exp Oncol ; 46(1): 30-37, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38852055

RESUMO

AIM: To study the activity of antitumor immunity effectors and to analyze possible mechanisms of peritoneal Mph M1/M2 repolarization of Balb/c mice under the influence of lectin from B. subtilis IMV B-7724 in the dynamics of the model tumor growth. MATERIALS AND METHODS: Studies were performed on Balb/c mice; Ehrlich adenocarcinoma (АСЕ) was used as an experimental tumor. Lectin from B. subtilis IMV B-7724 was administered to ACE-bearing mice at a dose of 1 mg/kg of body weight, 10 times. Immunological testing was performed on days 21 and 28 after tumor grafting. The functional activity of peritoneal macrophages (Mph), natural killer (NK) cells, cytotoxic lymphocytes (CTL), and cytokine levels (IFN-γ, IL-4) were studied by the standard methods. mRNA expression levels of transcription factors STAT-1, STAT-6, IRF5, and IRF4 in Mph were evaluated. RESULTS: The administration of lectin from B. subtilis IMV B-7724 to mice with solid ACE led to the preservation of the initial functional state of peritoneal Mph M1 during the experiment. The bacterial lectin ensured the preservation of the cytotoxic activity of CD8+ T-lymphocytes and a significant (p < 0.05) increase in the NK activity (by 2.7 times compared to the intact animals and by 12.9 times compared to the untreated mice). A strong positive correlation was noted between the levels of the functional activity of Mph and CD8+ T-lymphocytes of animals with tumors and the indices of the antitumor effectiveness of bacterial lectin. The indirect polarization of Mph was evidenced by a strong positive correlation between the level of the NO/Arg ratio (which characterizes the direction of Mph polarization) and the cytotoxic activity of CD8+ T-lymphocytes, NK cells, and the expression of STAT1/STAT6 (the 21st day) and IRF5/IRF4 (the 28th day). CONCLUSION: In ACE-bearing mice, repolarization of the peritoneal Mph toward M1 can occur not only due to the direct action of bacterial lectin on the cellular receptors but also with the involvement of other effectors of antitumor immunity (NK cells, T-lymphocytes). The transcription factors of the STAT and IRF signaling pathways are involved in the polarization process.


Assuntos
Células Matadoras Naturais , Macrófagos Peritoneais , Camundongos Endogâmicos BALB C , Animais , Camundongos , Macrófagos Peritoneais/imunologia , Macrófagos Peritoneais/metabolismo , Macrófagos Peritoneais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Carcinoma de Ehrlich/imunologia , Carcinoma de Ehrlich/patologia , Carcinoma de Ehrlich/metabolismo , Bacillus subtilis , Citocinas/metabolismo , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/metabolismo
3.
Chem Biol Drug Des ; 103(6): e14572, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38923686

RESUMO

The environmental factor aryl hydrocarbon receptor (AhR), a key protein connecting the external environmental signals (e.g., environmental endocrine disruptor TCDD) to internal cellular processes, is involved in the activation of peripheral macrophages and inflammatory response in human body. Thus, there is widespread interest in finding compounds to anti-inflammatory response in macrophages by targeting human AhR. Here, ensemble docking based-virtual screening was first used to screen a library (~200,000 compounds) against human AhR ligand binding domain (LBD) and 25 compounds were identified as potential inhibitors. Then, 9 out of the 25 ligands were found to down-regulate the mRNA expression of CYP1A1 (a downstream gene of AhR signaling) in AhR overexpressing macrophages. The most potent compound AE-411/41415610 was selected for further study and found to reduce both mRNA and protein expressions level of CYP1A1 in mouse peritoneal macrophage. Moreover, protein chip signal pathway analysis indicated that AE-411/41415610 play a role in regulating JAK-STAT and AKT-mTOR pathways. In sum, the discovered hits with novel scaffolds provided a starting point for future design of more effective AhR-targeted lead compounds to regulate CYP1A1 expression of inflammatory peritoneal macrophages.


Assuntos
Citocromo P-450 CYP1A1 , Simulação de Acoplamento Molecular , Receptores de Hidrocarboneto Arílico , Transdução de Sinais , Receptores de Hidrocarboneto Arílico/metabolismo , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP1A1/genética , Animais , Ligantes , Camundongos , Humanos , Transdução de Sinais/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos Peritoneais/metabolismo , Macrófagos Peritoneais/efeitos dos fármacos , Inflamação/metabolismo , Inflamação/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Sítios de Ligação
4.
Int Immunopharmacol ; 137: 112470, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38908085

RESUMO

BACKGROUND: The surplus cytokines remaining after use in the early stages of the inflammatory response stimulate immune cells even after the response is over, causing a secondary inflammatory response and ultimately damaging the host, which is called a cytokine storm. Inhibiting heat shock protein 90 (Hsp90), which has recently been shown to play an important role in regulating inflammation in various cell types, may help control excessive inflammatory responses and cytokine storms. METHODS: We discovered an anti-inflammatory compound by measuring the inhibitory effect of CD86 expression on spleen DCs (sDCs) using the chemical compounds library of Hsp90 inhibitors. Subsequently, to select the hit compound, the production of cytokines and expression of surface molecules were measured on the bone marrow-derived DCs (BMDCs) and peritoneal macrophages. Then, we analyzed the response of antigen-specific Th1 cells. Finally, we confirmed the effect of the compound using acute lung injury (ALI) and delayed-type hypersensitivity (DTH) models. RESULTS: We identified Be01 as the hit compound, which reduced CD86 expression the most in sDCs. Treatment with Be01 decreased the production of pro-inflammatory cytokines (IL-6, TNF-α, and IL-1ß) in BMDC and peritoneal macrophages stimulated by LPS. Under the DTH model, Be01 treatment reduced ear swelling and pro-inflammatory cytokines in the spleen. Similarly, Be01 treatment in the ALI model decreased neutrophil infiltration and lower levels of secreted cytokines (IL-6, TNF-α). CONCLUSIONS: Reduction of CD80 and CD86 expression on DCs by Be01 indicates reduced secondary inflammatory response by Th1 cells, and reduced release of pro-inflammatory cytokines by peritoneal macrophages may initially control the cytokine storm.


