Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.640
Filtrar
1.
Sci Rep ; 14(1): 13856, 2024 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-38879632

RESUMO

Floral nectar sugar composition is assumed to reflect the nutritional demands and foraging behaviour of pollinators, but the relative contributions of evolutionary and abiotic factors to nectar sugar composition remain largely unknown across the angiosperms. We compiled a comprehensive dataset on nectar sugar composition for 414 insect-pollinated plant species across central Europe, along with phylogeny, paleoclimate, flower morphology, and pollinator dietary demands, to disentangle their relative effects. We found that phylogeny was strongly related with nectar sucrose content, which increased with the phylogenetic age of plant families, but even more strongly with historic global surface temperature. Nectar sugar composition was also defined by floral morphology, though it was not related to our functional measure of pollinator dietary demands. However, specialist pollinators of current plant-pollinator networks predominantly visited plant species with sucrose-rich nectar. Our results suggest that both physiological mechanisms related to plant water balance and evolutionary effects related to paleoclimatic changes have shaped floral nectar sugar composition during the radiation and specialisation of plants and pollinators. As a consequence, the high velocity of current climate change may affect plant-pollinator interaction networks due to a conflicting combination of immediate physiological responses and phylogenetic conservatism.


Assuntos
Evolução Biológica , Flores , Filogenia , Néctar de Plantas , Polinização , Néctar de Plantas/metabolismo , Néctar de Plantas/química , Polinização/fisiologia , Flores/metabolismo , Flores/fisiologia , Açúcares/metabolismo , Açúcares/análise , Animais , Insetos/fisiologia , Sacarose/metabolismo , Europa (Continente) , Magnoliopsida/fisiologia , Magnoliopsida/metabolismo , Mudança Climática
3.
Planta ; 260(1): 25, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38861219

RESUMO

MAIN CONCLUSION: In this review, we summarize how chlorophyll metabolism in angiosperm is affected by the environmental factors: light, temperature, metal ions, water, oxygen, and altitude. The significance of chlorophyll (Chl) in plant leaf morphogenesis and photosynthesis cannot be overstated. Over time, researchers have made significant advancements in comprehending the biosynthetic pathway of Chl in angiosperms, along with the pivotal enzymes and genes involved in this process, particularly those related to heme synthesis and light-responsive mechanisms. Various environmental factors influence the stability of Chl content in angiosperms by modulating Chl metabolic pathways. Understanding the interplay between plants Chl metabolism and environmental factors has been a prominent research topic. This review mainly focuses on angiosperms, provides an overview of the regulatory mechanisms governing Chl metabolism, and the impact of environmental factors such as light, temperature, metal ions (iron and magnesium), water, oxygen, and altitude on Chl metabolism. Understanding these effects is crucial for comprehending and preserving the homeostasis of Chl metabolism.


Assuntos
Clorofila , Luz , Magnoliopsida , Temperatura , Clorofila/metabolismo , Magnoliopsida/metabolismo , Magnoliopsida/crescimento & desenvolvimento , Magnoliopsida/fisiologia , Magnoliopsida/genética , Água/metabolismo , Oxigênio/metabolismo , Fotossíntese , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Meio Ambiente , Altitude
4.
Sci Rep ; 14(1): 13760, 2024 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877021

RESUMO

Elevated atmospheric carbon dioxide (eCO2) can affect plant growth and physiology, which can, in turn, impact herbivorous insects, including by altering pollen or plant tissue nutrition. Previous research suggests that eCO2 can reduce pollen nutrition in some species, but it is unknown whether this effect is consistent across flowering plant species. We experimentally quantified the effects of eCO2 across multiple flowering plant species on plant growth in 9 species and pollen chemistry (%N an estimate for protein content and nutrition in 12 species; secondary chemistry in 5 species) in greenhouses. For pollen nutrition, only buckwheat significantly responded to eCO2, with %N increasing in eCO2; CO2 treatment did not affect pollen amino acid composition but altered secondary metabolites in buckwheat and sunflower. Plant growth under eCO2 exhibited two trends across species: plant height was taller in 44% of species and flower number was affected for 63% of species (3 species with fewer and 2 species with more flowers). The remaining growth metrics (leaf number, above-ground biomass, flower size, and flowering initiation) showed divergent, species-specific responses, if any. Our results indicate that future eCO2 is unlikely to uniformly change pollen chemistry or plant growth across flowering species but may have the potential to alter ecological interactions, or have particularly important effects on specialized pollinators.


