Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.906
Filtrar
1.
Elife ; 122024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38935423

RESUMO

Background: The Zanzibar archipelago of Tanzania has become a low-transmission area for Plasmodium falciparum. Despite being considered an area of pre-elimination for years, achieving elimination has been difficult, likely due to a combination of imported infections from mainland Tanzania and continued local transmission. Methods: To shed light on these sources of transmission, we applied highly multiplexed genotyping utilizing molecular inversion probes to characterize the genetic relatedness of 282 P. falciparum isolates collected across Zanzibar and in Bagamoyo district on the coastal mainland from 2016 to 2018. Results: Overall, parasite populations on the coastal mainland and Zanzibar archipelago remain highly related. However, parasite isolates from Zanzibar exhibit population microstructure due to the rapid decay of parasite relatedness over very short distances. This, along with highly related pairs within shehias, suggests ongoing low-level local transmission. We also identified highly related parasites across shehias that reflect human mobility on the main island of Unguja and identified a cluster of highly related parasites, suggestive of an outbreak, in the Micheweni district on Pemba island. Parasites in asymptomatic infections demonstrated higher complexity of infection than those in symptomatic infections, but have similar core genomes. Conclusions: Our data support importation as a main source of genetic diversity and contribution to the parasite population in Zanzibar, but they also show local outbreak clusters where targeted interventions are essential to block local transmission. These results highlight the need for preventive measures against imported malaria and enhanced control measures in areas that remain receptive to malaria reemergence due to susceptible hosts and competent vectors. Funding: This research was funded by the National Institutes of Health, grants R01AI121558, R01AI137395, R01AI155730, F30AI143172, and K24AI134990. Funding was also contributed from the Swedish Research Council, Erling-Persson Family Foundation, and the Yang Fund. RV acknowledges funding from the MRC Centre for Global Infectious Disease Analysis (reference MR/R015600/1), jointly funded by the UK Medical Research Council (MRC) and the UK Foreign, Commonwealth & Development Office (FCDO), under the MRC/FCDO Concordat agreement and is also part of the EDCTP2 program supported by the European Union. RV also acknowledges funding by Community Jameel.


Assuntos
Malária Falciparum , Plasmodium falciparum , Tanzânia/epidemiologia , Plasmodium falciparum/genética , Plasmodium falciparum/isolamento & purificação , Malária Falciparum/transmissão , Malária Falciparum/parasitologia , Malária Falciparum/epidemiologia , Humanos , Genótipo
2.
Sci Rep ; 14(1): 12958, 2024 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-38839981

RESUMO

The present cluster-randomised control trial aims to assess the entomological efficacy of pyrethroid-pyriproxyfen and pyrethroid-chlorfenapyr LLINs compared to the standard pyrethroid-only LLINs, in their third year of community usage. Adult mosquito collections were performed every 3 months, in 4 randomly selected houses in each of the 60 trial clusters, using human landing catches. Adult mosquitoes were morphologically identified and Anopheles vectors were molecularly speciated and screened for the presence of the L1014F kdr mutation using PCR. Plasmodium falciparum sporozoite infection was assessed using ELISA. A subset of An. gambiae s.l. was also dissected to examine parity and fertility rates across study arms. There was no evidence of a significant reduction in indoor vector density and entomological inoculation rate by the pyrethroid-pyriproxyfen [DR 0.94 (95% CI 0.46-1.88), p = 0.8527; and RR 1.10 (95% CI 0.44-2.72), p = 0.8380], and pyrethroid-chlorfenapyr [DR 0.74 (95% CI 0.37-1.48), p = 0.3946; and RR 1.00 (95% CI 0.40-2.50), p = 0.9957] LLINs, respectively. The same trend was observed outdoors. Frequencies of the L1014F kdr mutation, as well as parous and fertility rates, were similar between study arms. In the third year after net distribution, entomological indicators show that the two dual active-ingredients nets performed similarly to the standard pyrethroid-only LLIN. To maintain malaria gains, it is crucial that net distribution cycles fit with their operational lifespan.