Assuntos
Anti-Inflamatórios , Citocinas , Células Dendríticas , Proteínas de Choque Térmico HSP90 , Macrófagos Peritoneais , Camundongos Endogâmicos C57BL , Animais , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Proteínas de Choque Térmico HSP90/metabolismo , Citocinas/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Camundongos , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/imunologia , Macrófagos Peritoneais/metabolismo , Hipersensibilidade Tardia/tratamento farmacológico , Hipersensibilidade Tardia/imunologia , Antígeno B7-2/metabolismo , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/imunologia , Células Cultivadas , Síndrome da Liberação de Citocina/tratamento farmacológico , Síndrome da Liberação de Citocina/imunologia , Células Th1/imunologia , Células Th1/efeitos dos fármacos , Inflamação/tratamento farmacológico , Inflamação/imunologia , Feminino , Modelos Animais de Doenças , Baço/imunologia , Baço/efeitos dos fármacos
5.
Drug Dev Res ; 85(3): e22194, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38704828

RESUMO

The aim the present study was to investigate the impact of novel pentavalent organobismuth and organoantimony complexes on membrane integrity and their interaction with DNA, activity against Sb(III)-sensitive and -resistant Leishmania strains and toxicity in mammalian peritoneal macrophages. Ph3M(L)2 type complexes were synthesized, where M = Sb(V) or Bi(V) and L = deprotonated 3-(dimethylamino)benzoic acid or 2-acetylbenzoic acid. Both organobismuth(V) and organoantimony(V) complexes exhibited efficacy at micromolar concentrations against Leishmania amazonensis and L. infantum but only the later ones demonstrated biocompatibility. Ph3Sb(L1)2 and Ph3Bi(L1)2 demonstrated distinct susceptibility profiles compared to inorganic Sb(III)-resistant strains of MRPA-overexpressing L. amazonensis and AQP1-mutated L. guyanensis. These complexes were able to permeate the cell membrane and interact with the Leishmania DNA, suggesting that this effect may contribute to the parasite growth inhibition via apoptosis. Taken altogether, our data substantiate the notion of a distinct mechanism of uptake pathway and action in Leishmania for these organometallic complexes, distinguishing them from the conventional inorganic antimonial drugs.


Assuntos
Antimônio , Antiprotozoários , Membrana Celular , Resistência a Medicamentos , Compostos Organometálicos , Antimônio/farmacologia , Antimônio/química , Animais , Compostos Organometálicos/farmacologia , Camundongos , Membrana Celular/efeitos dos fármacos , Antiprotozoários/farmacologia , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/parasitologia , Leishmania/efeitos dos fármacos , DNA de Protozoário , Leishmania infantum/efeitos dos fármacos , Leishmania infantum/genética , Camundongos Endogâmicos BALB C
6.
Sci Rep ; 14(1): 11079, 2024 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745047

RESUMO

N-acetyl glucosamine (NAG) is a natural amino sugar found in various human tissues with previously described anti-inflammatory effects. Various chemical modifications of NAG have been made to promote its biomedical applications. In this study, we synthesized two bi-deoxygenated NAG, BNAG1 and BNAG2 and investigated their anti-inflammatory properties, using an in vivo and in vitro inflammation mouse model induced by lipopolysaccharide (LPS). Among the parent molecule NAG, BNAG1 and BNAG2, BNAG1 showed the highest inhibition against serum levels of IL-6 and TNF α and the leukocyte migration to lungs and peritoneal cavity in LPS challenged mice, as well as IL-6 and TNF α production in LPS-stimulated primary peritoneal macrophages. BNAG2 displayed an anti-inflammatory effect which was comparable to NAG. These findings implied potential application of these novel NAG derivatives, especially BNAG1, in treatment of certain inflammation-related diseases.


Assuntos
Acetilglucosamina , Anti-Inflamatórios , Lipopolissacarídeos , Macrófagos Peritoneais , Fator de Necrose Tumoral alfa , Animais , Acetilglucosamina/farmacologia , Camundongos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/síntese química , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Interleucina-6/sangue , Inflamação/tratamento farmacológico , Masculino , Modelos Animais de Doenças
7.
Toxicol Appl Pharmacol ; 487: 116958, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38735591

RESUMO

Acute lung injury (ALI) remains a significant clinical challenge due to the absence of effective treatment alternatives. This study presents a new method that employs a screening platform focusing on MyD88 affinity, anti-inflammatory properties, and toxicity. This platform was used to evaluate a 300-compound library known for its anti-inflammatory potential. Among the screened compounds, Bicyclol emerged as a standout, exhibiting MyD88 binding and a significant reduction in LPS-stimulated pro-inflammatory factors production in mouse primary peritoneal macrophages. By targeting MyD88, Bicyclol disrupts the MyD88/TLR4 complex and MyD88 polymer formation, thereby mitigating the MAPKs and NF-κB signaling pathways. In vivo experiments further confirmed Bicyclol's efficacy, demonstrating alleviated ALI symptoms, decreased inflammatory cytokines level, and reduced inflammatory cells presence in lung tissues. These findings were associated with a decrease in mortality in LPS-challenged mice. Overall, Bicyclol represents a promising treatment option for ALI by specifically targeting MyD88 and limiting inflammatory responses.


