Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 275
Filtrar
1.
Sci Rep ; 14(1): 14726, 2024 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926524

RESUMO

Zoonotic yeast species have been implicated in disease development in both humans and cats. This study analyzed the yeast mycobiota present in feline facial hair and human nails and explored potential interspecies associations. A total of 118 biological specimens were examined, including 59 feline facial hair and 59 human nail samples. DNA extraction and DNA sequencing were performed to identify the specific yeast species. The most predominant yeast species in humans and cats were selected for antifungal susceptibility testing (itraconazole, ketoconazole, miconazole, and terbinafine). The findings unveiled diverse yeast species in cats and humans. Malassezia pachydermatis (45.8%) and Malassezia furfur (30.5%) were the most common yeast species in cats and humans, respectively. However, no significant correlation was detected between the yeast species identified in cats and their owners residing in the same household (p > 0.05). Miconazole exhibited the highest minimum inhibitory concentrations (MICs) against Malassezia pachydermatis and Malassezia furfur in both cat and human isolates, whereas terbinafine showed the lowest MICs against most Malassezia pachydermatis and Malassezia furfur in both cat and human isolates. Diverse yeast species in cat facial hair and human nails suggest possible cross-contamination among humans, pets, and environments.


Assuntos
Antifúngicos , Testes de Sensibilidade Microbiana , Unhas , Gatos , Humanos , Antifúngicos/farmacologia , Animais , Unhas/microbiologia , Malassezia/efeitos dos fármacos , Malassezia/genética , Malassezia/isolamento & purificação , Cabelo/microbiologia , Leveduras/efeitos dos fármacos , Leveduras/isolamento & purificação , Leveduras/genética , Terbinafina/farmacologia , Miconazol/farmacologia , Masculino , Pelo Animal/microbiologia , Feminino
2.
BMC Infect Dis ; 24(1): 643, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926679

RESUMO

BACKGROUND: Malassezia restricta, a lipophilic and lipodependent yeast belonging to the basidiomycetes group, is an opportunistic fungal pathogen associated with various skin diseases, including seborrheic dermatitis and dandruff. Typically, Malassezia infection in neonates manifests as fungemia or hematogenous dissemination to the bone or lungs. However, vertebral osteomyelitis caused by these fungi is rarely reported owing to non-specific clinical presentations and laboratory/imaging findings. The Pathogen Metagenomics Sequencing (PMseq) technique enables direct high-throughput sequencing of infected specimens, facilitating the rapid and accurate detection of all microorganisms in clinical samples through comprehensive reports. CASE PRESENTATION: A 52-year-old male was admitted to our hospital on July 20, 2022 with a 3-month history of ambulatory difficulties and localized low back pain. Magnetic Resonance Imaging (MRI) examination of the spinal column revealed irregular bone destruction affecting the L2, L3, and L5 vertebral bodies. Additionally, low T1 and high T2 intensity lesions were observed at the intervertebral discs between L3 and L5. The presumptive diagnosis of tuberculous spondylitis was made based on the imaging findings, despite negative results in all mycobacterium tests. However, the patient exhibited no improvement after receiving regular anti-tuberculosis treatment for 3 months. Subsequent MRI revealed an expansive abnormal signal within the vertebral body, leading to progressive bone destruction. The absence of spinal tuberculosis or other infective microorganisms was confirmed through culture from blood and pathological tissue from the L4 vertebral body. Subsequently, PMseq was performed on the specimens, revealing M. restricta as the predominant pathogen with the highest relative abundance value. The pathological examination revealed the presence of fungal mycelium in the L4 vertebral body, with positive findings on periodic Schiff-methenamine and periodic acid-Schiff staining. The anti-tuberculosis treatment was discontinued, and an antifungal combination of fluconazole and voriconazole was administered. All symptoms were resolved after 7 consecutive months of treatment, and the patient was able to ambulate autonomously. Vertebral lesions were reduced on MRI during the 13-month follow-up. CONCLUSIONS: M. restricta is not a commonly recognized pathogen associated with infectious vertebral osteomyelitis. However, PMseq can aid in diagnosis, timely treatment, and decision making for some non-specific infectious diseases.


