Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.225
Filtrar
1.
Redox Biol ; 75: 103273, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39142180

RESUMO

Malic enzymes (MEs) are metabolic enzymes that catalyze the oxidation of malate to pyruvate and NAD(P)H. While researchers have well established the physiological metabolic roles of MEs in organisms, recent research has revealed a link between MEs and carcinogenesis. This review collates evidence of the molecular mechanisms by which MEs promote cancer occurrence, including transcriptional regulation, post-transcriptional regulation, post-translational protein modifications, and protein-protein interactions. Additionally, we highlight the roles of MEs in reprogramming energy metabolism, suppressing senescence, and modulating the tumor immune microenvironment. We also discuss the involvement of these enzymes in mediating tumor resistance and how the development of novel small-molecule inhibitors targeting MEs might be a good therapeutic approach. Insights through this review are expected to provide a comprehensive understanding of the intricate relationship between MEs and cancer, while facilitating future research on the potential therapeutic applications of targeting MEs in cancer management.


Assuntos
Metabolismo Energético , Malato Desidrogenase , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/genética , Malato Desidrogenase/metabolismo , Malato Desidrogenase/antagonistas & inibidores , Malato Desidrogenase/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Microambiente Tumoral , Animais , Processamento de Proteína Pós-Traducional , Oxirredução
2.
Nat Commun ; 15(1): 6777, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39117624

RESUMO

Metabolic rewiring during the proliferation-to-quiescence transition is poorly understood. Here, using a model of contact inhibition-induced quiescence, we conducted 13C-metabolic flux analysis in proliferating (P) and quiescent (Q) mouse embryonic fibroblasts (MEFs) to investigate this process. Q cells exhibit reduced glycolysis but increased TCA cycle flux and mitochondrial respiration. Reduced glycolytic flux in Q cells correlates with reduced glycolytic enzyme expression mediated by yes-associated protein (YAP) inhibition. The increased TCA cycle activity and respiration in Q cells is mediated by induced mitochondrial pyruvate carrier (MPC) expression, rendering them vulnerable to MPC inhibition. The malate-to-pyruvate flux, which generates NADPH, is markedly reduced by modulating malic enzyme 1 (ME1) dimerization in Q cells. Conversely, the malate dehydrogenase 1 (MDH1)-mediated oxaloacetate-to-malate flux is reversed and elevated in Q cells, driven by high mitochondrial-derived malate levels, reduced cytosolic oxaloacetate, elevated MDH1 levels, and a high cytoplasmic NAD+/NADH ratio. Transcriptomic analysis revealed large number of genes are induced in Q cells, many of which are associated with the extracellular matrix (ECM), while YAP-dependent and cell cycle-related genes are repressed. The results suggest that high TCA cycle flux and respiration in Q cells are required to generate ATP and amino acids to maintain de-novo ECM protein synthesis and secretion.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Ciclo do Ácido Cítrico , Inibição de Contato , Fibroblastos , Glicólise , Malato Desidrogenase , Mitocôndrias , Transcriptoma , Proteínas de Sinalização YAP , Animais , Proteínas de Sinalização YAP/metabolismo , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Fibroblastos/metabolismo , Malato Desidrogenase/metabolismo , Malato Desidrogenase/genética , Mitocôndrias/metabolismo , Malatos/metabolismo , Proliferação de Células , Ácido Pirúvico/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Fosfoproteínas/metabolismo , Fosfoproteínas/genética
3.
BMC Genomics ; 25(1): 688, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39003461

RESUMO

BACKGROUND: The co-occurrence of C4 and CAM photosynthesis in a single species seems to be unusual and rare. This is likely due to the difficulty in effectively co-regulating both pathways. Here, we conducted a comparative transcriptomic analysis of leaves and cotyledons of the C4-like species Sesuvium sesuvioides (Aizoaceae) using RNA-seq. RESULTS: When compared to cotyledons, phosphoenolpyruvate carboxylase 4 (PEPC4) and some key C4 genes were found to be up-regulated in leaves. During the day, the expression of NADP-dependent malic enzyme (NADP-ME) was significantly higher in cotyledons than in leaves. The titratable acidity confirmed higher acidity in the morning than in the previous evening indicating the induction of weak CAM in cotyledons by environmental conditions. Comparison of the leaves of S. sesuvioides (C4-like) and S. portulacastrum (C3) revealed that PEPC1 was significantly higher in S. sesuvioides, while PEPC3 and PEPC4 were up-regulated in S. portulacastrum. Finally, potential key regulatory elements involved in the C4-like and CAM pathways were identified. CONCLUSIONS: These findings provide a new species in which C4-like and CAM co-occur and raise the question if this phenomenon is indeed so rare or just hard to detect and probably more common in succulent C4 lineages.