Assuntos
Dióxido de Carbono , Pólen , Dióxido de Carbono/metabolismo , Pólen/crescimento & desenvolvimento , Pólen/metabolismo , Atmosfera/química , Especificidade da Espécie , Magnoliopsida/crescimento & desenvolvimento , Magnoliopsida/metabolismo , Magnoliopsida/fisiologia , Flores/crescimento & desenvolvimento , Flores/metabolismo , Desenvolvimento Vegetal/efeitos dos fármacos
5.
Biol Lett ; 20(6): 20240082, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38889773

RESUMO

Floral longevity, the length of time a flower remains open and functional, is a phylogenetically conserved trait that balances floral costs against the rate at which flowers are pollinated. Floral symmetry has long been considered a key trait in floral evolution. Although zygomorphic (bilaterally symmetric) flowers typically receive fewer floral visitors than actinomorphic (radially symmetric) flowers, it is yet to be determined whether this could be associated with longer floral longevity. Using newly collected field data combined with data from the literature on 1452 species in 168 families, we assess whether floral longevity covaries with floral symmetry in a phylogenetic framework. We find that zygomorphic flowers last on average 1.1 days longer than actinomorphic flowers, a 26.5% increase in longevity, with considerable variation across both groups. Our results provide a basis to discuss the ecological and evolutionary costs of zygomorphy for plants. Despite these costs, zygomorphy has evolved numerous times throughout angiosperm history, and we discuss which rewards may outweigh the costs of slower pollination in zygomorphic flowers.


Assuntos
Evolução Biológica , Flores , Magnoliopsida , Filogenia , Polinização , Flores/anatomia & histologia , Flores/fisiologia , Magnoliopsida/fisiologia , Magnoliopsida/anatomia & histologia
6.
Nat Commun ; 15(1): 4392, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789437

RESUMO

Plant-herbivore interactions reciprocally influence species' evolutionary trajectories. These interactions have led to many physical and chemical defenses across the plant kingdom. Some plants have even evolved indirect defense strategies to outsource their protection to ant bodyguards by bribing them with a sugary reward (nectar). Identifying the evolutionary processes underpinning these indirect defenses provide insight into the evolution of plant-animal interactions. Using a cross-kingdom, phylogenetic approach, we examined the convergent evolution of ant-guarding nectaries across ferns and flowering plants. Here, we discover that nectaries originated in ferns and flowering plants concurrently during the Cretaceous, coinciding with the rise of plant associations in ants. While nectaries in flowering plants evolved steadily through time, ferns showed a pronounced lag of nearly 100 My between their origin and subsequent diversification in the Cenozoic. Importantly, we find that as ferns transitioned from the forest floor into the canopy, they secondarily recruited ant bodyguards from existing ant-angiosperm relationships.


Assuntos
Formigas , Evolução Biológica , Gleiquênias , Magnoliopsida , Filogenia , Néctar de Plantas , Formigas/fisiologia , Animais , Gleiquênias/fisiologia , Magnoliopsida/fisiologia , Magnoliopsida/genética , Herbivoria/fisiologia
7.
Ecology ; 105(6): e4295, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38723655

RESUMO

Species traits may determine plant interactions along with soil microbiome, further shaping plant-soil feedbacks (PSFs). However, how plant traits modulate PSFs and, consequently, the dominance of plant functional groups remains unclear. We used a combination of field surveys and a two-phase PSF experiment to investigate whether forbs and graminoids differed in PSFs and in their trait-PSF associations. When grown in forb-conditioned soils, forbs experienced stronger negative feedbacks, while graminoids experienced positive feedbacks. Graminoid-conditioned soil resulted in neutral PSFs for both functional types. Forbs with thin roots and small seeds showed more-negative PSFs than those with thick roots and large seeds. Conversely, graminoids with acquisitive root and leaf traits (i.e., thin roots and thin leaves) demonstrated greater positive PSFs than graminoids with thick roots and tough leaves. By distinguishing overall and soil biota-mediated PSFs, we found that the associations between plant traits and PSFs within both functional groups were mainly mediated by soil biota. A simulation model demonstrated that such differences in PSFs could lead to a dominance of graminoids over forbs in natural plant communities, which might explain why graminoids dominate in grasslands. Our study provides new insights into the differentiation and adaptation of plant life-history strategies under selection pressures imposed by soil biota.