Assuntos
Lesão Pulmonar Aguda , Compostos de Bifenilo , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , Fator 88 de Diferenciação Mieloide , Animais , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/prevenção & controle , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Lipopolissacarídeos/toxicidade , Fator 88 de Diferenciação Mieloide/metabolismo , Camundongos , Masculino , Compostos de Bifenilo/farmacologia , Anti-Inflamatórios/farmacologia , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo , Citocinas/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pulmão/metabolismo
8.
Theranostics ; 14(6): 2526-2543, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38646640

RESUMO

Rationale: A mature tissue resident macrophage (TRM) population residing in the peritoneal cavity has been known for its unique ability to migrate to peritoneally located injured tissues and impart wound healing properties. Here, we sought to expand on this unique ability of large peritoneal macrophages (LPMs) by investigating whether these GATA6+ LPMs could also intravasate into systemic circulation and migrate to extra-peritoneally located lungs upon ablating lung-resident alveolar macrophages (AMs) by intranasally administered clodronate liposomes in mice. Methods: C12-200 cationic lipidoid-based nanoparticles were employed to selectively deliver a small interfering RNA (siRNA)-targeting CD-45 labeled with a cyanine 5.5 (Cy5.5) dye to LPMs in vivo via intraperitoneal injection. We utilized a non-invasive optical technique called Diffuse In Vivo Flow Cytometry (DiFC) to then systemically track these LPMs in real time and paired it with more conventional techniques like flow cytometry and immunocytochemistry to initially confirm uptake of C12-200 encapsulated siRNA-Cy5.5 (siRNA-Cy5.5 (C12-200)) into LPMs, and further track them from the peritoneal cavity to the lungs in a mouse model of AM depletion incited by intranasally administered clodronate liposomes. Also, we stained for LPM-specific marker zinc-finger transcription factor GATA6 in harvested cells from biofluids like broncho-alveolar lavage as well as whole blood to probe for Cy5.5-labeled LPMs in the lungs as well as in systemic circulation. Results: siRNA-Cy5.5 (C12-200) was robustly taken up by LPMs. Upon depletion of lung-resident AMs, these siRNA-Cy5.5 (C12-200) labeled LPMs rapidly migrated to the lungs via systemic circulation within 12-24 h. DiFC results showed that these LPMs intravasated from the peritoneal cavity and utilized a systemic route of migration. Moreover, immunocytochemical staining of zinc-finger transcription factor GATA6 further confirmed results from DiFC and flow cytometry, confirming the presence of siRNA-Cy5.5 (C12-200)-labeled LPMs in the peritoneum, whole blood and BALF only upon clodronate-administration. Conclusion: Our results indicate for the very first time that selective tropism, migration, and infiltration of LPMs into extra-peritoneally located lungs was dependent on clodronate-mediated AM depletion. These results further open the possibility of therapeutically utilizing LPMs as delivery vehicles to carry nanoparticle-encapsulated oligonucleotide modalities to potentially address inflammatory diseases, infectious diseases and even cancer.


Assuntos
Ácido Clodrônico , Pulmão , Macrófagos Peritoneais , Nanopartículas , Animais , Ácido Clodrônico/farmacologia , Ácido Clodrônico/administração & dosagem , Nanopartículas/química , Nanopartículas/administração & dosagem , Camundongos , Pulmão/metabolismo , Macrófagos Peritoneais/metabolismo , Macrófagos Peritoneais/imunologia , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Alveolares/metabolismo , RNA Interferente Pequeno/administração & dosagem , Fator de Transcrição GATA6/metabolismo , Lipossomos , Camundongos Endogâmicos C57BL , Carbocianinas/química , Movimento Celular/efeitos dos fármacos , Citometria de Fluxo
9.
Molecules ; 29(8)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38675622

RESUMO

IRAK4 is a critical mediator in NF-κB-regulated inflammatory signaling and has emerged as a promising therapeutic target for the treatment of autoimmune diseases; however, none of its inhibitors have received FDA approval. In this study, we identified a novel small-molecule IRAK4 kinase inhibitor, DW18134, with an IC50 value of 11.2 nM. DW18134 dose-dependently inhibited the phosphorylation of IRAK4 and IKK in primary peritoneal macrophages and RAW264.7 cells, inhibiting the secretion of TNF-α and IL-6 in both cell lines. The in vivo study demonstrated the efficacy of DW18134, significantly attenuating behavioral scores in an LPS-induced peritonitis model. Mechanistically, DW18134 reduced serum TNF-α and IL-6 levels and attenuated inflammatory tissue injury. By directly blocking IRAK4 activation, DW18134 diminished liver macrophage infiltration and the expression of related inflammatory cytokines in peritonitis mice. Additionally, in the DSS-induced colitis model, DW18134 significantly reduced the disease activity index (DAI) and normalized food and water intake and body weight. Furthermore, DW18134 restored intestinal damage and reduced inflammatory cytokine expression in mice by blocking the IRAK4 signaling pathway. Notably, DW18134 protected DSS-threatened intestinal barrier function by upregulating tight junction gene expression. In conclusion, our findings reported a novel IRAK4 inhibitor, DW18134, as a promising candidate for treating inflammatory diseases, including peritonitis and IBD.