Assuntos
Malassezia , Metagenômica , Osteomielite , Humanos , Masculino , Osteomielite/microbiologia , Osteomielite/diagnóstico , Osteomielite/tratamento farmacológico , Pessoa de Meia-Idade , Malassezia/genética , Malassezia/isolamento & purificação , Imageamento por Ressonância Magnética , Antifúngicos/uso terapêutico , Sequenciamento de Nucleotídeos em Larga Escala
3.
Med Mycol ; 62(5)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38734886

RESUMO

Despite previous reports on the emergence of Malassezia pachydermatis strains with decreased susceptibility to azoles, there is limited information on the actual prevalence and genetic diversity of azole-resistant isolates of this yeast species. We assessed the prevalence of azole resistance in M. pachydermatis isolates from cases of dog otitis or skin disease attended in a veterinary teaching hospital during a 2-year period and analyzed the ERG11 (encoding a lanosterol 14-α demethylase, the primary target of azoles) and whole genome sequence diversity of a group of isolates that displayed reduced azole susceptibility. Susceptibility testing of 89 M. pachydermatis isolates from 54 clinical episodes (1-6 isolates/episode) revealed low minimum inhibitory concentrations (MICs) to most azoles and other antifungals, but 11 isolates from six different episodes (i.e., 12.4% of isolates and 11.1% of episodes) had decreased susceptibility to multiple azoles (fluconazole, itraconazole, ketoconazole, posaconazole, ravuconazole, and/or voriconazole). ERG11 sequencing of these 11 azole-resistant isolates identified eight DNA sequence profiles, most of which contained amino acid substitutions also found in some azole-susceptible isolates. Analysis of whole genome sequencing (WGS) results revealed that the azole-resistant isolates from the same episode of otitis, or even different episodes affecting the same animal, were more genetically related to each other than to isolates from other dogs. In conclusion, our results confirmed the remarkable ERG11 sequence variability in M. pachydermatis isolates of animal origin observed in previous studies and demonstrated the value of WGS for disentangling the epidemiology of this yeast species.


We analyzed the prevalence and diversity of azole-resistant Malassezia pachydermatis isolates in a veterinary hospital. A low prevalence of multi-azole resistance (c.10% of isolates and cases) was found. Whole genome and ERG11 sequencing of resistant isolates revealed remarkable genetic diversity.


Assuntos
Antifúngicos , Azóis , Doenças do Cão , Farmacorresistência Fúngica , Variação Genética , Malassezia , Testes de Sensibilidade Microbiana , Cães , Animais , Malassezia/genética , Malassezia/efeitos dos fármacos , Malassezia/isolamento & purificação , Malassezia/classificação , Azóis/farmacologia , Doenças do Cão/microbiologia , Doenças do Cão/epidemiologia , Antifúngicos/farmacologia , Prevalência , Otite/microbiologia , Otite/epidemiologia , Otite/veterinária , Dermatite/microbiologia , Dermatite/veterinária , Dermatite/epidemiologia , Dermatomicoses/microbiologia , Dermatomicoses/veterinária , Dermatomicoses/epidemiologia , Sequenciamento Completo do Genoma , Esterol 14-Desmetilase/genética
4.
Med Mycol ; 62(5)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38684473

RESUMO

Malassezia yeasts belong to the normal skin microbiota of a wide range of warm-blooded animals. However, their significance in cattle is still poorly understood. In the present study, the mycobiota of the external ear canal of 20 healthy dairy Holstein cows was assessed by cytology, culture, PCR, and next-generation sequencing. The presence of Malassezia was detected in 15 cows by cytology and PCR. The metagenomic analysis revealed that Ascomycota was the predominant phylum but M. pachydermatis the main species. The Malassezia phylotype 131 was detected in low abundance. Nor M. nana nor M. equina were detected in the samples.


The mycobiota of the external ear canal of healthy cows was assessed by cytology, culture, PCR, and NGS. The presence of Malassezia was detected by cytology and PCR. Ascomycota was the main phylum and M. pachydermatis the main species. The Malassezia phylotype 131 was also detected in the samples.


