Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.334
Filtrar
1.
Malar J ; 23(1): 241, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39135005

RESUMO

BACKGROUND: Testing for glucose-6-phosphate dehydrogenase (G6PD) deficiency is an important consideration regarding treatment for malaria. G6PD deficiency may lead to haemolytic anaemia during malaria treatment and, therefore, determining G6PD deficiency in malaria treatment strategies is extremely important. METHODS: This report presents the results of a scoping review and evidence and gap map for consideration by the Guideline Development Group for G6PD near patient tests to support radical cure of Plasmodium vivax. This scoping review has investigated common diagnostic tests for G6PD deficiency and important contextual and additional factors for decision-making. These factors include six of the considerations recommended by the World Health Organization (WHO) handbook for guideline development as important to determining the direction and strength of a recommendation, and included 'acceptability', 'feasibility,' 'equity,' 'valuation of outcomes,' 'gender' and 'human rights'. The aim of this scoping review is to inform the direction of future systematic reviews and evidence syntheses, which can then better inform the development of WHO recommendations regarding the use of G6PD deficiency testing as part of malaria treatment strategies. RESULTS: A comprehensive search was performed, including published, peer-reviewed literature for any article, of any study design and methodology that investigated G6PD diagnostic tests and the factors of 'acceptability', 'feasibility,' 'equity,' 'valuation of outcomes,' 'gender' and 'human rights'. There were 1152 studies identified from the search, of which 14 were determined to be eligible for inclusion into this review. The studies contained data from over 21 unique countries that had considered G6PD diagnostic testing as part of a malaria treatment strategy. The relationship between contextual and additional factors, diagnostic tests for G6PD deficiency and study methodology is presented in an overall evidence and gap, which showed that majority of the evidence was for the contextual factors for diagnostic tests, and the 'Standard G6PD (SD Biosensor)' test. CONCLUSIONS: This scoping review has produced a dynamic evidence and gap map that is reactive to emerging evidence within the field of G6PD diagnostic testing. The evidence and gap map has provided a comprehensive depiction of all the available literature that address the contextual and additional factors important for decision-making, regarding specific G6PD diagnostic tests. The majority of data available investigating the contextual factors of interest relates to quantitative G6PD diagnostic tests. While a formal qualitative synthesis of this data as part of a systematic review is possible, the data may be too heterogenous for this to be appropriate. These results can now be used to inform future direction of WHO Guideline Development Groups for G6PD near patient tests to support radical cure of P. vivax malaria.


Assuntos
Testes Diagnósticos de Rotina , Deficiência de Glucosefosfato Desidrogenase , Deficiência de Glucosefosfato Desidrogenase/diagnóstico , Humanos , Testes Diagnósticos de Rotina/métodos , Testes Diagnósticos de Rotina/estatística & dados numéricos , Malária Vivax/diagnóstico , Malária Vivax/tratamento farmacológico , Malária/diagnóstico , Malária/tratamento farmacológico
2.
Malar J ; 23(1): 202, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38971786

RESUMO

BACKGROUND: Plasmodium vivax malaria is still an important public health problem in Ethiopia. Unlike Plasmodium falciparum, P. vivax has a dormant liver stage (hypnozoite) that can be a risk of recurrent vivax malaria unless treated by radical cure with primaquine. Drug resistance to chloroquine is threatening malaria control and elimination efforts. This study assessed the therapeutic efficacy and safety of chloroquine plus 14 days of primaquine on P. vivax infection based on parasitological, clinical, and haematological parameters. METHODS: A single-arm in vivo prospective therapeutic efficacy study was conducted to assess the clinical and parasitological response to the first-line treatment of P. vivax in Ethiopia, chloroquine plus 14 days low dose of (0.25 mg/kg/day) primaquine between December 2022 and March 2023 at Hamusit Health Centre using the standard World Health Organization (WHO) protocol. A total of 100 study participants with P. vivax mono-infection who were over 6 months old were enrolled and monitored for adequate clinical and parasitological responses for 42 days. The WHO double-entry Excel sheet and SPSS v.25 software were used for Kaplan-Meier survival analysis, and a paired t-test was used for analysis of haemoglobin improvements between follow up days. RESULTS: A total of 100 patients were enrolled among those, 96% cases were rural residents, 93% had previous malaria exposure, and predominant age group was 5-15 years (61%). 92.6% (95% CI 85.1-96.4%) of enrolled patients were adequate clinical and parasitological response, and 7.4% (95% CI 3.6-14.9%) recurrences were observed among treated patients. The fever and parasite clearance rate on day 3 were 98% and 94%, respectively. The baseline haemoglobin levels improved significantly compared to those days 14 and 42 (p < 0.001). No serious adverse event was observed during the study period. CONCLUSIONS: In this study, co-administration of chloroquine with primaquine was efficacious and well-tolerated with fast resolution of fever and high parasites clearance rate. However, the 7.4% failure is reported is alarming that warrant further monitoring of the therapeutic efficacy study of P. vivax.