Assuntos
Anopheles , Mosquiteiros Tratados com Inseticida , Controle de Mosquitos , Mosquitos Vetores , Plasmodium falciparum , Piretrinas , Piridinas , Piretrinas/farmacologia , Animais , Anopheles/parasitologia , Anopheles/efeitos dos fármacos , Humanos , Controle de Mosquitos/métodos , Benin , Mosquitos Vetores/parasitologia , Mosquitos Vetores/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Malária/transmissão , Malária/prevenção & controle , Inseticidas/farmacologia , Malária Falciparum/transmissão , Malária Falciparum/parasitologia , Feminino , Resistência a Inseticidas/genética
3.
Mol Biochem Parasitol ; 259: 111634, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38823647

RESUMO

Asexual blood stage culture of Plasmodium falciparum is routinely performed but reproducibly inducing commitment to and maturation of viable gametocytes remains difficult. Culture media can be supplemented with human serum substitutes to induce commitment but these generally only allow for long-term culture of asexual parasites and not transmission-competent gametocytes due to their different lipid composition. Recent insights demonstrated the important roles lipids play in sexual commitment; elaborating on this we exposed ring stage parasites (20-24 hours hpi) for one day to AlbuMAX supplemented media to trigger induction to gametocytogenesis. We observed a significant increase in gametocytes after AlbuMAX induction compared to serum. We also tested the transmission potential of AlbuMAX inducted gametocytes and found a significant higher oocyst intensity compared to serum. We conclude that AlbuMAX supplemented media induces commitment, allows a more stable and predictable production of transmittable gametocytes than serum alone.


Assuntos
Meios de Cultura , Plasmodium falciparum , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/fisiologia , Meios de Cultura/química , Humanos , Malária Falciparum/parasitologia , Malária Falciparum/transmissão
4.
Sci Rep ; 14(1): 13669, 2024 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-38871839

RESUMO

Among the factors affecting the effectiveness of malaria control is poor knowledge of the entomologic drivers of the disease. We investigated anopheline populations as part of a baseline study to implement house screening of windows and doors as a supplementary malaria control tool towards elimination in Jabi Tehnan district, Amhara Regional State of Ethiopia. The samples were surveyed monthly using CDC light traps between June 2020 and May 2021. Mosquito trap density (< 3 mosquitoes/trap) was low, however, with a high overall Plasmodium sporozoite rate (9%; indoor = 4.3%, outdoor = 13.1%) comprising P. falciparum (88.9%) and P. vivax (11.1%). Anopheles gambiae s.l., mostly An. arabiensis, comprised > 80% of total anopheline captures and contributed ~ 42% of Plasmodium-infected mosquitoes. On the other hand, morphologically scored Anopheles funestus s.l., constituting about 6% of anopheline collections, accounted for 50% of sporozoite-infected mosquitoes. Most of the infected An. funestus s.l. specimens (86.7%) were grouped with previously unknown or undescribed Anopheles species previously implicated as a cryptic malaria vector in the western Kenyan highlands, confirming its wider geographic distribution in eastern Africa. Other species with Plasmodium infection included An. longipalpis C, An. theileri, An. demillioni, and An. nili. Cumulatively, 77.8% of the infected mosquitoes occurred outdoors. These results suggest efficient malaria parasite transmission despite the low vector densities, which has implications for effective endpoint indicators to monitor malaria control progress. Additionally, the largely outdoor infection and discovery of previously unknown and cryptic vectors suggest an increased risk of residual malaria transmission and, thus, a constraint on effective malaria prevention and control.


Assuntos
Anopheles , Mosquitos Vetores , Etiópia/epidemiologia , Animais , Anopheles/parasitologia , Mosquitos Vetores/parasitologia , Humanos , Malária/transmissão , Malária/epidemiologia , Plasmodium falciparum/isolamento & purificação , Plasmodium falciparum/patogenicidade , Plasmodium vivax/fisiologia , Esporozoítos , Controle de Mosquitos/métodos , Malária Vivax/transmissão , Malária Vivax/epidemiologia , Malária Vivax/parasitologia , Malária Falciparum/transmissão , Malária Falciparum/epidemiologia , Malária Falciparum/parasitologia , Feminino
5.
Biochem Soc Trans ; 52(3): 1025-1034, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38752830

RESUMO

Despite having the highest risk of progressing to severe disease due to lack of acquired immunity, the youngest children living in areas of highly intense malaria transmission have long been observed to be infected at lower rates than older children. Whether this observation is due to reduced exposure to infectious mosquito bites from behavioral and biological factors, maternally transferred immunity, genetic factors, or enhanced innate immunity in the young child has intrigued malaria researchers for over half a century. Recent evidence suggests that maternally transferred immunity may be limited to early infancy and that the young child's own immune system may contribute to control of malarial symptoms early in life and prior to the development of more effective adaptive immunity. Prospective studies of active and passive detection of Plasmodium falciparum blood-stage infections have identified young children (<5 years old) who remain uninfected through a defined surveillance period despite living in settings of highly intense malaria transmission. Yet, little is known about the potential immunological basis for this 'aparasitemic' phenotype. In this review, we summarize the observational evidence for this phenotype in field studies and examine potential reasons why these children escape detection of parasitemia, covering factors that are either extrinsic or intrinsic to their developing immune system. We discuss the challenges of distinguishing malaria protection from lack of malaria exposure in field studies. We also identify gaps in our knowledge regarding cellular immunity in the youngest age group and propose directions that researchers may take to address these gaps.