Assuntos
Aizoaceae , Cotilédone , Perfilação da Expressão Gênica , Fotossíntese , Folhas de Planta , Cotilédone/genética , Cotilédone/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/genética , Fotossíntese/genética , Aizoaceae/genética , Aizoaceae/metabolismo , Regulação da Expressão Gênica de Plantas , Transcriptoma , Malato Desidrogenase/metabolismo , Malato Desidrogenase/genética , Fosfoenolpiruvato Carboxilase/metabolismo , Fosfoenolpiruvato Carboxilase/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
4.
J Plant Physiol ; 300: 154297, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38945071

RESUMO

Programmed cell death (PCD) is a genetically regulated process of cell suicide essential for plant development. The 'malate valve' is a mechanism that ensures redox balance across different subcellular compartments. In broccoli, the BomMDH1 gene encodes malate dehydrogenase in mitochondria, a critical enzyme in the 'malate circulation' pathway. This study investigates the functional role of BomMDH1 in malate (MA)-induced apoptosis in bright yellow-2 (BY-2) suspension cells. Findings revealed that transgenic cells overexpressing BomMDH1 showed enhanced viability under MA-induced oxidative stress compared to wild-type (WT) cells. Overexpression of BomMDH1 also reduced levels of reactive oxygen species (ROS), hydrogen peroxide (H2O2), and malondialdehyde (MDA), while increasing the expression of antioxidant enzyme genes such as NtAPX, NtAOX1a, NtSOD, and NtMDHAR. Additionally, treatment with salicylhydroxamic acid (SHAM), a characteristic inhibitor of mitochondrial respiration, further improved the anti-apoptotic activity of BY-2 cells. Overall, these results highlighted the function of the BomMDH1 gene and the potential of SHAM treatment in mitigating oxidative stress in BY-2 suspension cells.


Assuntos
Malatos , Nicotiana , Estresse Oxidativo , Espécies Reativas de Oxigênio , Estresse Oxidativo/efeitos dos fármacos , Malatos/metabolismo , Nicotiana/genética , Nicotiana/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Apoptose/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Malato Desidrogenase/metabolismo , Malato Desidrogenase/genética , Mitocôndrias/metabolismo , Malondialdeído/metabolismo , Regulação da Expressão Gênica de Plantas
5.
Mol Genet Metab ; 142(4): 108520, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38945121

RESUMO

The malate aspartate shuttle (MAS) plays a pivotal role in transporting cytosolic reducing equivalents - electrons - into the mitochondria for energy conversion at the electron transport chain (ETC) and in the process of oxidative phosphorylation. The MAS consists of two pairs of cytosolic and mitochondrial isoenzymes (malate dehydrogenases 1 and 2; and glutamate oxaloacetate transaminases 1 and 2) and two transporters (malate-2-oxoglutarate carrier and aspartate glutamate carrier (AGC), the latter of which has two tissue-dependent isoforms AGC1 and AGC2). While the inner mitochondrial membrane is impermeable to NADH, the MAS forms one of the main routes for mitochondrial electron uptake by promoting uptake of malate. Inherited bi-allelic pathogenic variants in five of the seven components of the MAS have been described hitherto and cause a wide spectrum of symptoms including early-onset epileptic encephalopathy. This review provides an overview of reported patients suffering from MAS deficiencies. In addition, we give an overview of diagnostic procedures and research performed on patient-derived cellular models and tissues. Current cellular models are briefly discussed and novel ways to achieve a better understanding of MAS deficiencies are highlighted.