Assuntos
Meato Acústico Externo , Malassezia , Micobioma , Animais , Bovinos , Meato Acústico Externo/microbiologia , Malassezia/isolamento & purificação , Malassezia/classificação , Malassezia/genética , Sequenciamento de Nucleotídeos em Larga Escala , Feminino , Metagenômica , Reação em Cadeia da Polimerase
5.
Biochimie ; 216: 181-193, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37748748

RESUMO

Malassezia globosa is abundant and prevalent on sebaceous areas of the human skin. Genome annotation reveals that M. globosa possesses a repertoire of secreted hydrolytic enzymes relevant for lipid and protein metabolism. However, the functional significance of these enzymes is uncertain and presence of these genes in the genome does not always translate to expression at the cutaneous surface. In this study we utilized targeted RNA sequencing from samples isolated directly from the skin to quantify gene expression of M. globosa secreted proteases, lipases, phospholipases and sphingomyelinases. Our findings indicate that the expression of these enzymes is dynamically regulated by the environment in which the fungus resides, as different growth phases of the planktonic culture of M. globosa show distinct expression levels. Furthermore, we observed significant differences in the expression of these enzymes in culture compared to healthy sebaceous skin sites. By examining the in situ gene expression of M. globosa's secreted hydrolases, we identified a predicted aspartyl protease, MGL_3331, which is highly expressed on both healthy and disease-affected dermatological sites. However, molecular modeling and biochemical studies revealed that this protein has a non-canonical active site motif and lacks measurable proteolytic activity. This pseudoprotease MGL_3331 elicits a heightened IgE-reactivity in blood plasma isolated from patients with atopic dermatitis compared to healthy individuals and invokes a pro-inflammatory response in peripheral blood mononuclear cells. Overall, our study highlights the importance of studying fungal proteins expressed in physiologically relevant environments and underscores the notion that secreted inactive enzymes may have important functions in influencing host immunity.


Assuntos
Alérgenos , Malassezia , Humanos , Alérgenos/metabolismo , Malassezia/genética , Malassezia/metabolismo , Leucócitos Mononucleares/metabolismo , Pele/metabolismo , Lipase/metabolismo
6.
Artigo em Inglês | MEDLINE | ID: mdl-38155006

RESUMO

Malassezia is a lipid-dependent cutaneous symbiotic fungal genus associated with tinea versicolor. Here, we first present a rare case of a young tinea versicolor patient with oral manifestations presenting as white strips, patches, and pigmentation. The patient had a family history of tinea versicolor and a habit of frequent intake of cream. Histopathologic features and periodic acid-schiff staining of oral lesion indicated oral infection with round budding yeasts with short hyphae. Saliva metagenomic sequencing identified Malassezia and demonstrated the upregulated amount, diversity and activity of inflammatory bacteria. The clinical manifestations of oral Malassezia infection and changes in bacterial communities shed light on the pathogenic role of Malassezia in oral mucosa. In conclusion, we report the first oral Malassezia infection, which broadens the pathogenic cognitive scope of Malassezia and highlights the value of molecular techniques in the diagnostic process.


Assuntos
Malassezia , Tinha Versicolor , Humanos , Malassezia/genética , Tinha Versicolor/diagnóstico , Saliva , Mucosa Bucal
7.
Microbiol Spectr ; 11(6): e0043723, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37909790

RESUMO

IMPORTANCE: Evaluating bacterial-fungal interactions is important for understanding ecological functions in a natural habitat. Many studies have defined bacterial-fungal interactions according to changes in growth rates when co-cultivated. However, the current literature lacks detailed studies on phenotypic changes in single cells associated with transcriptomic profiles to understand the bacterial-fungal interactions. In our study, we measured the single-cell phenotypes of bacteria co-cultivated with fungi using Raman spectroscopy with its transcriptomic profiles and determined the consequence of these interactions in detail. This rapid and reliable phenotyping approach has the potential to provide new insights regarding bacterial-fungal interactions.