Assuntos
Antimaláricos , Cloroquina , Quimioterapia Combinada , Malária Vivax , Plasmodium vivax , Primaquina , Malária Vivax/tratamento farmacológico , Cloroquina/uso terapêutico , Cloroquina/administração & dosagem , Cloroquina/efeitos adversos , Primaquina/uso terapêutico , Primaquina/administração & dosagem , Etiópia , Antimaláricos/uso terapêutico , Antimaláricos/administração & dosagem , Antimaláricos/efeitos adversos , Humanos , Adolescente , Masculino , Adulto , Adulto Jovem , Feminino , Criança , Estudos Prospectivos , Pessoa de Meia-Idade , Pré-Escolar , Plasmodium vivax/efeitos dos fármacos , Idoso
3.
PLoS One ; 19(7): e0304337, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38968216

RESUMO

BACKGROUND: Plasmodium vivax has become the predominant species in the border regions of Thailand. The emergence and spread of antimalarial drug resistance in P. vivax is one of the significant challenges for malaria control. Continuous surveillance of drug resistance is therefore necessary for monitoring the development of drug resistance in the region. This study aims to investigate the prevalence of the mutation in the P. vivax multidrug resistant 1 (Pvmdr1), dihydrofolate reductase (Pvdhfr), and dihydropteroate synthetase (Pvdhps) genes conferred resistance to chloroquine (CQ), pyrimethamine (P) and sulfadoxine (S), respectively. METHOD: 100 P. vivax isolates were obtained between January to May 2023 from a Kanchanaburi province, western Thailand. Nucleotide sequences of Pvmdr1, Pvdhfr, and Pvdhps genes were amplified and sequenced. The frequency of single nucleotide polymorphisms (SNPs)-haplotypes of drug-resistant alleles was assessed. The linkage disequilibrium (LD) tests were also analyzed. RESULTS: In Pvmdr1, T958M, Y976F, and F1076L, mutations were detected in 100%, 21%, and 23% of the isolates, respectively. In Pvdhfr, the quadruple mutant allele (I57R58M61T117) prevailed in 84% of the samples, followed by (L57R58M61T117) in 11%. For Pvdhps, the double mutant allele (G383G553) was detected (48%), followed by the triple mutant allele (G383M512G553) (47%) of the isolates. The most prevalent combination of Pvdhfr (I57R58M61T117) and Pvdhps (G383G553) alleles was sextuple mutated haplotypes (48%). For LD analysis, the association in the SNPs pairs was found between the intragenic and intergenic regions of the Pvdhfr and Pvdhps genes. CONCLUSION: The study has recently updated the high prevalence of three gene mutations associated with CQ and SP resistance. Genetic monitoring is therefore important to intensify in the regions to further assess the spread of drug resistant. Our data also provide evidence on the distribution of drug resistance for the early warning system, thereby threatening P. vivax malaria treatment policy decisions at the national level.


Assuntos
Antimaláricos , Resistência a Medicamentos , Malária Vivax , Plasmodium vivax , Polimorfismo de Nucleotídeo Único , Plasmodium vivax/genética , Plasmodium vivax/efeitos dos fármacos , Plasmodium vivax/isolamento & purificação , Tailândia/epidemiologia , Resistência a Medicamentos/genética , Humanos , Antimaláricos/farmacologia , Malária Vivax/parasitologia , Malária Vivax/epidemiologia , Malária Vivax/tratamento farmacológico , Tetra-Hidrofolato Desidrogenase/genética , Desequilíbrio de Ligação , Mutação , Proteínas de Protozoários/genética , Cloroquina/farmacologia , Di-Hidropteroato Sintase/genética , Sulfadoxina/farmacologia , Pirimetamina/farmacologia , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Haplótipos , Masculino , Feminino , Adulto
5.
Antimicrob Agents Chemother ; 68(7): e0033824, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38837364

RESUMO

The human malaria-Aotus monkey model has served the malaria research community since its inception in 1966 at the Gorgas Memorial Laboratory (GML) in Panama. Spanning over five decades, this model has been instrumental in evaluating the in vivo efficacy and pharmacokinetics of a wide array of candidate antimalarial drugs, whether used singly or in combination. The animal model could be infected with drug-resistant and susceptible Plasmodium falciparum and Plasmodium vivax strains that follow a characteristic and reproducible course of infection, remarkably like human untreated and treated infections. Over the years, the model has enabled the evaluation of several synthetic and semisynthetic endoperoxides, for instance, artelinic acid, artesunate, artemether, arteether, and artemisone. These compounds have been evaluated alone and in combination with long-acting partner drugs, commonly referred to as artemisinin-based combination therapies, which are recommended as first-line treatment against uncomplicated malaria. Further, the model has also supported the evaluation of the primaquine analog tafenoquine against blood stages of P. vivax, contributing to its progression to clinical trials and eventual approval. Besides, the P. falciparum/Aotus model at GML has also played a pivotal role in exploring the biology, immunology, and pathogenesis of malaria and in the characterization of drug-resistant P. falciparum and P. vivax strains. This minireview offers a historical overview of the most significant contributions made by the Panamanian owl monkey (Aotus lemurinus lemurinus) to malaria chemotherapy research.