Assuntos
Malária Falciparum , Parasitemia , Plasmodium falciparum , Humanos , Pré-Escolar , Malária Falciparum/transmissão , Plasmodium falciparum/imunologia , Lactente , Malária/transmissão , Imunidade Inata , Animais
6.
Nat Commun ; 15(1): 4626, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816383

RESUMO

The human infectious reservoir of Plasmodium falciparum is governed by transmission efficiency during vector-human contact and mosquito biting preferences. Understanding biting bias in a natural setting can help target interventions to interrupt transmission. In a 15-month cohort in western Kenya, we detected P. falciparum in indoor-resting Anopheles and human blood samples by qPCR and matched mosquito bloodmeals to cohort participants using short-tandem repeat genotyping. Using risk factor analyses and discrete choice models, we assessed mosquito biting behavior with respect to parasite transmission. Biting was highly unequal; 20% of people received 86% of bites. Biting rates were higher on males (biting rate ratio (BRR): 1.68; CI: 1.28-2.19), children 5-15 years (BRR: 1.49; CI: 1.13-1.98), and P. falciparum-infected individuals (BRR: 1.25; CI: 1.01-1.55). In aggregate, P. falciparum-infected school-age (5-15 years) boys accounted for 50% of bites potentially leading to onward transmission and had an entomological inoculation rate 6.4x higher than any other group. Additionally, infectious mosquitoes were nearly 3x more likely than non-infectious mosquitoes to bite P. falciparum-infected individuals (relative risk ratio 2.76, 95% CI 1.65-4.61). Thus, persistent P. falciparum transmission was characterized by disproportionate onward transmission from school-age boys and by the preference of infected mosquitoes to feed upon infected people.


Assuntos
Anopheles , Mordeduras e Picadas de Insetos , Malária Falciparum , Mosquitos Vetores , Plasmodium falciparum , Humanos , Anopheles/parasitologia , Anopheles/fisiologia , Animais , Plasmodium falciparum/fisiologia , Plasmodium falciparum/isolamento & purificação , Plasmodium falciparum/genética , Malária Falciparum/transmissão , Malária Falciparum/parasitologia , Masculino , Adolescente , Criança , Pré-Escolar , Feminino , Quênia/epidemiologia , Mosquitos Vetores/parasitologia , Mosquitos Vetores/fisiologia , Adulto , Comportamento Alimentar , Adulto Jovem , Lactente
7.
Malar J ; 23(1): 135, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38711028

RESUMO

BACKGROUND: The direct membrane feeding assay (DMFA), whereby gametocyte-infected blood is collected from human donors and from which mosquitoes feed through a membrane, is proving essential for assessing parameters influencing Plasmodium transmission potential in endemic countries. The success of DMFAs is closely tied to gametocyte density in the blood, with relatively high gametocytaemia ensuring optimal infection levels in mosquitoes. As transmission intensity declines with control efforts, the occurrence of asymptomatic individuals with low gametocyte densities, who can significantly contribute to the infectious reservoir, is increasing. This poses a limitation to studies relying on the experimental infection of large numbers of mosquitoes with natural isolates of Plasmodium. A simple, field-applicable method is presented for improving parasite infectivity by concentrating Plasmodium falciparum gametocytes. METHODS: Anopheles gambiae received one of the following 5 blood treatments through DMFA: (i) whole blood (WB) samples from naturally-infected donors; (ii) donor blood whose plasma was replaced with the same volume of Plasmodium-naive AB + serum (1:1 control); (iii) plasma replaced with a volume of malaria-naïve AB + serum equivalent to half (1:1/2), or to a quarter (1:1/4), of the initial plasma volume; and (v) donor blood whose plasma was fully removed (RBC). The experiment was repeated 4 times using 4 distinct wild parasite isolates. Seven days post-infection, a total of 1,095 midguts were examined for oocyst presence. RESULTS: Substituting plasma with reduced amounts (1:1/2 and 1:1/4) of Plasmodium-naive AB + serum led to a 31% and 17% increase of the mosquito infection rate and to a 85% and 308% increase in infection intensity compared to the 1:1 control, respectively. The full removal of plasma (RBC) reduced the infection rate by 58% and the intensity by 64% compared to the 1:1 control. Reducing serum volumes (1:1/2; 1:1/4 and RBC) had no impact on mosquito feeding rate and survival when compared to the 1:1 control. CONCLUSIONS: Concentrating gametocytic blood by replacing natural plasma by lower amount of naive serum can enhance the success of mosquito infection. In an area with low gametocyte density, this simple and practical method of parasite concentration can facilitate studies on human-to-mosquito transmission such as the evaluation of transmission-blocking interventions.