Assuntos
Malassezia , Malassezia/genética , Staphylococcus , Fenótipo , Bactérias/genética , Biomarcadores , Fungos/genética
8.
Expert Rev Anti Infect Ther ; 21(11): 1245-1257, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37883035

RESUMO

INTRODUCTION: Malassezia is a major component of the skin microbiome, a lipophilic symbiotic organism of the mammalian skin, which can switch to opportunistic pathogens triggering multiple dermatological disorders in humans and animals. This phenomenon is favored by endogenous and exogenous host predisposing factors, which may switch Malassezia from a commensal to a pathogenic phenotype. AREA COVERED: This review summarizes and discusses the most recent literature on the pathogenesis of Malassezia yeasts, which ultimately results in skin disorders with different clinical presentation. A literature search of Malassezia pathogenesis was performed via PubMed and Google scholar (up to May 2023), using the following keywords: Pathogenesis and Malassezia;host risk factors and Malassezia, Malassezia and skin disorders; Malassezia and virulence factors: Malassezia and metabolite production; Immunology and Malassezia. EXPERT OPINION: Malassezia yeasts can maintain skin homeostasis being part of the cutaneous mycobiota; however, when the environmental or host conditions change, these yeasts are endowed with a remarkable plasticity and adaptation by modifying their metabolism and thus contributing to the appearance or aggravation of human and animal skin disorders.


Assuntos
Malassezia , Dermatopatias Infecciosas , Animais , Humanos , Malassezia/genética , Malassezia/metabolismo , Pele , Fatores de Risco , Fenótipo , Mamíferos
9.
Proc Natl Acad Sci U S A ; 120(32): e2305094120, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37523560

RESUMO

Fungi in the basidiomycete genus Malassezia are the most prevalent eukaryotic microbes resident on the skin of human and other warm-blooded animals and have been implicated in skin diseases and systemic disorders. Analysis of Malassezia genomes revealed that key adaptations to the skin microenvironment have a direct genomic basis, and the identification of mating/meiotic genes suggests a capacity to reproduce sexually, even though no sexual cycle has yet been observed. In contrast to other bipolar or tetrapolar basidiomycetes that have either two linked mating-type-determining (MAT) loci or two MAT loci on separate chromosomes, in Malassezia species studied thus far the two MAT loci are arranged in a pseudobipolar configuration (linked on the same chromosome but capable of recombining). By generating additional chromosome-level genome assemblies, and an improved Malassezia phylogeny, we infer that the pseudobipolar arrangement was the ancestral state of this group and revealed six independent transitions to tetrapolarity, seemingly driven by centromere fission or translocations in centromere-flanking regions. Additionally, in an approach to uncover a sexual cycle, Malassezia furfur strains were engineered to express different MAT alleles in the same cell. The resulting strains produce hyphae reminiscent of early steps in sexual development and display upregulation of genes associated with sexual development as well as others encoding lipases and a protease potentially relevant for pathogenesis of the fungus. Our study reveals a previously unseen genomic relocation of mating-type loci in fungi and provides insight toward the identification of a sexual cycle in Malassezia, with possible implications for pathogenicity.


Assuntos
Basidiomycota , Malassezia , Humanos , Malassezia/genética , Evolução Molecular , Basidiomycota/fisiologia , Fungos/genética , Filogenia , Reprodução/genética , Genes Fúngicos Tipo Acasalamento/genética
10.
Viruses ; 15(6)2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37376667