Assuntos
Microbiologia do Solo , Solo , Solo/química , Modelos Biológicos , Magnoliopsida/fisiologia , Especificidade da Espécie
8.
New Phytol ; 243(3): 951-965, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38752314

RESUMO

The coordinated interspecific variation in leaf traits and leaf lifespan is known as the leaf economic spectrum (LES). The limitation of CO2 diffusion to chloroplasts within the lamina is significant in C3 photosynthesis, resulting in a shortage of CO2 for Rubisco. Although Rubisco CO2/O2 specificity (SC/O) should be adaptively adjusted in response to the interspecific variation in CO2 concentrations [CO2] associated with Rubisco, SC/O variations across species along the LES remain unknown. We investigated the coordination among leaf traits, including SC/O, CO2 conductance, leaf protein content, and leaf mass area, across 23 woody C3 species coexisting on an oceanic island through phylogenetic correlation analyses. A high SC/O indicates a high CO2 specificity of Rubisco. SC/O was negatively correlated with [CO2] at Rubisco and total CO2 conductance within lamina, while it was positively correlated with leaf protein across species, regardless of phylogenetic constraint. A simulation analysis shows that the optimal SC/O for maximizing photosynthesis depends on both [CO2] at Rubisco sites and leaf protein per unit leaf area. SC/O is a key parameter along the LES axis and is crucial for maximizing photosynthesis across species and the adaptation of woody plants.


Assuntos
Dióxido de Carbono , Magnoliopsida , Fotossíntese , Filogenia , Folhas de Planta , Ribulose-Bifosfato Carboxilase , Especificidade da Espécie , Ribulose-Bifosfato Carboxilase/metabolismo , Ribulose-Bifosfato Carboxilase/genética , Dióxido de Carbono/metabolismo , Folhas de Planta/metabolismo , Magnoliopsida/genética , Magnoliopsida/fisiologia , Ilhas do Pacífico , Madeira
9.
Planta ; 260(1): 2, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38761315

RESUMO

MAIN CONCLUSION: Leaf vein network cost (total vein surface area per leaf volume) for major veins and vascular bundles did not differ between monocot and dicot species in 21 species from the eastern Colorado steppe. Dicots possessed significantly larger minor vein networks than monocots. Across the tree of life, there is evidence that dendritic vascular transport networks are optimized, balancing maximum speed and integrity of resource delivery with minimal resource investment in transport and infrastructure. Monocot venation, however, is not dendritic, and remains parallel down to the smallest vein orders with no space-filling capillary networks. Given this departure from the "optimized" dendritic network, one would assume that monocots are operating at a significant energetic disadvantage. In this study, we investigate whether monocot venation networks bear significantly greater carbon/construction costs per leaf volume than co-occurring dicots in the same ecosystem, and if so, what physiological or ecological advantage the monocot life form possesses to compensate for this deficit. Given that venation networks could also be optimized for leaf mechanical support or provide herbivory defense, we measured the vascular system of both monocot and dicots at three scales to distinguish between leaf investment in mechanical support (macroscopic vein), total transport and capacitance (vascular bundle), or exclusively water transport (xylem) for both parallel and dendritic venation networks. We observed that vein network cost (total vein surface area per leaf volume) for major veins and vascular bundles was not significantly different between monocot species and dicot species. Dicots, however, possess significantly larger minor vein networks than monocots. The 19 species subjected to gas-exchange measurement in the field displayed a broad range of Amax and but demonstrated no significant relationships with any metric of vascular network size in major or minor vein classes. Given that monocots do not seem to display any leaf hydraulic disadvantage relative to dicots, it remains an important research question why parallel venation (truly parallel, down to the smallest vessels) has not arisen more than once in the history of plant evolution.