Assuntos
Anopheles , Mosquitos Vetores , Plasmodium falciparum , Plasmodium falciparum/fisiologia , Animais , Anopheles/parasitologia , Mosquitos Vetores/parasitologia , Humanos , Malária Falciparum/parasitologia , Malária Falciparum/transmissão , Feminino , Comportamento Alimentar
8.
Science ; 384(6695): eadj4088, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38696552

RESUMO

The developmental decision made by malaria parasites to become sexual underlies all malaria transmission. Here, we describe a rich atlas of short- and long-read single-cell transcriptomes of over 37,000 Plasmodium falciparum cells across intraerythrocytic asexual and sexual development. We used the atlas to explore transcriptional modules and exon usage along sexual development and expanded it to include malaria parasites collected from four Malian individuals naturally infected with multiple P. falciparum strains. We investigated genotypic and transcriptional heterogeneity within and among these wild strains at the single-cell level, finding differential expression between different strains even within the same host. These data are a key addition to the Malaria Cell Atlas interactive data resource, enabling a deeper understanding of the biology and diversity of transmission stages.


Assuntos
Eritrócitos , Malária Falciparum , Plasmodium falciparum , Desenvolvimento Sexual , Humanos , Eritrócitos/parasitologia , Malária Falciparum/parasitologia , Malária Falciparum/transmissão , Plasmodium falciparum/genética , Plasmodium falciparum/crescimento & desenvolvimento , Desenvolvimento Sexual/genética , Análise de Célula Única , Transcriptoma , Atlas como Assunto
9.
PLoS One ; 19(5): e0303794, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38753670

RESUMO

INTRODUCTION: In Senegal, the widespread use of vector control measures has resulted in a significant reduction in the malaria burden and led the country to consider the possibility of elimination. Given this shift and changing context, it is important to characterize the malaria burden across all age groups to guide decision-making on programmatic interventions to interrupt transmission and ultimately eradicate the disease. In Senegal, there is a lack of information on malaria prevalence among certain populations, particularly among adolescents and adults. This study sought to assess the magnitude of malaria infections in all age groups, as well as malaria associated factors in an area of persistent transmission in Senegal. METHODS: A cross-sectional household survey was conducted in four health posts (Khossanto, Mamakhona, Diakhaling and Sambrambougou), of the health district of Saraya, in November 2021, among individuals over 6 months of age. Households were selected using multistage sampling. Consented participants were screened for malaria parasites by microscopic examination of blood smears, and hemoglobin levels were measured using the Hemocue HB 301TM analyzer. Socio-demographic information of the participants, household heads, household assets, and information on ownership and use of preventive measures were collected using a structured questionnaire. Weighted generalized mixed effects logistic regression model was used to identify factors associated with microscopically confirmed malaria infection. RESULTS: A total of 1759 participants were enrolled in the study. Overall, about 21% of participants were classified as having Plasmodium infection; children aged 5-10 years old (26.6%), adolescents aged 10-19 years old (24.7%), and children under five years of age (20.5%) had higher rates of infection compared to adults (13.5%). Plasmodium falciparum accounted for 99.2% of the malaria infections, and most infections (69%) were asymptomatic. Around one-third of study participants had anemia (hemoglobin level <11.0 g/dl), with under five children bearing the highest burden (67.3%). Multivariate analysis showed that the odds of having a malaria infection were around 2 times higher among participants in Khossanto compared to Diakhaling (aOR = 1.84, 95% CI:1.06-3.20). Participants aged 5-9 years were more likely to have malaria infection compared to under five children (aOR = 1.40, 95% CI:1.02-1.91). Factors associated with anemia were P. falciparum infection (aOR = 1.36, p = 0.027), females (aOR = 2.16, p = 0.000), under-five age group (aOR = 13.01, p = 0.000). CONCLUSION: Malaria burden was considerable among adolescents and under ten children living in an area of persistent transmission, with adolescents more commonly presenting as asymptomatic. Interventions tailored to this specific group of the population are needed to better control the disease and reduce its burden.