Assuntos
Antimaláricos , Artemisininas , Modelos Animais de Doenças , Animais , Antimaláricos/uso terapêutico , Antimaláricos/farmacocinética , Antimaláricos/farmacologia , Artemisininas/uso terapêutico , Artemisininas/farmacologia , Humanos , Panamá , Aotidae , Plasmodium falciparum/efeitos dos fármacos , Malária/tratamento farmacológico , Plasmodium vivax/efeitos dos fármacos , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Artesunato/uso terapêutico , Artesunato/farmacologia , Artesunato/farmacocinética , Malária Vivax/tratamento farmacológico , Malária Vivax/parasitologia , História do Século XX , Aminoquinolinas
6.
Malar J ; 23(1): 183, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858696

RESUMO

BACKGROUND: Plasmodium vivax malaria is a leading cause of morbidity in Ethiopia. The first-line treatment for P. vivax is chloroquine (CQ) and primaquine (PQ), but there have been local reports of CQ resistance. A clinical study was conducted to determine the efficacy of CQ for the treatment of P. vivax malaria in southern Ethiopia. METHODS: In 2021, patients with P. vivax mono-infection and uncomplicated malaria were enrolled and treated with 25 mg/kg CQ for 3 consecutive days. Patients were followed for 28 days according to WHO guidelines. The data were analysed using per-protocol (PP) and Kaplan‒Meier (K‒M) analyses to estimate the risk of recurrent P. vivax parasitaemia on day 28. RESULTS: A total of 88 patients were enrolled, 78 (88.6%) of whom completed the 28 days of follow-up. Overall, 76 (97.4%) patients had adequate clinical and parasitological responses, and two patients had late parasitological failures. The initial therapeutic response was rapid, with 100% clearance of asexual parasitaemia within 48 h. CONCLUSION: Despite previous reports of declining chloroquine efficacy against P. vivax, CQ retains high therapeutic efficacy in southern Ethiopia, supporting the current national treatment guidelines. Ongoing clinical monitoring of CQ efficacy supported by advanced molecular methods is warranted to inform national surveillance and ensure optimal treatment guidelines.


Assuntos
Antimaláricos , Cloroquina , Malária Vivax , Malária Vivax/tratamento farmacológico , Cloroquina/uso terapêutico , Etiópia , Humanos , Antimaláricos/uso terapêutico , Masculino , Adulto , Feminino , Adolescente , Adulto Jovem , Criança , Pessoa de Meia-Idade , Pré-Escolar , Plasmodium vivax/efeitos dos fármacos , Resultado do Tratamento , Idoso , Parasitemia/tratamento farmacológico
7.
JMIR Public Health Surveill ; 10: e51993, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38922648

RESUMO

BACKGROUND: A challenge in achieving the malaria-elimination target in the Greater Mekong Subregion, including Thailand, is the predominance of Plasmodium vivax malaria, which has shown extreme resilience to control measures. OBJECTIVE: This proof-of-concept study aimed to provide evidence for implementing primaquine mass drug administration (pMDA) as a strategy for P. vivax elimination in low-endemicity settings. METHODS: The study employed a mixed-methods trial to thoroughly evaluate the effectiveness, safety, acceptability, and community engagement of pMDA. The quantitative part was designed as a 2-period cluster-crossover randomized controlled trial. The intervention was pMDA augmented to the national prevention and control standards with directly observed treatment (DOT) by village health volunteers. The qualitative part employed in-depth interviews and brainstorming discussions. The study involved 7 clusters in 2 districts of 2 southern provinces in Thailand with persistently low P. vivax transmission. In the quantitative part, 5 cross-sectional blood surveys were conducted in both the pMDA and control groups before and 3 months after pMDA. The effectiveness of pMDA was determined by comparing the proportions of P. vivax infections per 1000 population between the 2 groups, with a multilevel zero-inflated negative binomial model adjusted for cluster and time as covariates and the interaction. The safety data comprised adverse events after drug administration. Thematic content analysis was used to assess the acceptability and engagement of stakeholders. RESULTS: In the pre-pMDA period, the proportions of P. vivax infections in the pMDA (n=1536) and control (n=1577) groups were 13.0 (95% CI 8.2-20.4) and 12.0 (95% CI 7.5-19.1), respectively. At month 3 post-pMDA, these proportions in the pMDA (n=1430) and control (n=1420) groups were 8.4 (95% CI 4.6-15.1) and 5.6 (95% CI 2.6-11.5), respectively. No statistically significant differences were found between the groups. The number of malaria cases reduced in all clusters in both groups, and thus, the impact of pMDA was inconclusive. There were no major safety concerns. Acceptance among the study participants and public health care providers at local and national levels was high, and they believed that pMDA had boosted awareness in the community. CONCLUSIONS: pMDA was associated with high adherence, safety, and tolerability, but it may not significantly impact P. vivax transmission. As this was a proof-of-concept study, we decided not to scale up the intervention with larger clusters and samples. An alternative approach involving a targeted primaquine treatment strategy with primaquine and DOT is currently being implemented. We experienced success regarding effective health care workforces at point-of-care centers, effective collaborations in the community, and commitment from authorities at local and national levels. Our efforts boosted the acceptability of the malaria-elimination initiative. Community engagement is recommended to achieve elimination targets. TRIAL REGISTRATION: Thai Clinical Trials Registry TCTR20190806004; https://www.thaiclinicaltrials.org/show/TCTR20190806004.