RESUMO

Mycoviruses are viruses that selectively infect and multiply in fungal cells. Malassezia is the most abundant fungus on human skin and is associated with a variety of conditions, including atopic eczema, atopic dermatitis, dandruff, folliculitis, pityriasis versicolor, and seborrheic dermatitis. Here, we conducted mycovirome studies on 194 public transcriptomes of Malassezia (2,568,212,042 paired-end reads) screened against all available viral proteins. Transcriptomic data were assembled de novo resulting in 1,170,715 contigs and 2,995,306 open reading frames (ORFs) that were subsequently tracked for potential viral sequences. Eighty-eight virus-associated ORFs were detected in 68 contigs from 28 Sequence Read Archive (SRA) samples. Seventy-five and thirteen ORFs were retrieved from transcriptomes of Malassezia globosa and Malassezia restricta, respectively. Phylogenetic reconstructions revealed three new mycoviruses belonging to the Totivirus genus and named Malassezia globosa-associated-totivirus 1 (MgaTV1); Malassezia restricta-associated-totivirus 1 (MraTV1) and Malassezia restricta-associated-totivirus 2 (MraTV2). These viral candidates extend our understanding of the diversity and taxonomy of mycoviruses as well as their co-evolution with their fungal hosts. These results reflected the unexpected diversity of mycoviruses hidden in public databases. In conclusion, this study sheds light on the discovery of novel mycoviruses and opens the door to study their impact on disease caused by the host fungus Malassezia and globally, their implication in clinical skin disorders.


Assuntos
Dermatite Atópica , Micovírus , Malassezia , Totivirus , Humanos , Malassezia/genética , Micovírus/genética , Filogenia
11.
Sci Rep ; 13(1): 6308, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37072481

RESUMO

Mitogenomes are essential due to their contribution to cell respiration. Recently they have also been implicated in fungal pathogenicity mechanisms. Members of the basidiomycetous yeast genus Malassezia are an important fungal component of the human skin microbiome, linked to various skin diseases, bloodstream infections, and they are increasingly implicated in gut diseases and certain cancers. In this study, the comparative analysis of Malassezia mitogenomes contributed to phylogenetic tree construction for all species. The mitogenomes presented significant size and gene order diversity which correlates to their phylogeny. Most importantly, they showed the inclusion of large inverted repeats (LIRs) and G-quadruplex (G4) DNA elements, rendering Malassezia mitogenomes a valuable test case for elucidating the evolutionary mechanisms responsible for this genome diversity. Both LIRs and G4s coexist and convergently evolved to provide genome stability through recombination. This mechanism is common in chloroplasts but, hitherto, rarely found in mitogenomes.


Assuntos
Quadruplex G , Genoma Mitocondrial , Malassezia , Humanos , Malassezia/genética , Filogenia , Genoma Mitocondrial/genética , Mitocôndrias/genética , DNA
12.
J Vet Med Sci ; 85(3): 383-385, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36724970

RESUMO

Canine Malassezia dermatitis and otitis externa are generally treated by antifungal drugs. However, multi-drug-resistant strains of Malassezia pachydermatis have been reported worldwide. Given the presence of these multi-drug-resistant strains, it is unclear which antifungal agent is the most effective for canine Malassezia dermatitis and canine otitis. In this study, we attempted to determine the most effective drug against azole-resistant M. pachydermatis. Susceptibility to azoles and terbinafine (TBF) was assessed using a modified broth microdilution method. In all tested isolates, the minimum inhibitory concentration at 90% of organisms (MIC90) were 16 to >32 µg/mL for the azoles, and 2 µg/mL for TBF. All of the strains that showed low susceptibility to both itraconazole and miconazole were also relatively susceptible to TBF.


Assuntos
Dermatite , Doenças do Cão , Malassezia , Animais , Cães , Azóis/farmacologia , Azóis/uso terapêutico , Terbinafina/farmacologia , Terbinafina/uso terapêutico , Malassezia/genética , Japão , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Testes de Sensibilidade Microbiana/veterinária , Dermatite/tratamento farmacológico , Dermatite/veterinária , Doenças do Cão/tratamento farmacológico , Doenças do Cão/microbiologia
13.
J Microbiol Biotechnol ; 33(3): 319-328, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36697229