Assuntos
Doenças Inflamatórias Intestinais , Quinases Associadas a Receptores de Interleucina-1 , Peritonite , Animais , Quinases Associadas a Receptores de Interleucina-1/antagonistas & inibidores , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Camundongos , Peritonite/tratamento farmacológico , Peritonite/induzido quimicamente , Células RAW 264.7 , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Modelos Animais de Doenças , Transdução de Sinais/efeitos dos fármacos , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/metabolismo , Humanos , Masculino , Fosforilação/efeitos dos fármacos , Citocinas/metabolismo , NF-kappa B/metabolismo , Camundongos Endogâmicos C57BL
10.
J Ethnopharmacol ; 331: 118210, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38641074

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Long-term chronic inflammation often leads to chronic diseases. Although Sophora flavescens has been shown to have anti-inflammatory properties, its detailed molecular mechanism is still unknown. AIM OF STUDY: This study investigated the effect of Radix Sophorae Flavescentis on the LPS-induced inflammatory response in macrophages. MATERIALS AND METHODS: LPS was used to induce the peritoneal macrophages to simulate the inflammatory environment in vitro. Different concentrations of Radix Sophorae Flavescentis-containing (medicated) serum were used for intervention. The peritoneal macrophages were identified by using hematoxylin-eosin and immunofluorescence staining. ELISA was used to measure the TNF-α and IL-6 expression to determine the concentration of LPS. ELISA and Western blot (WB) were used to detect the PGE2 and CFHR2 expression in each group, respectively. The lentiviral vector for interference and overexpression of the CFHR2 gene was constructed, packaged, and transfected into LPS-induced macrophages. The transfection efficiency was verified by WB. Then, ELISA was used to detect the TNF-α, PGE2, and IL-6 expression. WB was used to detect the CFHR2, iNOS, COX-2, TLR2, TLR4, IFN-γ, STAT1, and p-STAT1 expression. RESULTS: The primary isolated cells were identified as macrophages. The LPS-treated macrophages exhibited significantly higher expression of PGE2 and CFHR2, and the inflammatory factors TNF-α and IL-6, as well as iNOS, COX-2, TLR2, TLR4, IFN-γ, STAT1, and p-STAT1 expression compared with the control group (P < 0.05). The TNF-α, PGE2, and IL-6 levels, as well as CFHR2, iNOS, COX-2, TLR2, TLR4, IFN-γ, STAT1, and p-STAT1 expression were considerably lower in the LPS-induced+10% medicated-serum group, LPS-induced+20% medicated-serum group, and shCFHR interference group compared with the LPS group (P < 0.05). CONCLUSION: Radix Sophorae Flavescentis might mediate CFHR2 expression and play an important role in inhibiting the LPS-induced pro-inflammatory response of macrophages. Radix Sophorae Flavescentis could be a potential treatment for LPS-induced related inflammatory diseases.


Assuntos
Anti-Inflamatórios , Lipopolissacarídeos , Sophora , Animais , Sophora/química , Anti-Inflamatórios/farmacologia , Camundongos , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/metabolismo , Interleucina-6/metabolismo , Interleucina-6/genética , Fator de Necrose Tumoral alfa/metabolismo , Dinoprostona/metabolismo , Extratos Vegetais/farmacologia , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/induzido quimicamente , Receptor 2 Toll-Like/metabolismo , Receptor 2 Toll-Like/genética , Masculino , Fator de Transcrição STAT1/metabolismo , Raízes de Plantas , Células Cultivadas , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Sophora flavescens
11.
Int Immunopharmacol ; 133: 112153, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38678669

RESUMO

LPS induced sepsis is a complex process involving various immune cells and signaling molecules. Dysregulation of macrophage polarization and ROS production contributed to the pathogenesis of sepsis. PGP is a transmembrane transporter responsible for the efflux of a number of drugs and also expressed in murine macrophages. Natural products have been shown to decrease inflammation and expression of efflux transporters. However, no treatment is currently available to treat LPS induced sepsis. Verapamil and Tangeretin also reported to attenuate lipopolysaccharide-induced inflammation. However, the effects of verapamil or tangeretin on lipopolysaccharide (LPS)-induced sepsis and its detailed anti-inflammatory mechanism have not been reported. Here, we have determined that verapamil and tangeretin protects against LPS-induced sepsis by suppressing M1 macrophages populations and also through the inhibition of P-glycoprotein expression via downregulating STAT1/STAT3 and upregulating SOCS3 expression in macrophages. An hour before LPS (10 mg/kg) was administered; mice were given intraperitoneal injections of either verapamil (5 mg/kg) or tangeretin (5 mg/kg). The peritoneal macrophages from different experimental groups of mice were isolated. Hepatic, pulmonary and splenic morphometric analyses revealed that verapamil and tangeretin decreased the infiltration of neutrophils into the tissues. Verapamil and tangeritin also enhanced the activity of SOD, CAT, GRX and GSH level in all the tissues tested. verapamil or tangeretin pre-treated mice shifted M1 macrophages to M2 type possibly through the inhibition of P-glycoprotein expression via downregulating STAT1/STAT3 and upregulating SOCS3 expression. Hence, both these drugs have shown protective effects in sepsis via suppressing iNOS, COX-2, oxidative stress and NF-κB signaling in macrophages. Therefore, in our study we can summarize that mice were treated with either Vera or Tan before LPS administration cause an elevated IL-10 by the macrophages which enhances the SOCS3 expression, and thereby able to limits STAT1/STAT3 inter-conversion in the macrophages. As a result, NF-κB activity is also getting down regulated and ultimately mitigating the adverse effect of inflammation caused by LPS in resident macrophages. Whether verapamil or tangeretin offers such protection possibly through the inhibition of P-glycoprotein expression in macrophages needs clarification with the bio availability of these drugs under PGP inhibited conditions is a limitation of this study.