Assuntos
Malária , Humanos , Senegal/epidemiologia , Adolescente , Feminino , Adulto , Criança , Masculino , Pré-Escolar , Prevalência , Adulto Jovem , Estudos Transversais , Lactente , Pessoa de Meia-Idade , Malária/epidemiologia , Malária/transmissão , Malária Falciparum/epidemiologia , Malária Falciparum/transmissão
10.
Nat Commun ; 15(1): 4069, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744878

RESUMO

In malaria epidemiology, interpolation frameworks based on available observations are critical for policy decisions and interpreting disease burden. Updating our understanding of the empirical evidence across different populations, settings, and timeframes is crucial to improving inference for supporting public health. Here, via individual-based modeling, we evaluate a large, multicountry, contemporary Plasmodium falciparum severe malaria dataset to better understand the relationship between prevalence and incidence of malaria pediatric hospitalizations - a proxy of malaria severe outcomes- in East-Africa. We find that life-long exposure dynamics, and subsequent protection patterns in children, substantially determine the likelihood of malaria hospitalizations relative to ongoing prevalence at the population level. Unsteady transmission patterns over a lifetime in children -increasing or decreasing- lead to an exponential relationship of hospitalization rates versus prevalence rather than the asymptotic pattern observed under steady transmission. Addressing this increase in the complexity of malaria epidemiology is crucial to update burden assessments via inference models that guide current and future policy decisions.


Assuntos
Hospitalização , Malária Falciparum , Humanos , Malária Falciparum/epidemiologia , Malária Falciparum/transmissão , Malária Falciparum/parasitologia , Criança , Prevalência , Pré-Escolar , Hospitalização/estatística & dados numéricos , Lactente , Incidência , Plasmodium falciparum , Feminino , Masculino , Adolescente
11.
Nat Commun ; 15(1): 3230, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649361

RESUMO

Despite concern that climate change could increase the human risk to malaria in certain areas, the temperature dependency of malaria transmission is poorly characterized. Here, we use a mechanistic model fitted to experimental data to describe how Plasmodium falciparum infection of the African malaria vector, Anopheles gambiae, is modulated by temperature, including its influences on parasite establishment, conversion efficiency through parasite developmental stages, parasite development rate, and overall vector competence. We use these data, together with estimates of the survival of infected blood-fed mosquitoes, to explore the theoretical influence of temperature on transmission in four locations in Kenya, considering recent conditions and future climate change. Results provide insights into factors limiting transmission in cooler environments and indicate that increases in malaria transmission due to climate warming in areas like the Kenyan Highlands, might be less than previously predicted.


Assuntos
Anopheles , Malária Falciparum , Mosquitos Vetores , Plasmodium falciparum , Temperatura , Plasmodium falciparum/fisiologia , Malária Falciparum/transmissão , Malária Falciparum/parasitologia , Malária Falciparum/epidemiologia , Animais , Anopheles/parasitologia , Humanos , Quênia/epidemiologia , Mosquitos Vetores/parasitologia , Mudança Climática , Feminino
12.
BMC Med ; 22(1): 170, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38649867

RESUMO

BACKGROUND: The stalling global progress in malaria control highlights the need for novel tools for malaria elimination, including transmission-blocking vaccines. Transmission-blocking vaccines aim to induce human antibodies that block parasite development in the mosquito and mosquitoes becoming infectious. The Pfs48/45 protein is a leading Plasmodium falciparum transmission-blocking vaccine candidate. The R0.6C fusion protein, consisting of Pfs48/45 domain 3 (6C) and the N-terminal region of P. falciparum glutamate-rich protein (R0), has previously been produced in Lactococcus lactis and elicited functional antibodies in rodents. Here, we assess the safety and transmission-reducing efficacy of R0.6C adsorbed to aluminium hydroxide with and without Matrix-M™ adjuvant in humans. METHODS: In this first-in-human, open-label clinical trial, malaria-naïve adults, aged 18-55 years, were recruited at the Radboudumc in Nijmegen, the Netherlands. Participants received four intramuscular vaccinations on days 0, 28, 56 and 168 with either 30 µg or 100 µg of R0.6C and were randomised for the allocation of one of the two different adjuvant combinations: aluminium hydroxide alone, or aluminium hydroxide combined with Matrix-M1™ adjuvant. Adverse events were recorded from inclusion until 84 days after the fourth vaccination. Anti-R0.6C and anti-6C IgG titres were measured by enzyme-linked immunosorbent assay. Transmission-reducing activity of participants' serum and purified vaccine-specific immunoglobulin G was assessed by standard membrane feeding assays using laboratory-reared Anopheles stephensi mosquitoes and cultured P. falciparum gametocytes. RESULTS: Thirty-one participants completed four vaccinations and were included in the analysis. Administration of all doses was safe and well-tolerated, with one related grade 3 adverse event (transient fever) and no serious adverse events occurring. Anti-R0.6C and anti-6C IgG titres were similar between the 30 and 100 µg R0.6C arms, but higher in Matrix-M1™ arms. Neat participant sera did not induce significant transmission-reducing activity in mosquito feeding experiments, but concentrated vaccine-specific IgGs purified from sera collected two weeks after the fourth vaccination achieved up to 99% transmission-reducing activity. CONCLUSIONS: R0.6C/aluminium hydroxide with or without Matrix-M1™ is safe, immunogenic and induces functional Pfs48/45-specific transmission-blocking antibodies, albeit at insufficient serum concentrations to result in transmission reduction by neat serum. Future work should focus on identifying alternative vaccine formulations or regimens that enhance functional antibody responses. TRIAL REGISTRATION: The trial is registered with ClinicalTrials.gov under identifier NCT04862416.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Glicoproteínas de Membrana , Plasmodium falciparum , Proteínas de Protozoários , Adolescente , Adulto , Animais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem , Adjuvantes Imunológicos/administração & dosagem , Hidróxido de Alumínio/administração & dosagem , Anticorpos Antiprotozoários , Vacinas Antimaláricas/imunologia , Vacinas Antimaláricas/administração & dosagem , Malária Falciparum/prevenção & controle , Malária Falciparum/transmissão , Malária Falciparum/imunologia , Países Baixos , Plasmodium falciparum/imunologia , Proteínas de Protozoários/imunologia
13.
Rev Soc Bras Med Trop ; 57: e00405, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38655991