Assuntos
Antimaláricos , Malária Vivax , Administração Massiva de Medicamentos , Primaquina , Humanos , Primaquina/uso terapêutico , Primaquina/administração & dosagem , Tailândia/epidemiologia , Administração Massiva de Medicamentos/métodos , Administração Massiva de Medicamentos/estatística & dados numéricos , Masculino , Feminino , Adulto , Adolescente , Malária Vivax/tratamento farmacológico , Antimaláricos/uso terapêutico , Antimaláricos/administração & dosagem , Pessoa de Meia-Idade , Adulto Jovem , Estudo de Prova de Conceito , Criança , Estudos Cross-Over , Estudos Transversais , Aceitação pelo Paciente de Cuidados de Saúde/estatística & dados numéricos , Aceitação pelo Paciente de Cuidados de Saúde/psicologia
8.
PLoS Negl Trop Dis ; 18(6): e0012197, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38837977

RESUMO

Effective radical cure of Plasmodium vivax malaria is essential for malaria elimination in Brazil. P. vivax radical cure requires administration of a schizonticide, such as chloroquine, plus an 8-aminoquinoline. However, 8-aminoquinolines cause hemolysis in individuals with glucose-6-phosphate dehydrogenase (G6PD) deficiency, requiring prior screening to exclude those at risk. Brazil is pioneering the implementation of tafenoquine, a single-dose 8-aminoquinoline indicated for P. vivax patients with >70% of normal G6PD activity. Tafenoquine implementation in Manaus and Porto Velho, two municipalities located in the western Brazilian Amazon, included comprehensive training of healthcare professionals (HCPs) on point-of-care quantitative G6PD testing and a new treatment algorithm for P. vivax radical cure incorporating tafenoquine. Training was initially provided to higher-level facilities (phase one) and later adapted for primary care units (phase two). This study analyzed HCP experiences during training and implementation and identified barriers and facilitators. In-depth interviews and focus discussion groups were conducted 30 days after each training for a purposive random sample of 115 HCPs. Thematic analysis was employed using MAXQDA software, analyzing data through inductive and deductive coding. Analysis showed that following the initial training for higher-level facilities, some HCPs did not feel confident performing quantitative G6PD testing and prescribing the tafenoquine regimen. Modifications to the training in phase two resulted in an improvement in understanding the implementation process of the G6PD test and tafenoquine, as well as in the knowledge acquired by HCPs. Additionally, knowledge gaps were addressed through in situ training, peer communication via a messaging app, and educational materials. Training supported effective deployment of the new tools in Manaus and Porto Velho and increased awareness of the need for pharmacovigilance. A training approach for nationwide implementation of these tools was devised. Implementing quantitative G6PD testing and tafenoquine represents a significant shift in P. vivax malaria case management. Consistent engagement with HCPs is needed to overcome challenges in fully integrating these tools within the Brazilian health system.


Assuntos
Aminoquinolinas , Antimaláricos , Deficiência de Glucosefosfato Desidrogenase , Pessoal de Saúde , Malária Vivax , Humanos , Brasil , Malária Vivax/tratamento farmacológico , Malária Vivax/prevenção & controle , Antimaláricos/uso terapêutico , Aminoquinolinas/uso terapêutico , Deficiência de Glucosefosfato Desidrogenase/diagnóstico , Pessoal de Saúde/educação , Feminino , Glucosefosfato Desidrogenase , Masculino , Plasmodium vivax/efeitos dos fármacos , Adulto
9.
J Antimicrob Chemother ; 79(8): 1985-1989, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38870082

RESUMO

OBJECTIVES: Primaquine is essential for the radical cure of Plasmodium vivax malaria and must be metabolized into its bioactive metabolites. Accordingly, polymorphisms in primaquine-metabolizing enzymes can impact the treatment efficacy. This pioneering study explores the influence of monoamine oxidase-A (MAO-A) on primaquine metabolism and its impact on malaria relapses. METHODS: Samples from 205 patients with P. vivax malaria were retrospectively analysed by genotyping polymorphisms in MAO-A and cytochrome P450 2D6 (CYP2D6) genes. We measured the primaquine and carboxyprimaquine blood levels in 100 subjects for whom blood samples were available on the third day of treatment. We also examined the relationship between the enzyme variants and P. vivax malaria relapses in a group of subjects with well-documented relapses. RESULTS: The median carboxyprimaquine level was significantly reduced in individuals carrying low-expression MAO-A alleles plus impaired CYP2D6. In addition, this group experienced significantly more P. vivax relapses. The low-expression MAO-A status was not associated with malaria relapses when CYP2D6 had normal activity. This suggests that the putative carboxyprimaquine contribution is irrelevant when the CYP2D6 pathway is fully active. CONCLUSIONS: We found evidence that the low-expression MAO-A variants can potentiate the negative impact of impaired CYP2D6 activity, resulting in lower levels of carboxyprimaquine metabolite and multiple relapses. The findings support the hypothesis that carboxyprimaquine may be further metabolized through CYP-mediated pathways generating bioactive metabolites that act against the parasite.


Assuntos
Antimaláricos , Citocromo P-450 CYP2D6 , Malária Vivax , Monoaminoxidase , Primaquina , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Antimaláricos/uso terapêutico , Citocromo P-450 CYP2D6/genética , Citocromo P-450 CYP2D6/metabolismo , Genótipo , Malária Vivax/tratamento farmacológico , Malária Vivax/genética , Monoaminoxidase/genética , Plasmodium vivax/genética , Polimorfismo Genético , Primaquina/uso terapêutico , Recidiva , Estudos Retrospectivos
10.
Malar J ; 23(1): 140, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38725027