Assuntos
Flavonas , Lipopolissacarídeos , Fator de Transcrição STAT1 , Fator de Transcrição STAT3 , Proteína 3 Supressora da Sinalização de Citocinas , Verapamil , Animais , Verapamil/farmacologia , Fator de Transcrição STAT1/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas/genética , Flavonas/farmacologia , Flavonas/uso terapêutico , Camundongos , Fator de Transcrição STAT3/metabolismo , Masculino , Sepse/tratamento farmacológico , Sepse/imunologia , Sepse/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Regulação para Baixo/efeitos dos fármacos , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/metabolismo , Macrófagos Peritoneais/imunologia , Células Cultivadas , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/imunologia , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
12.
Mol Immunol ; 170: 110-118, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38653076

RESUMO

Sepsis is a systemic inflammatory response syndrome caused by trauma or infection, which can lead to multiple organ dysfunction. In severe cases, sepsis can also progress to septic shock and even death. Effective treatments for sepsis are still under development. This study aimed to determine if targeting the PI3K/Akt signaling with CAL-101, a PI3K p110δ inhibitor, could alleviate lipopolysaccharide (LPS)-induced sepsis and contribute to immune tolerance. Our findings indicated that CAL-101 treatment improved survival rates and alleviated the progression of LPS-induced sepsis. Compared to antibiotics, CAL-101 not only restored the Th17/regulatory T cells (Treg) balance but also enhanced Treg cell function. Additionally, CAL-101 promoted type 2 macrophage (M2) polarization, inhibited TNF-α secretion, and increased IL-10 secretion. Moreover, CAL-101 treatment reduced pyroptosis in peritoneal macrophages by inhibiting caspase-1/gasdermin D (GSDMD) activation. This study provides a mechanistic basis for future clinical exploration of targeted therapeutics and immunomodulatory strategies in the treatment of sepsis.


Assuntos
Classe I de Fosfatidilinositol 3-Quinases , Camundongos Endogâmicos C57BL , Piroptose , Sepse , Linfócitos T Reguladores , Células Th17 , Animais , Camundongos , Classe I de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos Peritoneais/imunologia , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Piroptose/efeitos dos fármacos , Sepse/imunologia , Sepse/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/efeitos dos fármacos , Células Th17/imunologia , Células Th17/efeitos dos fármacos
13.
Cell Rep ; 43(4): 113981, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38520688

RESUMO

Cholera toxin (CT), a bacterial exotoxin composed of one A subunit (CTA) and five B subunits (CTB), functions as an immune adjuvant. CTB can induce production of interleukin-1ß (IL-1ß), a proinflammatory cytokine, in synergy with a lipopolysaccharide (LPS), from resident peritoneal macrophages (RPMs) through the pyrin and NLRP3 inflammasomes. However, how CTB or CT activates these inflammasomes in the macrophages has been unclear. Here, we clarify the roles of inositol-requiring enzyme 1 alpha (IRE1α), an endoplasmic reticulum (ER) stress sensor, in CT-induced IL-1ß production in RPMs. In RPMs, CTB is incorporated into the ER and induces ER stress responses, depending on GM1, a cell membrane ganglioside. IRE1α-deficient RPMs show a significant impairment of CT- or CTB-induced IL-1ß production, indicating that IRE1α is required for CT- or CTB-induced IL-1ß production in RPMs. This study demonstrates the critical roles of IRE1α in activation of both NLRP3 and pyrin inflammasomes in tissue-resident macrophages.


Assuntos
Toxina da Cólera , Estresse do Retículo Endoplasmático , Endorribonucleases , Interleucina-1beta , Proteínas Serina-Treonina Quinases , Interleucina-1beta/metabolismo , Animais , Endorribonucleases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Camundongos , Toxina da Cólera/farmacologia , Toxina da Cólera/metabolismo , Inflamassomos/metabolismo , Camundongos Endogâmicos C57BL , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos Peritoneais/metabolismo , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/imunologia , Lipopolissacarídeos/farmacologia , Retículo Endoplasmático/metabolismo
14.
Phytomedicine ; 128: 155502, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38489889