RESUMO

BACKGROUND: Malaria is a major global public health issue with varying epidemiologies across countries. In Colombia, it is a priority endemic-epidemic event included in the national public health policy. However, evidence demonstrating nationwide variations in the disease behavior is limited. This study aimed to analyze changes in the levels and distribution of endemic-epidemic malaria transmission in the eco-epidemiological regions of Colombia from 1978 to 1999 and 2000 to 2021. METHODS: We conducted a comprehensive time-series study using official secondary data on malaria-associated morbidity and mortality in Colombia from 1978 to 2021. Temporal-spatial and population variables were analyzed, and the absolute and relative frequency measures of general and regional morbidity and mortality were estimated. RESULTS: We observed an 18% reduction in malaria endemic cases between the two study periods. The frequency and severity of the epidemic transmission of malaria varied less and were comparable across both periods. A shift was observed in the frequency of parasitic infections, with a tendency to match and increase infections by Plasmodium falciparum. The risk of malaria transmission varied significantly among the eco-epidemiological regions during both study periods. This study demonstrated a sustained decrease of 78% in malarial mortality. CONCLUSIONS: Although the endemic components of malaria decreased slightly between the two study periods, the epidemic pattern persisted. There were significant variations in the risk of transmission across the different eco-epidemiological regions. These findings underscore the importance of targeted public health interventions in reducing malarial morbidity and mortality rates in Colombia.


Assuntos
Doenças Endêmicas , Colômbia/epidemiologia , Humanos , Epidemias , Malária/epidemiologia , Malária/transmissão , Malária Falciparum/epidemiologia , Malária Falciparum/transmissão , Incidência
14.
Int J Infect Dis ; 143: 107010, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38490637

RESUMO

OBJECTIVE: A 15-month longitudinal study was conducted to determine the duration and infectivity of asymptomatic qPCR-detected Plasmodium falciparum and Plasmodium vivax infections in Ethiopia. METHOD: Total parasite and gametocyte kinetics were determined by molecular methods; infectivity to Anopheles arabiensis mosquitoes by repeated membrane feeding assays. Infectivity results were contrasted with passively recruited symptomatic malaria cases. RESULTS: For P. falciparum and P. vivax infections detected at enrolment, median durations of infection were 37 days (95% confidence interval [CI], 15-93) and 60 days (95% CI, 18-213), respectively. P. falciparum and P. vivax parasite densities declined over the course of infections. From 47 feeding assays on 22 asymptomatic P. falciparum infections, 6.4% (3/47) were infectious and these infected 1.8% (29/1579) of mosquitoes. No transmission was observed in feeding assays on asymptomatic P. vivax mono-infections (0/56); one mixed-species infection was highly infectious. Among the symptomatic cases, 4.3% (2/47) of P. falciparum and 73.3% (53/86) of P. vivax patients were infectious to mosquitoes. CONCLUSION: The majority of asymptomatic infections were of short duration and low parasite density. Only a minority of asymptomatic individuals were infectious to mosquitoes. This contrasts with earlier findings and is plausibly due to the low parasite densities in this population.