RESUMO

Malassezia and Staphylococcus are the most dominant genera in human skin microbiome. To explore the inter-kingdom interactions between the two genera, we examined the transcriptional changes in Malassezia and Staphylococcus species induced upon co-culturing. RNA-seq analyses revealed that genes encoding ribosomal proteins were upregulated, while those encoding aspartyl proteases were downregulated in M. restricta after co-culturing with Staphylococcus species. We identified MRET_3770 as a major secretory aspartyl protease coding gene in M. restricta through pepstatin-A affinity chromatography followed by mass spectrometry and found that the expression of MRET_3770 was significantly repressed upon co-culturing with Staphylococcus species or by incubation in media with reduced pH. Moreover, biofilm formation by Staphylococcus aureus was inhibited in the spent medium of M. restricta, suggesting that biomolecules secreted by M. restricta such as secretory aspartyl proteases may degrade the biofilm structure. We also examined the transcriptional changes in S. aureus co-cultured with M. restricta and found co-cultured S. aureus showed increased expression of genes encoding ribosomal proteins and downregulation of those involved in riboflavin metabolism. These transcriptome data of co-cultured fungal and bacterial species demonstrate a dynamic interplay between the two co-existing genera.


Assuntos
Ácido Aspártico Proteases , Malassezia , Humanos , Malassezia/genética , Staphylococcus , Staphylococcus aureus/genética , Pele/microbiologia , Ácido Aspártico Proteases/genética , Ácido Aspártico Endopeptidases , Proteínas Ribossômicas
14.
Vet Res Commun ; 47(2): 385-396, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35704160

RESUMO

The yeast Malassezia pachydermatis is a common inhabitant of the skin and mucosae of dogs. However, under certain circumstances this yeast can overgrow and act as an opportunistic pathogen causing otitis and dermatitis in dogs. Canine pododermatitis is a common disorder in dogs in which M. pachydermatis acts as an opportunistic pathogen. In the present study, the presence of Malassezia yeasts was assessed and quantified in samples collected from the interdigital space of dogs with pododermatitis before and after treatment, and from healthy dogs. The samples were subjected to two different cytological examinations, culture on Sabouraud glucose agar and modified Dixon's agar and a quantitative PCR targeting the internal transcribed spacer (ITS) genomic region. A selection of samples was analyzed by next generation sequencing (NGS) using the D1D2 domain of the large subunit of the ribosomal DNA as target. The pododermatitis samples before treatment showed higher cell counts, colony-forming units and ITS copies than the rest of samples. The NGS analysis revealed that Ascomycota was the main phylum in the healthy and post-treatment samples. However, Basidiomycota and M. pachydermatis was more abundant in the pododermatitis samples before treatment. These results support M. pachydermatis as an opportunistic agent in canine pododermatitis by a variety of methods, and demonstrate the correlation between cytologic and molecular methods for quantification.


Assuntos
Dermatite , Doenças do Cão , Malassezia , Animais , Cães , Malassezia/genética , Saccharomyces cerevisiae , Ágar , Dermatite/veterinária
15.
Mycopathologia ; 188(1-2): 21-34, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36495417

RESUMO

Malassezia pachydermatis is part of the normal skin microbiota of various animal species but under certain circumstances becomes an opportunistic pathogen producing otitis and dermatitis. Commonly these Malassezia diseases are effectively treated using azoles. However, some cases of treatment failure have been reported. Alterations in the ERG11 gene have been associated with in vitro azole resistance in M. pachydermatis. In the present study, in vitro antifungal susceptibility of 89 different strains of M. pachydermatis isolated from different animal species and health status was studied. The susceptibility to fluconazole (FLZ), itraconazole (ITZ), ketoconazole and amphotericin B was tested by a disk diffusion method and 17 strains were also subjected to an ITZ E-test. Mueller-Hinton supplemented with 2% glucose and methylene blue was used as culture medium in both susceptibility assays. Multilocus sequence typing was performed in 30 selected strains using D1D2, ITS, CHS2 and ß-tubulin genes. Also, ERG11 gene was sequenced. The four antifungals tested were highly effective against most of the strains. Only two strains showed no inhibition zone to antifungals and a strain showed an increased MIC to ITZ. The study of the ERG11 sequences revealed a high diversity of DNA sequences and a total of 23 amino acid substitutions, from which only two have been previously described. Also, three deleterious substitutions (A302T, G459D and G461D) previously associated with azole resistance in this yeast were recovered. A correlation between certain genotypes and ERG11 mutations was observed. Some of the ERG11 mutations recovered were correlated with a reduced susceptibility to azoles.