Assuntos
Ácido Aspártico , Malato Desidrogenase , Malatos , Mitocôndrias , Humanos , Malatos/metabolismo , Malato Desidrogenase/metabolismo , Malato Desidrogenase/genética , Mitocôndrias/metabolismo , Mitocôndrias/genética , Mitocôndrias/patologia , Ácido Aspártico/metabolismo , Erros Inatos do Metabolismo/genética , Erros Inatos do Metabolismo/patologia , Erros Inatos do Metabolismo/metabolismo , Erros Inatos do Metabolismo/diagnóstico , Sistemas de Transporte de Aminoácidos Acídicos/genética , Sistemas de Transporte de Aminoácidos Acídicos/deficiência , Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Fosforilação Oxidativa , Antiporters
6.
Plant Physiol Biochem ; 213: 108857, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38905728

RESUMO

As an important warm-season turfgrass species, bermudagrass (Cynodon dactylon L.) flourishes in warm areas around the world due to the existence of the C4 photosynthetic pathway. However, how C4 photosynthesis operates in bermudagrass leaves is still poorly understood. In this study, we performed single-cell RNA-sequencing on 5296 cells from bermudagrass leaf blades. Eight cell clusters corresponding to mesophyll, bundle sheath, epidermis and vascular bundle cells were successfully identified using known cell marker genes. Expression profiling indicated that genes encoding NADP-dependent malic enzymes (NADP-MEs) were highly expressed in bundle sheath cells, whereas NAD-ME genes were weakly expressed in all cell types, suggesting C4 photosynthesis of bermudagrass leaf blades might be NADP-ME type rather than NAD-ME type. The results also indicated that starch synthesis-related genes showed preferential expression in bundle sheath cells, whereas starch degradation-related genes were highly expressed in mesophyll cells, which agrees with the observed accumulation of starch-filled chloroplasts in bundle sheath cells. Gene co-expression analysis further revealed that different families of transcription factors were co-expressed with multiple C4 photosynthesis-related genes, suggesting a complex transcription regulatory network of C4 photosynthesis might exist in bermudagrass leaf blades. These findings collectively provided new insights into the cell-specific expression patterns and transcriptional regulation of photosynthetic genes in bermudagrass.


Assuntos
Cynodon , Regulação da Expressão Gênica de Plantas , Fotossíntese , Folhas de Planta , Fotossíntese/genética , Folhas de Planta/genética , Folhas de Planta/metabolismo , Cynodon/genética , Cynodon/metabolismo , Análise de Célula Única/métodos , Análise de Sequência de RNA , Células do Mesofilo/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Malato Desidrogenase/metabolismo , Malato Desidrogenase/genética
7.
Nat Commun ; 15(1): 5285, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902266

RESUMO

Enzymes of the central metabolism tend to assemble into transient supramolecular complexes. However, the functional significance of the interactions, particularly between enzymes catalyzing non-consecutive reactions, remains unclear. Here, by co-localizing two non-consecutive enzymes of the TCA cycle from Bacillus subtilis, malate dehydrogenase (MDH) and isocitrate dehydrogenase (ICD), in phase separated droplets we show that MDH-ICD interaction leads to enzyme agglomeration with a concomitant enhancement of ICD catalytic rate and an apparent sequestration of its reaction product, 2-oxoglutarate. Theory demonstrates that MDH-mediated clustering of ICD molecules explains the observed phenomena. In vivo analyses reveal that MDH overexpression leads to accumulation of 2-oxoglutarate and reduction of fluxes flowing through both the catabolic and anabolic branches of the carbon-nitrogen intersection occupied by 2-oxoglutarate, resulting in impeded ammonium assimilation and reduced biomass production. Our findings suggest that the MDH-ICD interaction is an important coordinator of carbon-nitrogen metabolism.