Assuntos
Anopheles , Malária Falciparum , Malária Vivax , Plasmodium falciparum , Plasmodium vivax , Etiópia/epidemiologia , Malária Vivax/transmissão , Malária Vivax/epidemiologia , Malária Vivax/parasitologia , Humanos , Estudos Longitudinais , Malária Falciparum/transmissão , Malária Falciparum/epidemiologia , Malária Falciparum/parasitologia , Animais , Plasmodium vivax/isolamento & purificação , Plasmodium vivax/fisiologia , Plasmodium falciparum/isolamento & purificação , Anopheles/parasitologia , Masculino , Feminino , Adulto , Adolescente , Criança , Adulto Jovem , Pré-Escolar , Infecções Assintomáticas/epidemiologia , Mosquitos Vetores/parasitologia , Pessoa de Meia-Idade
15.
Nat Rev Microbiol ; 22(6): 373-384, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38321292

RESUMO

Malaria, mostly due to Plasmodium falciparum infection in Africa, remains one of the most important infectious diseases in the world. Standard treatment for uncomplicated P. falciparum malaria is artemisinin-based combination therapy (ACT), which includes a rapid-acting artemisinin derivative plus a longer-acting partner drug, and standard therapy for severe P. falciparum malaria is intravenous artesunate. The efficacy of artemisinins and ACT has been threatened by the emergence of artemisinin partial resistance in Southeast Asia, mediated principally by mutations in the P. falciparum Kelch 13 (K13) protein. High ACT treatment failure rates have occurred when resistance to partner drugs is also seen. Recently, artemisinin partial resistance has emerged in Rwanda, Uganda and the Horn of Africa, with independent emergences of different K13 mutants in each region. In this Review, we summarize our current knowledge of artemisinin partial resistance and focus on the emergence of resistance in Africa, including its epidemiology, transmission dynamics and mechanisms. At present, the clinical impact of emerging resistance in Africa is unclear and most available evidence suggests that the efficacies of leading ACTs remain excellent, but there is an urgent need to better appreciate the extent of the problem and its consequences for the treatment and control of malaria.


Assuntos
Antimaláricos , Artemisininas , Resistência a Medicamentos , Malária Falciparum , Plasmodium falciparum , Artemisininas/uso terapêutico , Artemisininas/farmacologia , Resistência a Medicamentos/genética , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Malária Falciparum/transmissão , Malária Falciparum/epidemiologia , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Humanos , Antimaláricos/uso terapêutico , Antimaláricos/farmacologia , África/epidemiologia , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Mutação
16.
Science ; 381(6657): 533-540, 2023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-37535741

RESUMO

Malaria control demands the development of a wide range of complementary strategies. We describe the properties of a naturally occurring, non-genetically modified symbiotic bacterium, Delftia tsuruhatensis TC1, which was isolated from mosquitoes incapable of sustaining the development of Plasmodium falciparum parasites. D. tsuruhatensis TC1 inhibits early stages of Plasmodium development and subsequent transmission by the Anopheles mosquito through secretion of a small-molecule inhibitor. We have identified this inhibitor to be the hydrophobic molecule harmane. We also found that, on mosquito contact, harmane penetrates the cuticle, inhibiting Plasmodium development. D. tsuruhatensis TC1 stably populates the mosquito gut, does not impose a fitness cost on the mosquito, and inhibits Plasmodium development for the mosquito's life. Contained field studies in Burkina Faso and modeling showed that D. tsuruhatensis TC1 has the potential to complement mosquito-targeted malaria transmission control.


Assuntos
Anopheles , Delftia , Interações Hospedeiro-Parasita , Malária Falciparum , Plasmodium falciparum , Animais , Anopheles/microbiologia , Malária Falciparum/microbiologia , Malária Falciparum/prevenção & controle , Malária Falciparum/transmissão , Plasmodium falciparum/microbiologia , Plasmodium falciparum/fisiologia , Delftia/fisiologia , Simbiose , Humanos
17.
J Biol Chem ; 299(6): 104824, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37196765

RESUMO

With rising cases for the first time in years, malaria remains a significant public health burden. The sexual stage of the malaria parasite infects mosquitoes to transmit malaria from host to host. Hence, an infected mosquito plays an essential role in malaria transmission. Plasmodium falciparum is the most dominant and dangerous malaria pathogen. Previous studies identified a sexual stage-specific protein 16 (Pfs16) localized to the parasitophorous vacuole membrane. Here, we elucidate the function of Pfs16 during malaria transmission. Our structural analysis identified Pfs16 as an alpha-helical integral membrane protein with one transmembrane domain connecting to two regions across parasitophorous vacuole membrane. ELISA assays showed that insect cell-expressed recombinant Pfs16 (rPfs16) interacted with Anopheles gambiae midguts, and microscopy found that rPfs16 was bound to midgut epithelial cells. Transmission-blocking assays demonstrated that polyclonal antibodies against Pfs16 significantly reduced the number of oocysts in mosquito midguts. However, on the contrary, feeding rPfs16 increased the number of oocysts. Further analysis revealed that Pfs16 reduced the activity of mosquito midgut caspase 3/7, a key enzyme in the mosquito Jun-N-terminal kinase immune pathway. We conclude that Pfs16 facilitates parasites to invade mosquito midguts by actively silencing the mosquito's innate immunity through its interaction with the midgut epithelial cells. Therefore, Pfs16 is a potential target to control malaria transmission.