Assuntos
Antifúngicos , Malassezia , Animais , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Azóis/farmacologia , Malassezia/genética , Cetoconazol/farmacologia , Itraconazol/farmacologia , Testes de Sensibilidade Microbiana , Farmacorresistência Fúngica/genética
16.
Arch Dermatol Res ; 315(4): 895-902, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36394635

RESUMO

BACKGROUND: The human leukocyte antigen system (HLA) is divided into two classes involved in antigen presentation: class I presenting intracellular antigens and class II presenting extracellular antigens. While susceptibility to infections is correlated with the HLA system, data on associations between HLA genotypes and Malassezia-related skin diseases (MRSD) are lacking. Thus, the objective of this study was to investigate associations between HLA alleles and MRSD. MATERIALS AND METHODS: Participants in The Danish Blood Donor Study (2010-2018) provided questionnaire data on life style, anthropometric measures, and registry data on filled prescriptions. Genotyping was done using Illumina Infinium Global Screening Array, and HLA alleles were imputed using the HIBAG algorithm. Cases and controls were defined using filled prescriptions on topical ketoconazole 2% as a proxy of MRSD. Logistic regressions assessed associations between HLA alleles and MRSD adjusted for confounders and Bonferroni corrected for multiple tests. RESULTS: A total of 9455 participants were considered MRSD cases and 24,144 participants as controls. We identified four risk alleles B*57:01, OR 1.19 (95% CI: 1.09-1.31), C*01:02, OR 1.19 (95% CI: 1.08-1.32), C*06:02, OR 1.14 (95% CI: 1.08-1.22), and DRB1*01:01, OR 1.10 (95% CI: 1.04-1.17), and two protective alleles, DQB1*02:01, OR 0.89 (95% CI: 0.85-0.94), and DRB1*03:01, OR 0.89 (95% CI: 0.85-0.94). CONCLUSION: Five novel associations between HLA alleles and MRSD were identified in our cohort, and one previous association was confirmed. Future studies should assess the correlation between Malassezia antigens and antigen-binding properties of the associated HLA alleles.


Assuntos
Dermatomicoses , Antígenos HLA , Malassezia , Malassezia/genética , Dermatomicoses/sangue , Dermatomicoses/genética , Antígenos HLA/genética , Dermatopatias Genéticas , Estudos de Casos e Controles , Dinamarca , Estudos de Coortes , Genótipo , Alelos , Humanos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Doadores de Sangue
17.
Pol J Microbiol ; 71(4): 529-538, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36473111

RESUMO

Seventy-seven strains of Malassezia were included in this study. Biofilm and hydrolytic enzyme production were studied by using specific solid media. The Real-Time reverse transcriptase qPCR method was applied to determine the overexpression of genes encoding the extracellular enzymes. All included Malassezia species produced biofilms. No statistically significant difference was observed between Malassezia species in biofilm formation (p = 0.567). All Malassezia species produced lipase, and 95% of Malassezia globosa showed a strong enzymatic activity (Pz = 0.55 ± 0.02). A statistically significant difference was observed between the mean keratinase indices of Malassezia slooffiae and the other Malassezia species (p = 0.005). The overexpression of one or more genes was observed in 100% of strains isolated from patients with folliculitis, 87.5% - with pityriasis versicolor, and 57.14% of the control group isolates. A statistically significant difference in the lipase gene expression (p = 0.042) was between the strains from patients with folliculitis and the control group. This investigation provides more information about the frequency of the production of the major enzymes considered virulence factors of Malassezia species. Interestingly, the overexpression of one or more genes was observed in strains isolated from patients with Malassezia disorders.