Assuntos
Bacillus subtilis , Carbono , Ciclo do Ácido Cítrico , Isocitrato Desidrogenase , Ácidos Cetoglutáricos , Malato Desidrogenase , Nitrogênio , Nitrogênio/metabolismo , Carbono/metabolismo , Malato Desidrogenase/metabolismo , Malato Desidrogenase/genética , Bacillus subtilis/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/enzimologia , Isocitrato Desidrogenase/metabolismo , Isocitrato Desidrogenase/genética , Ácidos Cetoglutáricos/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Compostos de Amônio/metabolismo
8.
PLoS One ; 19(6): e0303577, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38843233

RESUMO

Malic Enzyme 1 (ME1) plays an integral role in fatty acid synthesis and cellular energetics through its production of NADPH and pyruvate. As such, it has been identified as a gene of interest in obesity, type 2 diabetes, and an array of epithelial cancers, with most work being performed in vitro. The current standard model for ME1 loss in vivo is the spontaneous Mod-1 null allele, which produces a canonically inactive form of ME1. Herein, we describe two new genetically engineered mouse models exhibiting ME1 loss at dynamic timepoints. Using murine embryonic stem cells and Flp/FRT and Cre/loxP class switch recombination, we established a germline Me1 knockout model (Me1 KO) and an inducible conditional knockout model (Me1 cKO), activated upon tamoxifen treatment in adulthood. Collectively, neither the Me1 KO nor Me1 cKO models exhibited deleterious phenotype under standard laboratory conditions. Knockout of ME1 was validated by immunohistochemistry and genotype confirmed by PCR. Transmission patterns favor Me1 loss in Me1 KO mice when maternally transmitted to male progeny. Hematological examination of these models through complete blood count and serum chemistry panels revealed no discrepancy with their wild-type counterparts. Orthotopic pancreatic tumors in Me1 cKO mice grow similarly to Me1 expressing mice. Similarly, no behavioral phenotype was observed in Me1 cKO mice when aged for 52 weeks. Histological analysis of several tissues revealed no pathological phenotype. These models provide a more modern approach to ME1 knockout in vivo while opening the door for further study into the role of ME1 loss under more biologically relevant, stressful conditions.


Assuntos
Malato Desidrogenase , Camundongos Knockout , Fenótipo , Animais , Malato Desidrogenase/metabolismo , Malato Desidrogenase/genética , Masculino , Camundongos , Feminino , Células Germinativas/metabolismo , Camundongos Endogâmicos C57BL
9.
J Hazard Mater ; 472: 134517, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38739960

RESUMO

Cadmium (Cd) is a heavy metal pollutant mainly originating from the discharge of industrial sewage, irrigation with contaminated water, and the use of fertilizers. The phytoremediation of Cd polluted soil depends on the identification of the associated genes in hyperaccumulators. Here, a novel Cd tolerance gene (SpCTP3) was identified in hyperaccumulator Sedum plumbizincicola. The results of Cd2+ binding and thermodynamic analyses, revealed the CXXC motif in SpCTP3 functions is a Cd2+ binding site. A mutated CXXC motif decreased binding to Cd by 59.93%. The subcellular localization analysis suggested that SpCTP3 is primarily a cytoplasmic protein. Additionally, the SpCTP3-overexpressing (OE) plants were more tolerant to Cd and accumulated more Cd than wild-type Sedum alfredii (NHE-WT). The Cd concentrations in the cytoplasm of root and leaf cells were significantly higher (53.75% and 71.87%, respectively) in SpCTP3-OE plants than in NHE-WT. Furthermore, malic acid levels increased and decreased in SpCTP3-OE and SpCTP3-RNAi plants, respectively. Moreover, SpCTP3 interacted with malate dehydrogenase 1 (MDH1). Thus, SpCTP3 helps regulate the subcellular distribution of Cd and increases Cd accumulation when it is overexpressed in plants, ultimately Cd tolerance through its interaction with SpMDH1. This study provides new insights relevant to improving the Cd uptake by Sedum plumbizincicola.


Assuntos
Biodegradação Ambiental , Cádmio , Proteínas de Plantas , Sedum , Poluentes do Solo , Cádmio/toxicidade , Cádmio/metabolismo , Sedum/metabolismo , Sedum/genética , Sedum/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Poluentes do Solo/toxicidade , Poluentes do Solo/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Plantas Geneticamente Modificadas/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Malato Desidrogenase/metabolismo , Malato Desidrogenase/genética
10.
Curr Microbiol ; 81(6): 167, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38727744