RESUMO

BACKGROUND: Jaceosidin (JA) is a natural flavone extracted from Artemisia that is used as a food and traditional medicinal herb. It has been reported to possess numerous biological activities. However, the regulatory mechanisms underlying amelioration of hepatic fibrosis remain unclear. HYPOTHESIS/PURPOSE: We hypothesized that jaceosidin acid (JA) modulates hepatic fibrosis and inflammation. METHODS: Thioacetamide (TAA) was used to establish an HF mouse model. In vitro, mouse primary hepatocytes and HSC-T6 cells were induced by TGF-ß, whereas mouse peritoneal macrophages received a treatment lipopolysaccharide (LPS)/ATP. RESULTS: JA decreased serum transaminase levels and improved hepatic histological pathology in TAA-treated mice stimulated by TAA. Moreover, the expression of pro-fibrogenic biomarkers associated with the activation of liver stellate cells was downregulated by JA. Likewise, JA down-regulated the expression of vestigial-like family member 3 (VGLL3), high mobility group protein B1 (HMGB1), toll-like receptors 4 (TLR4), and nucleotide-binding domain-(NOD-) like receptor protein 3 (NLRP3), thereby inhibiting the inflammatory response and inhibiting the release of mature-IL-1ß in TAA-stimulated mice. Additionally, JA suppressed HMGB1 release and NLRP3/ASC inflammasome activation in LPS/ATP-stimulated murine peritoneal macrophages. JA decreases the expression of pro-fibrogenic biomarkers related to liver stellate cell activation and inhibits inflammasome activation in mouse primary hepatocytes. It also down-regulated α-SMA and VGLL3 expressions and also suppressed inflammasome activation in HSC-T6 cells. VGLL3 and α-SMA expression levels were decreased in TGF-ß-stimulated HSC-T6 cells following Vgll3 knockdown. In addition, the expression levels of NLRP3 and cleaved-caspase-1 were decreased in Vgll3-silenced HSC-T6 cells. JA enhanced the inhibitory effects on Vgll3-silenced HSC-T6 cells. Finally, Vgll3 overexpression in HSC-T6 cells affected the expression levels of α-SMA, NLRP3, and cleaved-caspase-1. CONCLUSION: JA effectively modulates hepatic fibrosis by suppressing fibrogenesis and inflammation via the VGLL3/HMGB1/TLR4 axis. Therefore, JA may be a candidate therapeutic agent for the management of hepatic fibrosis. Understanding the mechanism of action of JA is a novel approach to hepatic fibrosis therapy.


Assuntos
Proteína HMGB1 , Cirrose Hepática , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR , Transdução de Sinais , Receptor 4 Toll-Like , Animais , Masculino , Camundongos , Linhagem Celular , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Proteína HMGB1/metabolismo , Lipopolissacarídeos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/induzido quimicamente , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Transdução de Sinais/efeitos dos fármacos , Tioacetamida , Receptor 4 Toll-Like/metabolismo
15.
Parasitology ; 151(5): 506-513, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38533610

RESUMO

Leishmania is a trypanosomatid parasite that causes skin lesions in its cutaneous form. Current therapies rely on old and expensive drugs, against which the parasites have acquired considerable resistance. Trypanosomatids are unable to synthesize purines relying on salvaging from the host, and nucleoside analogues have emerged as attractive antiparasitic drug candidates. 4-Methyl-7-ß-D-ribofuranosyl-7H-pyrrolo[2,3-d]pyrimidine (CL5564), an analogue of tubercidin in which the amine has been replaced by a methyl group, demonstrates activity against Trypanosoma cruzi and Leishmania infantum. Herein, we investigated its in vitro and in vivo activity against L. amazonensis. CL5564 was 6.5-fold (P = 0.0002) more potent than milteforan™ (ML) against intracellular forms in peritoneal mouse macrophages, and highly selective, while combination with ML gave an additive effect. These results stimulated us to study the activity of CL5564 in mouse model of cutaneous Leishmania infection. BALB/c female and male mice infected by L. amazonensis treated with CL5564 (10 mg kg−1, intralesional route for five days) presented a >93% reduction of paw lesion size likely ML given orally at 40 mg kg−1, while the combination (10 + 40 mg kg−1 of CL5564 and ML, respectively) caused >96% reduction. The qPCR confirmed the suppression of parasite load, but only the combination approach reached 66% of parasitological cure. These results support additional studies with nucleoside derivatives.


Assuntos
Modelos Animais de Doenças , Leishmania mexicana , Leishmaniose Cutânea , Camundongos Endogâmicos BALB C , Animais , Leishmaniose Cutânea/tratamento farmacológico , Leishmaniose Cutânea/parasitologia , Camundongos , Feminino , Masculino , Leishmania mexicana/efeitos dos fármacos , Tubercidina/farmacologia , Tubercidina/análogos & derivados , Antiprotozoários/farmacologia , Antiprotozoários/uso terapêutico , Antiprotozoários/administração & dosagem , Macrófagos Peritoneais/parasitologia , Macrófagos Peritoneais/efeitos dos fármacos , Leishmania/efeitos dos fármacos
16.
J Basic Microbiol ; 64(5): e2300490, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38227394

RESUMO

Currently, zinc oxide (ZnO) particles are used in nanotechnology to destroy a wide range of microorganisms. Although pentavalent antimony compounds are used as antileishmanial drugs, they are associated with several limitations and side effects. Therefore, it is always desirable to try to find new and effective treatments. The aim of this research is to determine the antileishmanial effect of ZnO particles in comparison to the Antimoan Meglumine compound on promastigotes and amastigotes of Leishmania major (MRHO/IR/75/ER). After the extraction and purification of macrophages from the peritoneal cavity of C57BL/6 mice, L. major parasites were cultured in Roswell Park Memorial Institute-1640 culture medium containing fetal bovine serum (FBS) 10% and antibiotic. In this experimental study, the effect of different concentrations of nanoparticles was investigated using the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide (MTT) colorimetric method, in comparison to the glucantime on promastigotes, amastigotes and healthy macrophages in the culture medium. The amount of light absorption of the obtained color from the regeneration of tetrazolium salt to the product color of formazan by the parasite was measured by an enzyme-linked immunosorbent assay (ELISA) reader, and the IC50 value was calculated. IC50 after 24 h of incubation was calculated as IC50 = 358.6 µg/mL. The results showed, that the efficacy of ZnO nanoparticles was favorable and dose-dependent. The concentration of 500 µg/mL of ZnO nanoparticles induced 84.67% apoptosis after 72. Also, the toxicity of nanoparticles was less than the drug. Nanoparticles exert their cytotoxic effects by inducing apoptosis. They can be suitable candidates in the pharmaceutical industry in the future.