Assuntos
Folhas de Planta , Folhas de Planta/anatomia & histologia , Colorado , Feixe Vascular de Plantas/anatomia & histologia , Feixe Vascular de Plantas/fisiologia , Xilema/anatomia & histologia , Xilema/fisiologia , Pradaria , Magnoliopsida/fisiologia , Magnoliopsida/anatomia & histologia , Carbono/metabolismo , Ecossistema
10.
Funct Plant Biol ; 512024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38687848

RESUMO

Herkogamy is the spatial separation of anthers and stigmas within complete flowers, and is a key floral trait that promotes outcrossing in many angiosperms. The degree of separation between pollen-producing anthers and receptive stigmas has been shown to influence rates of self-pollination amongst plants, with a reduction in herkogamy increasing rates of successful selfing in self-compatible species. Self-pollination is becoming a critical issue in horticultural crops grown in environments where biotic pollinators are limited, absent, or difficult to utilise. In these cases, poor pollination results in reduced yield and misshapen fruit. Whilst there is a growing body of work elucidating the genetic basis of floral organ development, the genetic and environmental control points regulating herkogamy are poorly understood. A better understanding of the developmental and regulatory pathways involved in establishing varying degrees of herkogamy is needed to provide insights into the production of flowers more adept at selfing to produce consistent, high-quality fruit. This review presents our current understanding of herkogamy from a genetics and hormonal perspective.


Assuntos
Flores , Polinização , Flores/genética , Flores/crescimento & desenvolvimento , Magnoliopsida/genética , Magnoliopsida/fisiologia , Regulação da Expressão Gênica de Plantas , Pólen/genética
11.
Ecology ; 105(5): e4297, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38613235

RESUMO

Forecasting invasion risk under future climate conditions is critical for the effective management of invasive species, and species distribution models (SDMs) are key tools for doing so. However, SDM-based forecasts are uncertain, especially when correlative statistical models extrapolate to nonanalog environmental domains, such as future climate conditions. Different assumptions about the functional form of the temperature-suitability relationship can impact predicted habitat suitability under novel conditions. Hence, methods to understand the sources of uncertainty are critical when applying SDMs. Here, we use high-resolution predictions of lake water temperatures to project changes in habitat suitability under future climate conditions for an invasive macrophyte (Myriophyllym spicatum). Future suitability was predicted using five global circulation models and three statistical models that assumed different species-temperature functional responses. The suitability of lakes for M. spicatum was overall predicted to increase under future climate conditions, but the magnitude and direction of change in suitability varied greatly among lakes. Variability was most pronounced for lakes under nonanalog temperature conditions, indicating that predictions for these lakes remained highly uncertain. Integrating predictions from SDMs that differ in their species-environment response function, while explicitly quantifying uncertainty across analog and nonanalog domains, can provide a more robust and useful approach to forecasting invasive species distribution under climate change.


Assuntos
Mudança Climática , Espécies Introduzidas , Modelos Biológicos , Incerteza , Lagos , Demografia , Magnoliopsida/fisiologia , Ecossistema , Temperatura , Previsões/métodos
12.
New Phytol ; 242(6): 2845-2856, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38623034

RESUMO

Leaf venation is a pivotal trait in the success of vascular plants. Whereas gymnosperms have single or sparsely branched parallel veins, angiosperms developed a hierarchical structure of veins that form a complex reticulum. Its physiological consequences are considered to have enabled angiosperms to dominate terrestrial ecosystems in the Late Cretaceous and Cenozoic. Although a hierarchical-reticulate venation also occurs in some groups of extinct seed plants, it is unclear whether these are stem relatives of angiosperms or have evolved these traits in parallel. Here, we re-examine the morphology of the enigmatic foliage taxon Furcula, a potential early Mesozoic angiosperm relative, and argue that its hierarchical vein network represents convergent evolution (in the Late Triassic) with flowering plants (which developed in the Early Cretaceous) based on details of vein architecture and the absence of angiosperm-like stomata and guard cells. We suggest that its nearest relatives are Peltaspermales similar to Scytophyllum and Vittaephyllum, the latter being a genus that originated during the Late Triassic (Carnian) and shares a hierarchical vein system with Furcula. We further suggest that the evolution of hierarchical venation systems in the early Permian, the Late Triassic, and the Early Cretaceous represent 'natural experiments' that might help resolve the selective pressures enabling this trait to evolve.