RESUMO

Diabetes mellitus represents a persistent metabolic condition marked by heightened levels of blood glucose, presenting a considerable worldwide health concern, and finding targeted treatment for it is a crucial priority for global health. Gram-positive aerobic bacteria, predominantly inhabiting water and soil, are known carriers of various enzyme-encoding genetic material, which includes the malic enzyme gene that plays a role in insulin secretion. Corynebacterium glutamicum bacteria (ATCC 21799) were acquired from the Pasteur Institute and confirmed using microbiological and molecular tests, including DNA extraction. After identification, gene purification and cloning of the maeB gene were performed using the TA Cloning method. Additionally, the enhancement of enzyme expression was assessed using the expression vector pET-28a, and validation of simulation results was monitored through a real-time PCR analysis. Based on previous studies, the malic enzyme plays a pivotal role in maintaining glucose homeostasis, and increased expression of this enzyme has been associated with enhanced insulin sensitivity. However, the production of malic enzyme has encountered numerous challenges and difficulties. This study successfully isolated the malic enzyme genes via Corynebacterium glutamicum and introduced them into Escherichia coli for high-yield production. According to the results, the optimum temperature for the activity of enzymes has been identified as 39 °C.


Assuntos
Clonagem Molecular , Corynebacterium glutamicum , Escherichia coli , Malato Desidrogenase , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Clonagem Molecular/métodos , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/enzimologia , Diabetes Mellitus/genética , Escherichia coli/genética , Expressão Gênica , Malato Desidrogenase/genética , Malato Desidrogenase/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Temperatura
11.
Physiol Plant ; 176(3): e14340, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38741259

RESUMO

Malate dehydrogenases (MDHs) catalyze a reversible NAD(P)-dependent-oxidoreductase reaction that plays an important role in central metabolism and redox homeostasis of plant cells. Recent studies suggest a moonlighting function of plastidial NAD-dependent MDH (plNAD-MDH; EC 1.1.1.37) in plastid biogenesis, independent of its enzyme activity. In this study, redox effects on activity and conformation of recombinant plNAD-MDH from Arabidopsis thaliana were investigated. We show that reduced plNAD-MDH is active while it is inhibited upon oxidation. Interestingly, the presence of its cofactors NAD+ and NADH could prevent oxidative inhibition of plNAD-MDH. In addition, a conformational change upon oxidation could be observed via non-reducing SDS-PAGE. Both effects, its inhibition and conformational change, were reversible by re-reduction. Further investigation of single cysteine substitutions and mass spectrometry revealed that oxidation of plNAD-MDH leads to oxidation of all four cysteine residues. However, cysteine oxidation of C129 leads to inhibition of plNAD-MDH activity and oxidation of C147 induces its conformational change. In contrast, oxidation of C190 and C333 does not affect plNAD-MDH activity or structure. Our results demonstrate that plNAD-MDH activity can be reversibly inhibited, but not inactivated, by cysteine oxidation and might be co-regulated by the availability of its cofactors in vivo.


Assuntos
Arabidopsis , Cisteína , Malato Desidrogenase , Oxirredução , Arabidopsis/enzimologia , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Cisteína/metabolismo , Malato Desidrogenase/metabolismo , Malato Desidrogenase/genética , NAD/metabolismo , Plastídeos/metabolismo , Plastídeos/enzimologia , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética
12.
RNA ; 30(7): 839-853, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38609156

RESUMO

Several enzymes of intermediary metabolism have been identified to bind RNA in cells, with potential consequences for the bound RNAs and/or the enzyme. In this study, we investigate the RNA-binding activity of the mitochondrial enzyme malate dehydrogenase 2 (MDH2), which functions in the tricarboxylic acid (TCA) cycle and the malate-aspartate shuttle. We confirmed in cellulo RNA binding of MDH2 using orthogonal biochemical assays and performed enhanced cross-linking and immunoprecipitation (eCLIP) to identify the cellular RNAs associated with endogenous MDH2. Surprisingly, MDH2 preferentially binds cytosolic over mitochondrial RNAs, although the latter are abundant in the milieu of the mature protein. Subcellular fractionation followed by RNA-binding assays revealed that MDH2-RNA interactions occur predominantly outside of mitochondria. We also found that a cytosolically retained N-terminal deletion mutant of MDH2 is competent to bind RNA, indicating that mitochondrial targeting is dispensable for MDH2-RNA interactions. MDH2 RNA binding increased when cellular NAD+ levels (MDH2's cofactor) were pharmacologically diminished, suggesting that the metabolic state of cells affects RNA binding. Taken together, our data implicate an as yet unidentified function of MDH2-binding RNA in the cytosol.