RESUMO

BACKGROUND: Plasmodium vivax relapses due to dormant liver hypnozoites can be prevented with primaquine. However, the dose must be adjusted in individuals with glucose-6-phosphate-dehydrogenase (G6PD) deficiency. In French Guiana, assessment of G6PD activity is typically delayed until day (D)14 to avoid the risk if misclassification. This study assessed the kinetics of G6PD activity throughout P. vivax infection to inform the timing of treatment. METHODS: For this retrospective monocentric study, data on G6PD activity between D1 and D28 after treatment initiation with chloroquine or artemisinin-based combination therapy were collected for patients followed at Cayenne Hospital, French Guiana, between January 2018 and December 2020. Patients were divided into three groups based on the number of available G6PD activity assessments: (i) at least two measurements during the P. vivax malaria infection; (ii) two measurements: one during the current infection and one previously; (iii) only one measurement during the malaria infection. RESULTS: In total, 210 patients were included (80, 20 and 110 in groups 1, 2 and 3, respectively). Data from group 1 showed that G6PD activity remained stable in each patient over time (D1, D3, D7, D14, D21, D28). None of the patients with normal G6PD activity during the initial phase (D1-D3) of the malaria episode (n = 44) was categorized as G6PD-deficient at D14. Patients with G6PD activity < 80% at D1 or D3 showed normal activity at D14. Sex and reticulocyte count were statistically associated with G6PD activity variation. In the whole sample (n = 210), no patient had severe G6PD deficiency (< 10%) and only three between 10 and 30%, giving a G6PD deficiency prevalence of 1.4%. Among the 100 patients from group 1 and 2, 30 patients (26.5%) were lost to follow-up before primaquine initiation. CONCLUSIONS: In patients treated for P. vivax infection, G6PD activity did not vary over time. Therefore, G6PD activity on D1 instead of D14 could be used for primaquine dose-adjustment. This could allow earlier radical treatment with primaquine, that could have a public health impact by decreasing early recurrences and patients lost to follow-up before primaquine initiation. This hypothesis needs to be confirmed in larger prospective studies.


Assuntos
Antimaláricos , Glucosefosfato Desidrogenase , Malária Vivax , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem , Antimaláricos/uso terapêutico , Artemisininas/uso terapêutico , Cloroquina/uso terapêutico , Guiana Francesa/epidemiologia , Glucosefosfato Desidrogenase/metabolismo , Deficiência de Glucosefosfato Desidrogenase/epidemiologia , Deficiência de Glucosefosfato Desidrogenase/complicações , Cinética , Malária Vivax/tratamento farmacológico , Plasmodium vivax/efeitos dos fármacos , Plasmodium vivax/fisiologia , Primaquina/uso terapêutico , Estudos Retrospectivos , Idoso de 80 Anos ou mais
11.
Malar J ; 23(1): 145, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38741094

RESUMO

A single 300 mg dose of tafenoquine (an 8-aminoquinoline), in combination with a standard 3-day course of chloroquine, is approved in several countries for the radical cure (prevention of relapse) of Plasmodium vivax malaria in patients aged ≥ 16 years. Despite this, questions have arisen on the optimal dose of tafenoquine. Before the availability of tafenoquine, a 3-day course of chloroquine in combination with the 8-aminoquinoline primaquine was the only effective radical cure for vivax malaria. The World Health Organization (WHO)-recommended standard regimen is 14 days of primaquine 0.25 mg/kg/day or 7 days of primaquine 0.5 mg/kg/day in most regions, or 14 days of primaquine 0.5 mg/kg/day in East Asia and Oceania, however the long treatment courses of 7 or 14 days may result in poor adherence and, therefore, low treatment efficacy. A single dose of tafenoquine 300 mg in combination with a 3-day course of chloroquine is an important advancement for the radical cure of vivax malaria in patients without glucose-6-phosphate dehydrogenase (G6PD) deficiency, as the use of a single-dose treatment will improve adherence. Selection of a single 300 mg dose of tafenoquine for the radical cure of P. vivax malaria was based on collective efficacy and safety data from 33 studies involving more than 4000 trial participants who received tafenoquine, including over 800 subjects who received the 300 mg single dose. The safety profile of single-dose tafenoquine 300 mg is similar to that of standard-dosage primaquine 0.25 mg/kg/day for 14 days. Both primaquine and tafenoquine can cause acute haemolytic anaemia in individuals with G6PD deficiency; severe haemolysis can lead to anaemia, kidney damage, and, in some cases, death. Therefore, relapse prevention using an 8-aminoquinoline must be balanced with the need to avoid clinical haemolysis associated with G6PD deficiency. To minimize this risk, the WHO recommends G6PD testing for all individuals before the administration of curative doses of 8-aminoquinolines. In this article, the authors review key efficacy and safety data from the pivotal trials of tafenoquine and argue that the currently approved dose represents a favourable benefit-risk profile.


Assuntos
Aminoquinolinas , Antimaláricos , Malária Vivax , Malária Vivax/tratamento farmacológico , Aminoquinolinas/administração & dosagem , Aminoquinolinas/efeitos adversos , Aminoquinolinas/uso terapêutico , Humanos , Antimaláricos/uso terapêutico , Antimaláricos/administração & dosagem , Antimaláricos/efeitos adversos , Primaquina/administração & dosagem , Primaquina/uso terapêutico , Primaquina/efeitos adversos , Medição de Risco , Resultado do Tratamento , Quimioterapia Combinada , Plasmodium vivax/efeitos dos fármacos , Cloroquina/uso terapêutico , Cloroquina/efeitos adversos , Cloroquina/administração & dosagem
13.
Antimicrob Agents Chemother ; 68(5): e0028024, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38587391

RESUMO

Testing Plasmodium vivax antimicrobial sensitivity is limited to ex vivo schizont maturation assays, which preclude determining the IC50s of delayed action antimalarials such as doxycycline. Using Plasmodium cynomolgi as a model for P. vivax, we determined the physiologically significant delayed death effect induced by doxycycline [IC50(96 h), 1,401 ± 607 nM]. As expected, IC50(96 h) to chloroquine (20.4 nM), piperaquine (12.6 µM), and tafenoquine (1,424 nM) were not affected by extended exposure.