Assuntos
Evolução Biológica , Magnoliopsida , Filogenia , Folhas de Planta , Magnoliopsida/anatomia & histologia , Magnoliopsida/fisiologia , Folhas de Planta/anatomia & histologia , Fósseis/anatomia & histologia , Feixe Vascular de Plantas/anatomia & histologia
13.
Curr Biol ; 34(8): R308-R312, 2024 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-38653196

RESUMO

Flowering plants, also known as angiosperms, emerged approximately 150 to 200 million years ago. Since then, they have undergone rapid and extensive expansion, now encompassing around 90% of all land plant species. The remarkable diversification of this group has been a subject of in-depth investigations, and several evolutionary innovations have been proposed to account for their success. In this primer, we will specifically focus on one such innovation: the advent of seeds containing endosperm.


Assuntos
Evolução Biológica , Magnoliopsida , Reprodução , Magnoliopsida/fisiologia , Magnoliopsida/genética , Reprodução/fisiologia , Endosperma/fisiologia , Sementes/fisiologia
14.
Trends Genet ; 40(6): 465-466, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38664114

RESUMO

The ability to tolerate and recover from desiccation is an adaptation that permitted primitive plants to colonize land, and it persists in select species today. Zhang et al. dissected desiccation tolerance in moss species, and traced a key regulator through evolution to identify a conserved mechanism of water sensing in angiosperms.


Assuntos
Dessecação , Adaptação Fisiológica/genética , Evolução Biológica , Magnoliopsida/genética , Magnoliopsida/fisiologia , Plantas/genética , Água/metabolismo , Evolução Molecular
15.
Sci Total Environ ; 924: 171722, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38490423

RESUMO

In environmental risk assessment of substances, the 14-day growth inhibition test following OECD test guideline 239 is employed to assess toxicity in the macrophyte Myriophyllum spicatum. Currently, this test evaluates physiological parameters and does not allow the identification of the mode of action (MoA) by which adverse effects are induced. However, for an improved ecotoxicity assessment of substances, knowledge about their ecotoxic MoA in non-target organisms is required. It has previously been suggested that the identification of gene expression changes can contribute to MoA identification. Therefore, we developed a shortened three-day assay for M. spicatum including the transcriptomic assessment of global gene expression changes and applied this assay to two model substances, the herbicide and photosynthesis inhibitor bentazone and the pharmaceutical and HMG-CoA reductase inhibitor atorvastatin. Due to the lack of a reference genome for M. spicatum we performed a de novo transcriptome assembly followed by a functional annotation to use the toxicogenomic results for MoA discrimination. The gene expression changes induced by low effect concentrations of these substances were used to identify differentially expressed genes (DEGs) and impaired biological functions for the respective MoA. We observed both concentration-dependent numbers and differentiated patterns of DEGs for both substances. While bentazone impaired genes involved in the response to reactive oxygen species as well as light response, and also genes involved in developmental processes, atorvastatin exposure led to a differential regulation of genes related to brassinosteroid response as well as potential metabolic shifts between the mevalonate and methyl erythritol 4-phosphate pathway. Based on these responses, we identified biomarker candidates for the assessment of MoA in M. spicatum. Utilizing the shortened assay developed in this study, the investigation of the identified biomarker candidates may contribute to the development of future MoA-specific screening approaches in the ecotoxicological hazard prediction using aquatic non-standard model organisms.


Assuntos
Benzotiadiazinas , Magnoliopsida , Saxifragales , Poluentes Químicos da Água , Atorvastatina/farmacologia , Toxicogenética , Magnoliopsida/fisiologia , Biomarcadores , Poluentes Químicos da Água/toxicidade
16.
Plant Biol (Stuttg) ; 26(4): 621-632, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38477557

RESUMO

Water balance is crucial for the growth and flowering of plants. However, the mechanisms by which flowers maintain water balance are poorly understood across different angiosperm branches. Here, we investigated 29 floral hydraulic and economic traits in 24 species from ANA grade, magnoliids, monocots, and eudicots. Our main objective was to compare differences in flower water use strategies between basal angiosperms (ANA grade and magnoliids) and derived group (monocots and eudicots). We found that basal angiosperms had richer petal stomatal density, higher pedicel hydraulic diameter, and flower mass per area, but lower pedicel vessel wall reinforcement and epidermal cell thickness compared to monocots and eudicots. We also observed significant trade-offs and coordination among different floral traits. Floral traits associated with reproduction, such as floral longevity and size, were strongly linked with physiological and anatomical traits. Our results systematically reveal the variation in flower economic and hydraulic traits from different angiosperm branches, deepening understanding of flower water use strategies among these plant taxa. We conclude that basal angiosperms maintain water balance with high water supply, whereas monocots and eudicots maintain a more conservative water balance.