Assuntos
Ciclo do Ácido Cítrico , Citosol , Malato Desidrogenase , Mitocôndrias , Ligação Proteica , Malato Desidrogenase/metabolismo , Malato Desidrogenase/genética , Citosol/metabolismo , Citosol/enzimologia , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/genética , Mitocôndrias/enzimologia , RNA/metabolismo , RNA/genética , RNA Mitocondrial/metabolismo , RNA Mitocondrial/genética , NAD/metabolismo , Células HEK293 , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética
13.
J Plant Physiol ; 294: 154195, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38377939

RESUMO

We discuss the role of epigenetic changes at the level of promoter methylation of the key enzymes of carbon metabolism in the regulation of respiration by light. While the direct regulation of enzymes via modulation of their activity and post-translational modifications is fast and readily reversible, the role of cytosine methylation is important for providing a prolonged response to environmental changes. In addition, adenine methylation can play a role in the regulation of transcription of genes. The mitochondrial and extramitochondrial forms of several enzymes participating in the tricarboxylic acid cycle and associated reactions are regulated via promoter methylation in opposite ways. The mitochondrial forms of citrate synthase, aconitase, fumarase, NAD-malate dehydrogenase are inhibited while the cytosolic forms of aconitase, fumarase, NAD-malate dehydrogenase, and the peroxisomal form of citrate synthase are activated. It is concluded that promoter methylation represents a universal mechanism of the regulation of activity of respiratory enzymes in plant cells by light. The role of the regulation of the mitochondrial and cytosolic forms of respiratory enzymes in the operation of malate and citrate valves and in controlling the redox state and balancing the energy level of photosynthesizing plant cells is discussed.


Assuntos
Fumarato Hidratase , Malato Desidrogenase , Malato Desidrogenase/genética , Malato Desidrogenase/metabolismo , Citrato (si)-Sintase/genética , Citrato (si)-Sintase/metabolismo , Fumarato Hidratase/genética , Ácidos Tricarboxílicos/metabolismo , Ciclo do Ácido Cítrico , Plantas/genética , Plantas/metabolismo , Aconitato Hidratase/genética , Aconitato Hidratase/metabolismo , Metilação de DNA/genética , Respiração
14.
J Agric Food Chem ; 72(9): 4788-4800, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38377546

RESUMO

The present study investigated the antibacterial mechanism, control efficiency, and nontarget toxicity of actinomycin X2 (Act-X2) against Xanthomonas citri subsp. citri (Xcc) for the first time. Act-X2 almost completely inhibited the proliferation of Xcc in the growth curve assay at a concentration of 0.25 MIC (minimum inhibitory concentration, MIC = 31.25 µg/mL). This inhibitory effect was achieved by increasing the production of reactive oxygen species (ROS), blocking the formation of biofilms, obstructing the synthesis of intracellular proteins, and decreasing the enzymatic activities of malate dehydrogenase (MDH) and succinate dehydrogenase (SDH) of Xcc. Molecular docking and quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) analysis results indicated that Act-X2 steadily bonded to the RNA polymerase, ribosome, malate dehydrogenase, and succinate dehydrogenase to inhibit their activities, thus drastically reducing the expression levels of related genes. Act-X2 showed far more effectiveness than the commercially available pesticide Cu2(OH)3Cl in the prevention and therapy of citrus canker disease. Furthermore, the nontarget toxicity evaluation demonstrated that Act-X2 was not phytotoxic to citrus trees and exhibited minimal toxicity to earthworms in both contact and soil toxic assays. This study suggests that Act-X2 has the potential as an effective and environmentally friendly antibacterial agent.