Assuntos
Anopheles , Malária Falciparum , Plasmodium falciparum , Proteínas de Protozoários , Animais , Humanos , Malária Falciparum/metabolismo , Malária Falciparum/parasitologia , Malária Falciparum/transmissão , Proteínas de Membrana/metabolismo , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Vacúolos/metabolismo , Proteínas de Protozoários/metabolismo
18.
Malar J ; 22(1): 115, 2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37029433

RESUMO

BACKGROUND: Control of malaria parasite transmission can be enhanced by understanding which human demographic groups serve as the infectious reservoirs. Because vector biting can be heterogeneous, some infected individuals may contribute more to human-to-mosquito transmission than others. Infection prevalence peaks in school-age children, but it is not known how often they are fed upon. Genotypic profiling of human blood permits identification of individual humans who were bitten. The present investigation used this method to estimate which human demographic groups were most responsible for transmitting malaria parasites to Anopheles mosquitoes. It was hypothesized that school-age children contribute more than other demographic groups to human-to-mosquito malaria transmission. METHODS: In a region of moderate-to-high malaria incidence in southeastern Malawi, randomly selected households were surveyed to collect human demographic information and blood samples. Blood-fed, female Anopheles mosquitoes were sampled indoors from the same houses. Genomic DNA from human blood samples and mosquito blood meals of human origin was genotyped using 24 microsatellite loci. The resultant genotypes were matched to identify which individual humans were sources of blood meals. In addition, Plasmodium falciparum DNA in mosquito abdomens was detected with polymerase chain reaction. The combined results were used to identify which humans were most frequently bitten, and the P. falciparum infection prevalence in mosquitoes that resulted from these blood meals. RESULTS: Anopheles females selected human hosts non-randomly and fed on more than one human in 9% of the blood meals. Few humans contributed most of the blood meals to the Anopheles vector population. Children ≤ 5 years old were under-represented in mosquito blood meals while older males (31-75 years old) were over-represented. However, the largest number of malaria-infected blood meals was from school age children (6-15 years old). CONCLUSIONS: The results support the hypothesis that humans aged 6-15 years are the most important demographic group contributing to the transmission of P. falciparum to the Anopheles mosquito vectors. This conclusion suggests that malaria control and prevention programmes should enhance efforts targeting school-age children and males.


Assuntos
Anopheles , Sangue , Comportamento de Busca por Hospedeiro , Malária Falciparum , Adolescente , Adulto , Idoso , Animais , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Anopheles/parasitologia , DNA/sangue , Genótipo , Malária/sangue , Malária/parasitologia , Malária/prevenção & controle , Malária/transmissão , Malária Falciparum/sangue , Malária Falciparum/parasitologia , Malária Falciparum/prevenção & controle , Malária Falciparum/transmissão , Refeições , Mosquitos Vetores/parasitologia , Plasmodium falciparum/genética , Sangue/parasitologia , Malaui
19.
Science ; 378(6620): 582-583, 2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36356129
20.
Proc Natl Acad Sci U S A ; 119(34): e2204167119, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35972967

RESUMO

Malaria remains a global driver of morbidity and mortality. To generate new antimalarials, one must elucidate the fundamental cell biology of Plasmodium falciparum, the parasite responsible for the deadliest cases of malaria. A membranous and proteinaceous scaffold called the inner membrane complex (IMC) supports the parasite during morphological changes, including segmentation of daughter cells during asexual replication and formation of transmission-stage gametocytes. The basal complex lines the edge of the IMC during segmentation and likely facilitates IMC expansion. It is unknown, however, what drives IMC expansion during gametocytogenesis. We describe the discovery of a basal complex protein, PfBLEB, which we find to be essential for gametocytogenesis. Parasites lacking PfBLEB harbor defects in IMC expansion and are unable to form mature gametocytes. This article demonstrates a role for a basal complex protein outside of asexual division, and, importantly, highlights a potential molecular target for the ablation of malaria transmission.


Assuntos
Gametogênese , Malária Falciparum , Plasmodium falciparum , Proteínas de Protozoários , Animais , Antimaláricos/química , Desenho de Fármacos , Malária Falciparum/parasitologia , Malária Falciparum/transmissão , Plasmodium falciparum/genética , Plasmodium falciparum/crescimento & desenvolvimento , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...