Assuntos
Flores , Magnoliopsida , Água , Flores/fisiologia , Flores/anatomia & histologia , Magnoliopsida/fisiologia , Magnoliopsida/anatomia & histologia , Água/metabolismo , Estômatos de Plantas/fisiologia
17.
New Phytol ; 242(5): 1981-1995, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38511237

RESUMO

Understanding the capacity of temperate trees to acclimate to limited soil water has become essential in the face of increasing drought risk due to climate change. We documented seasonal - or phenological - patterns in acclimation to water deficit stress in stems and leaves of tree species spanning the angiosperm phylogeny. Over 3 yr of field observations carried out in two US arboreta, we measured stem vulnerability to embolism (36 individuals of 7 Species) and turgor loss point (119 individuals of 27 species) over the growing season. We also conducted a growth chamber experiment on 20 individuals of one species to assess the mechanistic relationship between soil water restriction and acclimation. In three-quarters of species measured, plants became less vulnerable to embolism and/or loss of turgor over the growing season. We were able to stimulate this acclimatory effect by withholding water in the growth chamber experiment. Temperate angiosperms are capable of acclimation to soil water deficit stress, showing maximum vulnerability to soil water deficits following budbreak and becoming more resilient to damage over the course of the growing season or in response to simulated drought. The species-specific tempo and extent of this acclimatory potential constitutes preadaptive climate change resilience.


Assuntos
Aclimatação , Secas , Magnoliopsida , Filogenia , Estações do Ano , Estresse Fisiológico , Água , Magnoliopsida/fisiologia , Magnoliopsida/genética , Magnoliopsida/crescimento & desenvolvimento , Aclimatação/genética , Madeira/fisiologia , Especificidade da Espécie , Caules de Planta/fisiologia , Caules de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Desidratação , Solo , Árvores/fisiologia
19.
Ann Bot ; 134(1): 1-18, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38497809

RESUMO

BACKGROUND: The predominance of sex in eukaryotes, despite the high costs of meiosis and mating, remains an evolutionary enigma. Many theories have been proposed, none of them being conclusive on its own, and they are, in part, not well applicable to land plants. Sexual reproduction is obligate in embryophytes for the great majority of species. SCOPE: This review compares the main forms of sexual and asexual reproduction in ferns and angiosperms, based on the generation cycling of sporophyte and gametophyte (leaving vegetative propagation aside). The benefits of sexual reproduction for maintenance of genomic integrity in comparison to asexuality are discussed in the light of developmental, evolutionary, genetic and phylogenetic studies. CONCLUSIONS: Asexual reproduction represents modifications of the sexual pathway, with various forms of facultative sexuality. For sexual land plants, meiosis provides direct DNA repair mechanisms for oxidative damage in reproductive tissues. The ploidy alternations of meiosis-syngamy cycles and prolonged multicellular stages in the haploid phase in the gametophytes provide a high efficiency of purifying selection against recessive deleterious mutations. Asexual lineages might buffer effects of such mutations via polyploidy and can purge the mutational load via facultative sexuality. The role of organelle-nuclear genome compatibility for maintenance of genome integrity is not well understood. In plants in general, the costs of mating are low because of predominant hermaphroditism. Phylogenetic patterns in the archaeplastid clade suggest that high frequencies of sexuality in land plants are concomitant with a stepwise increase of intrinsic and extrinsic stress factors. Furthermore, expansion of genome size in land plants would increase the potential mutational load. Sexual reproduction appears to be essential for keeping long-term genomic integrity, and only rare combinations of extrinsic and intrinsic factors allow for shifts to asexuality.


Assuntos
Apomixia , Magnoliopsida , Apomixia/genética , Apomixia/fisiologia , Magnoliopsida/genética , Magnoliopsida/fisiologia , Reprodução Assexuada , Evolução Biológica , Gleiquênias/genética , Gleiquênias/fisiologia , Reprodução/fisiologia , Filogenia , Meiose , Plantas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...