Assuntos
Aminoquinolinas , Antimaláricos , Doxiciclina , Piperazinas , Plasmodium cynomolgi , Plasmodium vivax , Doxiciclina/farmacologia , Antimaláricos/farmacologia , Aminoquinolinas/farmacologia , Plasmodium vivax/efeitos dos fármacos , Plasmodium cynomolgi/efeitos dos fármacos , Cloroquina/farmacologia , Animais , Malária Vivax/tratamento farmacológico , Malária Vivax/parasitologia , Quinolinas/farmacologia , Concentração Inibidora 50 , Humanos , Testes de Sensibilidade Parasitária
14.
Antimicrob Agents Chemother ; 68(5): e0009324, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38597636

RESUMO

Capillary samples offer practical benefits compared with venous samples for the measurement of drug concentrations, but the relationship between the two measures varies between different drugs. We measured the concentrations of lumefantrine, mefloquine, piperaquine in 270 pairs of venous plasma and concurrent capillary plasma samples collected from 270 pregnant women with uncomplicated falciparum or vivax malaria. The median and range of venous plasma concentrations included in this study were 447.5 ng/mL (8.81-3,370) for lumefantrine (day 7, n = 76, median total dose received 96.0 mg/kg), 17.9 ng/mL (1.72-181) for desbutyl-lumefantrine, 1,885 ng/mL (762-4,830) for mefloquine (days 3-21, n = 90, median total dose 24.9 mg/kg), 641 ng/mL (79.9-1,950) for carboxy-mefloquine, and 51.8 ng/mL (3.57-851) for piperaquine (days 3-21, n = 89, median total dose 52.2 mg/kg). Although venous and capillary plasma concentrations showed a high correlation (Pearson's correlation coefficient: 0.90-0.99) for all antimalarials and their primary metabolites, they were not directly interchangeable. Using the concurrent capillary plasma concentrations and other variables, the proportions of venous plasma samples predicted within a ±10% precision range was 34% (26/76) for lumefantrine, 36% (32/89) for desbutyl-lumefantrine, 74% (67/90) for mefloquine, 82% (74/90) for carboxy-mefloquine, and 24% (21/89) for piperaquine. Venous plasma concentrations of mefloquine, but not lumefantrine and piperaquine, could be predicted by capillary plasma samples with an acceptable level of agreement. Capillary plasma samples can be utilized for pharmacokinetic and clinical studies, but caution surrounding cut-off values is required at the individual level.CLINICAL TRIALSThis study is registered with ClinicalTrials.gov as NCT01054248.


Assuntos
Antimaláricos , Lumefantrina , Malária Falciparum , Malária Vivax , Mefloquina , Piperazinas , Quinolinas , Humanos , Feminino , Mefloquina/sangue , Mefloquina/uso terapêutico , Mefloquina/farmacocinética , Antimaláricos/sangue , Antimaláricos/uso terapêutico , Antimaláricos/farmacocinética , Gravidez , Quinolinas/sangue , Quinolinas/farmacocinética , Quinolinas/uso terapêutico , Lumefantrina/uso terapêutico , Lumefantrina/sangue , Malária Falciparum/tratamento farmacológico , Malária Falciparum/sangue , Adulto , Malária Vivax/tratamento farmacológico , Malária Vivax/sangue , Adulto Jovem , Etanolaminas/sangue , Etanolaminas/farmacocinética , Etanolaminas/uso terapêutico , Fluorenos/sangue , Fluorenos/uso terapêutico , Fluorenos/farmacocinética , Adolescente
15.
Sci Adv ; 10(16): eadk4492, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38640243

RESUMO

Approximately 3.3 billion people live with the threat of Plasmodium vivax malaria. Infection can result in liver-localized hypnozoites, which when reactivated cause relapsing malaria. This work demonstrates that an enzyme-cleavable polymeric prodrug of tafenoquine addresses key requirements for a mass administration, eradication campaign: excellent subcutaneous bioavailability, complete parasite control after a single dose, improved therapeutic window compared to the parent oral drug, and low cost of goods sold (COGS) at less than $1.50 per dose. Liver targeting and subcutaneous dosing resulted in improved liver:plasma exposure profiles, with increased efficacy and reduced glucose 6-phosphate dehydrogenase-dependent hemotoxicity in validated preclinical models. A COGS and manufacturability analysis demonstrated global scalability, affordability, and the ability to redesign this fully synthetic polymeric prodrug specifically to increase global equity and access. Together, this polymer prodrug platform is a candidate for evaluation in human patients and shows potential for P. vivax eradication campaigns.