Assuntos
Foliculite , Malassezia , Tinha Versicolor , Humanos , Malassezia/genética , Fatores de Virulência , Lipase/metabolismo
18.
Med Mycol ; 60(11)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36413464

RESUMO

Malassezia restricta is the most predominant fungus in the microbiome of human skin. This microorganism can cause or exacerbate Malassezia-associated skin dermatitis, seborrheic dermatitis, atopic dermatitis, and pityriasis versicolor. The virulence factors of M. restricta have not been analyzed because a gene recombination system has not been developed. In this study, we established an Agrobacterium tumefaciens-mediated gene transfer (ATMT) system, optimized for generating gene-deficient mutants of M. restricta. A mutant of FKB1 gene, which encodes the FKBP12 protein that binds to the calcineurin inhibitor tacrolimus, was generated using the ATMT system. Subsequently, the FKB1 gene was reintroduced into the FKB1 gene-deficient mutant for obtaining a gene-complemented strain. The wild-type strain of M. restricta was sensitive to tacrolimus, whereas the FKB1 gene-deficient mutant was resistant to tacrolimus; the phenotypic drug susceptibility in the mutant was restored by reintroducing the FKB1 gene. Contrastingly, the FKB1 gene-deficient mutant was not resistant to cyclosporine A, which also inhibits calcineurin by binding to cyclophilin A. The gene recombination system for M. restricta will facilitate in elucidating the molecular mechanisms causing Malassezia-associated dermatitis.


Assuntos
Dermatite Seborreica , Malassezia , Animais , Humanos , Malassezia/genética , Agrobacterium tumefaciens/genética , Tacrolimo , Fungos , Dermatite Seborreica/veterinária , Recombinação Genética
19.
Proc Natl Acad Sci U S A ; 119(49): e2212533119, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36442106

RESUMO

Malassezia form the dominant eukaryotic microbial community on the human skin. The Malassezia genus possesses a repertoire of secretory hydrolytic enzymes involved in protein and lipid metabolism which alter the external cutaneous environment. The exact role of most Malassezia secreted enzymes, including those in interaction with the epithelial surface, is not well characterized. In this study, we compared the expression level of secreted proteases, lipases, phospholipases, and sphingomyelinases of Malassezia globosa in healthy subjects and seborrheic dermatitis or atopic dermatitis patients. We observed upregulated gene expression of the previously characterized secretory aspartyl protease MGSAP1 in both diseased groups, in lesional and non-lesional skin sites, as compared to healthy subjects. To explore the functional roles of MGSAP1 in skin disease, we generated a knockout mutant of the homologous protease MFSAP1 in the genetically tractable Malassezia furfur. We observed the loss of MFSAP1 resulted in dramatic changes in the cell adhesion and dispersal in both culture and a human 3D reconstituted epidermis model. In a murine model of Malassezia colonization, we further demonstrated Mfsap1 contributes to inflammation as observed by reduced edema and inflammatory cell infiltration with the knockout mutant versus wildtype. Taken together, we show that this dominant secretory Malassezia aspartyl protease has an important role in enabling a planktonic cellular state that can potentially aid in colonization and additionally as a virulence factor in barrier-compromised skin, further highlighting the importance of considering the contextual relevance when evaluating the functions of secreted microbial enzymes.


Assuntos
Ácido Aspártico Proteases , Dermatite Atópica , Malassezia , Humanos , Animais , Camundongos , Peptídeo Hidrolases/genética , Malassezia/genética , Inflamação , Ácido Aspártico Endopeptidases
20.
Med Mycol J ; 63(4): 119-132, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36450564

RESUMO

This review describes the changes in yeast species names in the previous decade. Several yeast species have been reclassified to accommodate the "One fungus=One name" (1F=1N) principle of the Code. As the names of medically important yeasts have also been reviewed and revised, details of the genera Candida, Cryptococcus, Malassezia, and Trichosporon are described in Section 3, along with the history of name changes. Since the phylogenetic positions of Candida species in several clades have not been clarified, revision of this species has not been completed. Among the species that remain unrevised despite their importance in the medical field, we propose the transfer of six Candida species to be reclassified in the Nakaseomyces clade, including Nakaseomyces glabratus and Nakaseomyces nivalensis.


Assuntos
Cryptococcus , Malassezia , Trichosporon , Trichosporon/genética , Malassezia/genética , Cryptococcus/genética , Candida/genética , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...