Assuntos
Antiprotozoários , Leishmania major , Antimoniato de Meglumina , Óxido de Zinco , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Animais , Leishmania major/efeitos dos fármacos , Camundongos , Antiprotozoários/farmacologia , Antimoniato de Meglumina/farmacologia , Camundongos Endogâmicos C57BL , Nanopartículas/química , Macrófagos/parasitologia , Macrófagos/efeitos dos fármacos , Concentração Inibidora 50 , Macrófagos Peritoneais/parasitologia , Macrófagos Peritoneais/efeitos dos fármacos , Nanopartículas Metálicas/química
17.
Nan Fang Yi Ke Da Xue Xue Bao ; 42(3): 432-437, 2022 Mar 20.
Artigo em Chinês | MEDLINE | ID: mdl-35426809

RESUMO

OBJECTIVE: To explore the mechanism by which estradiol modulates the immunophenotype of macrophages through the endoplasmic reticulum stress pathway. METHODS: Peritoneal macrophages isolated from C57 mice were cultured in the presence of 60 ng/mL interferon-γ (IFN-γ) followed by treatment with estradiol (1.0 nmol/L) alone, estradiol with estrogen receptor antagonist (Acolbifene, 4 nmol/L), estradiol with IRE1α inhibitor (4 µ 8 C), or estradiol with IRE1α agonist. After the treatments, the expression levels of MHC-Ⅱ, iNOS and endoplasmic reticulum stress marker proteins IRE1α, eIF2α and ATF6 in the macrophages were detected with Western blotting, and the mRNA levels of TGF-ß, IL-6, IL-10 and TNF-α were detected with RT-PCR. RESULTS: Estrogen treatment of the macrophages significantly decreased the expressions of M1-related proteins MHC-Ⅱ (P=0.021) and iNOS (P < 0.001) and the mRNA expressions of TNF-α (P=0.003) and IL-6 (P=0.004), increased the mRNA expression of TGF-ß (P=0.002) and IL-10 (P=0.008), and up-regulated the protein expressions of IRE1α (P < 0.001) and its downstream transcription factor XBP-1 (P < 0.001). Addition of the estrogen inhibitor obviously blocked the effect of estrogen. Compared with estrogen treatment alone, combined treatment of the macrophages with estrogen and the IRE1α inhibitor 4 µ 8 C significantly up-regulated the protein expressions of MHC-Ⅱ (P=0.002) and iNOS (P=0.003) and the mRNA expressions of TNF-α (P=0.003) and IL-6 (P=0.024), and obviously down-regulated the mRNA expression of TGF-ß (P < 0.001) and IL-10 (P < 0.001); these changes were not observed in cells treated with estrogen and the IRE1α agonist. CONCLUSION: Estrogen can inhibit the differentiation of murine macrophages into a pro-inflammatory phenotype by up-regulating the IRE1α-XBP-1 signaling axis, thereby producing an inhibitory effect on inflammatory response.


Assuntos
Endorribonucleases , Estradiol , Macrófagos Peritoneais , Proteínas Serina-Treonina Quinases , Proteína 1 de Ligação a X-Box , Animais , Diferenciação Celular/efeitos dos fármacos , Endorribonucleases/metabolismo , Estradiol/farmacologia , Estrogênios/metabolismo , Interleucina-10 , Interleucina-6/metabolismo , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/metabolismo , Camundongos , Fenótipo , Proteínas Serina-Treonina Quinases/metabolismo , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima/efeitos dos fármacos , Proteína 1 de Ligação a X-Box/metabolismo
18.
Elife ; 112022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35195067

RESUMO

The roles of bactericidal cathelicidins against bacterial infection have been extensively studied. However, the antibacterial property and mechanism of action of non-bactericidal cathelicidins are rarely known. Herein, a novel naturally occurring cathelicidin (PopuCATH) from tree frog (Polypedates puerensis) did not't show any direct anti-bacterial activity in vitro. Intriguingly, intraperitoneal injection of PopuCATH before bacterial inoculation significantly reduced the bacterial load in tree frogs and mice, and reduced the inflammatory response induced by bacterial inoculation in mice. PopuCATH pretreatment also increased the survival rates of septic mice induced by a lethal dose of bacterial inoculation or cecal ligation and puncture (CLP). Intraperitoneal injection of PopuCATH significantly drove the leukocyte influx in both frogs and mice. In mice, PopuCATH rapidly drove neutrophil, monocyte/macrophage influx in mouse abdominal cavity and peripheral blood with a negligible impact on T and B lymphocytes, and neutrophils, monocytes/macrophages, but not T and B lymphocytes, were required for the preventive efficacy of PopuCATH. PopuCATH did not directly act as chemoattractant for phagocytes, but PopuCATH obviously drove phagocyte migration when it was cultured with macrophages. PopuCATH significantly elicited chemokine/cytokine production in macrophages through activating p38/ERK mitogen-activated protein kinases (MAPKs) and NF-κB p65. PopuCATH markedly enhanced neutrophil phagocytosis via promoting the release of neutrophil extracellular traps (NETs). Additionally, PopuCATH showed low side effects both in vitro and in vivo. Collectively, PopuCATH acts as a host-based immune defense regulator that provides prophylactic efficacy against bacterial infection without direct antimicrobial effects. Our findings reveal a non-bactericidal cathelicidin which possesses unique anti-bacterial action, and highlight the potential of PopuCATH to prevent bacterial infection.