Assuntos
Antimaláricos , Malária Vivax , Malária , Humanos , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Aminoquinolinas/efeitos adversos , Malária/tratamento farmacológico , Malária Vivax/tratamento farmacológico , Malária Vivax/induzido quimicamente , Fígado
17.
Lancet Infect Dis ; 24(6): 629-638, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38452779

RESUMO

BACKGROUND: Prevention of Plasmodium vivax malaria recurrence is essential for malaria elimination in Brazil. We evaluated the real-world effectiveness of an updated treatment algorithm for P vivax radical cure in the Brazilian Amazon. METHODS: In this non-interventional observational study, we used retrospective data from the implementation of a P vivax treatment algorithm at 43 health facilities in Manaus and Porto Velho, Brazil. The treatment algorithm consisted of chloroquine (25 mg/kg over 3 days) and point-of-care quantitative glucose-6-phosphate dehydrogenase (G6PD) testing followed by single-dose tafenoquine 300 mg (G6PD normal, aged ≥16 years, not pregnant and not breastfeeding), 7-day primaquine 0·5 mg/kg per day (G6PD intermediate or normal, aged ≥6 months, not pregnant, and not breastfeeding or breastfeeding for >1 month), or primaquine 0·75 mg/kg per week for 8 weeks (G6PD deficient, aged ≥6 months, not pregnant, and not breastfeeding or breastfeeding for >1 month). P vivax recurrences were identified from probabilistic linkage of routine patient records from the Brazilian malaria epidemiological surveillance system. Recurrence-free effectiveness at day 90 and day 180 was estimated using Kaplan-Meier analysis and hazard ratios (HRs) by multivariate analysis. This clinical trial is registered with ClinicalTrials.gov, NCT05096702, and is completed. FINDINGS: Records from Sept 9, 2021, to Aug 31, 2022, included 5554 patients with P vivax malaria. In all treated patients of any age and any G6PD status, recurrence-free effectiveness at day 180 was 75·8% (95% CI 74·0-77·6) with tafenoquine, 73·4% (71·9-75·0) with 7-day primaquine, and 82·1% (77·7-86·8) with weekly primaquine. In patients aged at least 16 years who were G6PD normal, recurrence-free effectiveness until day 90 was 88·6% (95% CI 87·2-89·9) in those who were treated with tafenoquine (n=2134) and 83·5% (79·8-87·4) in those treated with 7-day primaquine (n=370); after adjustment for confounding factors, the HR for recurrence following tafenoquine versus 7-day primaquine was 0·65 (95% CI 0·49-0·86; p=0·0031), with similar outcomes between the two treatments at day 180 (log-rank p=0·82). Over 180 days, median time to recurrence in patients aged at least 16 years who were G6PD normal was 92 days (IQR 76-120) in those treated with tafenoquine and 68 days (52-94) in those treated with 7-day primaquine. INTERPRETATION: In this real-world setting, single-dose tafenoquine was more effective at preventing P vivax recurrence in patients aged at least 16 years who were G6PD normal compared with 7-day primaquine at day 90, while overall efficacy at 180 days was similar. The public health benefits of the P vivax radical cure treatment algorithm incorporating G6PD quantitative testing and tafenoquine support its implementation in Brazil and potentially across South America. FUNDING: Brazilian Ministry of Health, Municipal and State Health Secretariats; Fiocruz; Medicines for Malaria Venture; Bill & Melinda Gates Foundation; Newcrest Mining; and the UK Government. TRANSLATION: For the Portuguese translation of the abstract see Supplementary Materials section.


Assuntos
Aminoquinolinas , Antimaláricos , Malária Vivax , Plasmodium vivax , Primaquina , Humanos , Malária Vivax/tratamento farmacológico , Malária Vivax/prevenção & controle , Primaquina/uso terapêutico , Primaquina/administração & dosagem , Estudos Retrospectivos , Antimaláricos/uso terapêutico , Antimaláricos/administração & dosagem , Feminino , Masculino , Adulto , Brasil/epidemiologia , Aminoquinolinas/uso terapêutico , Aminoquinolinas/administração & dosagem , Adolescente , Criança , Adulto Jovem , Pessoa de Meia-Idade , Plasmodium vivax/efeitos dos fármacos , Pré-Escolar , Lactente , Prevenção Secundária/métodos , Cloroquina/uso terapêutico , Cloroquina/administração & dosagem , Recidiva , Resultado do Tratamento , Idoso
18.
Int J Antimicrob Agents ; 63(5): 107112, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38367843

RESUMO

The control and elimination of malaria caused by Plasmodium vivax is hampered by the threat of relapsed infection resulting from the activation of dormant hepatic hypnozoites. Currently, only the 8-aminoquinolines, primaquine and tafenoquine, have been approved for the elimination of hypnozoites, although their use is hampered by potential toxicity. Therefore, an alternative radical curative drug that safely eliminates hypnozoites is a pressing need. This study assessed the potential hypnozoiticidal activity of the antibiotic azithromycin, which is thought to exert antimalarial activity by inhibiting prokaryote-like ribosomal translation within the apicoplast, an indispensable organelle. The results show that azithromycin inhibited apicoplast development during liver-stage schizogony in P. vivax and Plasmodium cynomolgi, leading to impaired parasite maturation. More importantly, this study found that azithromycin is likely to impair the hypnozoite's apicoplast, resulting in the loss of this organelle. Subsequently, using a recently developed long-term hepatocyte culture system, this study found that this loss likely induces a delay in the hypnozoite activation rate, and that those parasites that do proceed to schizogony display liver-stage arrest prior to differentiating into hepatic merozoites, thus potentially preventing relapse. Overall, this work provides evidence for the potential use of azithromycin for the radical cure of relapsing malaria, and identifies apicoplast functions as potential drug targets in quiescent hypnozoites.


Assuntos
Antimaláricos , Apicoplastos , Azitromicina , Fígado , Plasmodium cynomolgi , Plasmodium vivax , Azitromicina/farmacologia , Plasmodium vivax/efeitos dos fármacos , Plasmodium cynomolgi/efeitos dos fármacos , Antimaláricos/farmacologia , Fígado/parasitologia , Fígado/efeitos dos fármacos , Apicoplastos/efeitos dos fármacos , Animais , Hepatócitos/parasitologia , Hepatócitos/efeitos dos fármacos , Humanos , Biogênese de Organelas , Malária Vivax/parasitologia , Malária Vivax/tratamento farmacológico , Camundongos , Malária/parasitologia , Malária/tratamento farmacológico
19.
Malar J ; 23(1): 56, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38395925

RESUMO

BACKGROUND: Cambodia aims to eliminate all forms of malaria by 2025. In 2020, 90% of all malaria cases were Plasmodium vivax. Thus, preventing P. vivax and relapse malaria is a top priority for elimination. 14-day primaquine, a World Health Organization-recommended radical cure treatment regimen, specifically targets dormant hypnozoites in the liver to prevent relapse. Cambodia introduced P. vivax radical cure with primaquine after glucose-6-phosphate dehydrogenase (G6PD) qualitative testing in 2019. This paper presents Cambodia's radical cure Phase I implementation results and assesses the safety, effectiveness, and feasibility of the programme prior to nationwide scale up. METHODS: Phase I implementation was carried out in 88 select health facilities (HFs) across four provinces. Males over 20kgs with confirmed P. vivax or mixed (P. vivax and Plasmodium falciparum) infections were enrolled. A descriptive analysis evaluated the following: successful referral to health facilities, G6PD testing results, and self-reported 14-day treatment adherence. P. vivax incidence was compared before and after radical cure rollout and a controlled interrupted time series analysis compared the estimated relapse rate between implementation and non-implementation provinces before and after radical cure. RESULTS: In the 4 provinces from November 2019 to December 2020, 3,239 P. vivax/mixed infections were reported, 1,282 patients underwent G6PD deficiency testing, and 959 patients received radical cure, achieving 29.6% radical cure coverage among all P. vivax/mixed cases and 98.8% coverage among G6PD normal patients. Among those who initiated radical cure, 747 patients (78%) completed treatment. Six patients reported side effects. In implementation provinces, an average 31.8 relapse cases per month were estimated signaling a 90% (286 cases) reduction in relapse compared to what would be expected if radical cure was not implemented. CONCLUSIONS: Plasmodium vivax radical cure is a crucial tool for malaria elimination in Cambodia. The high coverage of radical cure initiation and adherence among G6PD normal patients demonstrated the high feasibility of providing radical cure at point of care in Cambodia. Incomplete referral from community to HFs and limited capacity of HF staff to conduct G6PD testing in high burden areas led to lower coverage of G6PD testing. Phase I implementation informed approaches to improve referral completion and patient adherence during the nationwide expansion of radical cure in 2021.


Assuntos
Antimaláricos , Deficiência de Glucosefosfato Desidrogenase , Malária Vivax , Malária , Masculino , Humanos , Malária Vivax/tratamento farmacológico , Malária Vivax/epidemiologia , Malária Vivax/prevenção & controle , Primaquina/uso terapêutico , Antimaláricos/uso terapêutico , Glucosefosfato Desidrogenase , Camboja/epidemiologia , Malária/tratamento farmacológico , Plasmodium vivax , Deficiência de Glucosefosfato Desidrogenase/epidemiologia , Deficiência de Glucosefosfato Desidrogenase/tratamento farmacológico , Recidiva
20.
Antimicrob Agents Chemother ; 68(4): e0120423, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38411047

RESUMO

Primaquine (PQ) is the main drug used to eliminate dormant liver stages and prevent relapses in Plasmodium vivax malaria. It also has an effect on the gametocytes of Plasmodium falciparum; however, it is unclear to what extent PQ affects P. vivax gametocytes. PQ metabolism involves multiple enzymes, including the highly polymorphic CYP2D6 and the cytochrome P450 reductase (CPR). Since genetic variability can impact drug metabolism, we conducted an evaluation of the effect of CYP2D6 and CPR variants on PQ gametocytocidal activity in 100 subjects with P. vivax malaria. To determine gametocyte density, we measured the levels of pvs25 transcripts in samples taken before treatment (D0) and 72 hours after treatment (D3). Generalized estimating equations (GEEs) were used to examine the effects of enzyme variants on gametocyte densities, adjusting for potential confounding factors. Linear regression models were adjusted to explore the predictors of PQ blood levels measured on D3. Individuals with the CPR mutation showed a smaller decrease in gametocyte transcript levels on D3 compared to those without the mutation (P = 0.02, by GEE). Consistent with this, higher PQ blood levels on D3 were associated with a lower reduction in pvs25 transcripts. Based on our findings, the CPR variant plays a role in the persistence of gametocyte density in P. vivax malaria. Conceptually, our work points to pharmacogenetics as a non-negligible factor to define potential host reservoirs with the propensity to contribute to transmission in the first days of CQ-PQ treatment, particularly in settings and seasons of high Anopheles human-biting rates.


Assuntos
Antimaláricos , Artemisininas , Malária Falciparum , Malária Vivax , Malária , Humanos , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Malária Vivax/tratamento farmacológico , Malária Falciparum/tratamento farmacológico , NADPH-Ferri-Hemoproteína Redutase , Cloroquina/farmacologia , Citocromo P-450 CYP2D6/genética , Artemisininas/farmacologia , Primaquina/farmacologia , Primaquina/uso terapêutico , Malária/tratamento farmacológico , Plasmodium falciparum , Plasmodium vivax/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...