Assuntos
Catelicidinas/farmacologia , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Fagócitos/efeitos dos fármacos , Animais , Anuros , Bactérias/efeitos dos fármacos , Infecções Bacterianas/prevenção & controle , Células da Medula Óssea , Catelicidinas/química , Linhagem Celular , Quimiotaxia , Feminino , Fungos/efeitos dos fármacos , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Testes de Sensibilidade Microbiana , Fagócitos/fisiologia , Ratos
19.
Int J Mol Sci ; 23(3)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35163089

RESUMO

Lipopolysaccharide (LPS)-induced endotoxemia induces an acute systemic inflammatory response that mimics some important features of sepsis, the disease with the highest mortality rate worldwide. In this work, we have analyzed a murine model of endotoxemia based on a single intraperitoneal injection of 5 mg/kg of LPS. We took advantage of galectin-3 (Gal3) knockout mice and found that the absence of Gal3 decreased the mortality rate oflethal endotoxemia in the first 80 h after the administration of LPS, along with a reduction in the tissular damage in several organs measured by electron microscopy. Using flow cytometry, we demonstrated that, in control conditions, peripheral immune cells, especially monocytes, exhibited high levels of Gal3, which were early depleted in response to LPS injection, thus suggesting Gal3 release under endotoxemia conditions. However, serum levels of Gal3 early decreased in response to LPS challenge (1 h), an indication that Gal3 may be extravasated to peripheral organs. Indeed, analysis of Gal3 in peripheral organs revealed a robust up-regulation of Gal3 36 h after LPS injection. Taken together, these results demonstrate the important role that Gal3 could play in the development of systemic inflammation, a well-established feature of sepsis, thus opening new and promising therapeutic options for these harmful conditions.


Assuntos
Modelos Animais de Doenças , Endotoxemia/patologia , Galectina 3/fisiologia , Inflamação/patologia , Lipopolissacarídeos/toxicidade , Macrófagos Peritoneais/imunologia , Animais , Endotoxemia/etiologia , Endotoxemia/metabolismo , Inflamação/etiologia , Inflamação/metabolismo , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/metabolismo , Macrófagos Peritoneais/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
20.
Theranostics ; 12(2): 875-890, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34976218

RESUMO

Background: 5-aza-2'-deoxycytidine (5Aza), a DNA methyltransferase (DNMT) inhibitor, could activate tumor adaptive immunity to inhibit tumor progression. However, the molecular mechanisms by which 5Aza regulates tumor immune microenvironment are still not fully understood. Methods: The role of 5Aza in immune microenvironment of peritoneal carcinomatosis (PC) of colorectal cancer (CRC) was investigated. The effects of 5Aza on macrophage activation were studied by flow cytometry, real-time PCR, Western blotting assays, and Drug Affinity Responsive Target Stability (DARTS). The effects of 5Aza on tumor immunity were validated in stromal macrophages and T cells from CRC patients. Results: 5Aza could stimulate the activation of macrophages toward an M1-like phenotype and subsequent activation of T cells in premetastatic fat tissues, and ultimately suppress CRC-PC in immune-competent mouse models. Mechanistically, 5Aza stimulated primary mouse macrophages toward to a M1-like phenotype characterized by the increase of p65 phosphorylation and IL-6 expression. Furthermore, we screened and identified ATP-binding cassette transporter A9 (ABC A9) as a binding target of 5Aza. 5Aza induced cholesterol accumulation, p65 phosphorylation and IL-6 expression in an ABC A9-dependent manner. Pharmacological inhibition of NF-κB, or genetic depletion of IL-6 abolished the antitumor effect of 5Aza in mice. In addition, the antitumor effect of 5Aza was synergistically potentiated by conventional chemotherapeutic drugs 5-Fu or OXP. Finally, we validated the reprogramming role of 5Aza in antitumor immunity in stromal macrophages and T cells from CRC patients. Conclusions: Taken together, our findings showed for the first time that 5Aza suppressed CRC-PC by regulating macrophage-dependent T cell activation in premetastatic microenvironment, meanwhile uncovered a DNA methylation-independent mechanism of 5Aza in regulating ABC A9-associated cholesterol metabolism and macrophage activation.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Colesterol/metabolismo , Neoplasias Colorretais/imunologia , Decitabina/farmacologia , Macrófagos Peritoneais/efeitos dos fármacos , Metástase Neoplásica/imunologia , Neoplasias Peritoneais/imunologia , Animais , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Metilases de Modificação do DNA/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Humanos , Macrófagos Peritoneais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Neoplasias Peritoneais/dietoterapia , Neoplasias Peritoneais/metabolismo , Neoplasias Peritoneais/secundário , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...