Assuntos
Citrus , Dactinomicina/análogos & derivados , Xanthomonas , Malato Desidrogenase/genética , Malato Desidrogenase/metabolismo , Succinato Desidrogenase/genética , Succinato Desidrogenase/metabolismo , Simulação de Acoplamento Molecular , Antibacterianos/toxicidade , Antibacterianos/metabolismo , Citrus/metabolismo , Doenças das Plantas/microbiologia
15.
New Phytol ; 241(1): 82-101, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37872738

RESUMO

C4 plants typically operate a CO2 concentration mechanism from mesophyll (M) cells into bundle sheath (BS) cells. NADH dehydrogenase-like (NDH) complex is enriched in the BS cells of many NADP-malic enzyme (ME) type C4 plants and is more abundant in C4 than in C3 plants, but to what extent it is involved in the CO2 concentration mechanism remains to be experimentally investigated. We created maize and rice mutants deficient in NDH function and then used a combination of transcriptomic, proteomic, and metabolomic approaches for comparative analysis. Considerable decreases in growth, photosynthetic activities, and levels of key photosynthetic proteins were observed in maize but not rice mutants. However, transcript abundance for many cyclic electron transport (CET) and Calvin-Benson cycle components, as well as BS-specific C4 enzymes, was increased in maize mutants. Metabolite analysis of the maize ndh mutants revealed an increased NADPH : NADP ratio, as well as malate, ribulose 1,5-bisphosphate (RuBP), fructose 1,6-bisphosphate (FBP), and photorespiration intermediates. We suggest that by optimizing NADPH and malate levels and adjusting NADP-ME activity, NDH functions to balance metabolic and redox states in the BS cells of maize (in addition to ATP supply), coordinating photosynthetic transcript abundance and protein content, thus directly regulating the carbon flow in the two-celled C4 system of maize.


Assuntos
Carbono , NADH Desidrogenase , Carbono/metabolismo , NADH Desidrogenase/metabolismo , Zea mays/genética , Zea mays/metabolismo , Malatos/metabolismo , NADP/metabolismo , Dióxido de Carbono/metabolismo , Proteômica , Fotossíntese , Oxirredução , Malato Desidrogenase/genética , Malato Desidrogenase/metabolismo , Folhas de Planta/metabolismo
16.
Int J Mol Sci ; 24(23)2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38068872

RESUMO

Malate dehydrogenase (MDH; EC 1.1.1.37) plays a vital role in plant growth and development as well as abiotic stress responses, and it is widely present in plants. However, the MDH family genes have not been explored in sweet potato. In this study, nine, ten, and ten MDH genes in sweet potato (Ipomoea batatas) and its two diploid wild relatives, Ipomoea trifida and Ipomoea triloba, respectively, were identified. These MDH genes were unevenly distributed on seven different chromosomes among the three species. The gene duplications and nucleotide substitution analysis (Ka/Ks) revealed that the MDH genes went through segmental duplications during their evolution under purifying selection. A phylogenetic and conserved structure divided these MDH genes into five subgroups. An expression analysis indicated that the MDH genes were omni-presently expressed in distinct tissues and responded to various abiotic stresses. A transcription factor prediction analysis proved that Dof, MADS-box, and MYB were the main transcription factors of sweet potato MDH genes. These findings provide molecular features of the MDH family in sweet potato and its two diploid wild relatives, which further supports functional characterizations.


Assuntos
Ipomoea batatas , Ipomoea , Ipomoea batatas/metabolismo , Filogenia , Diploide , Malato Desidrogenase/genética , Malato Desidrogenase/metabolismo , Ipomoea/genética , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas
17.
Photosynth Res ; 158(1): 57-76, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37561272

RESUMO

The C4 plants photosynthesize better than C3 plants especially in arid environment. As an attempt to genetically convert C3 plant to C4, the cDNA of decarboxylating C4 type NADP-malic enzyme from Zea mays (ZmNADP-ME) that has lower Km for malate and NADP than its C3 isoforms, was overexpressed in Arabidopsis thaliana under the control of 35S promoter. Due to increased activity of NADP-ME in the transgenics the malate decarboxylation increased that resulted in loss of carbon skeletons needed for amino acid and protein synthesis. Consequently, amino acid and protein content of the transgenics declined. Therefore, the Chl content, photosynthetic efficiency (Fv/Fm), electron transport rate (ETR), the quantum yield of photosynthetic CO2 assimilation, rosette diameter, and biomass were lower in the transgenics. However, in salt stress (150 mM NaCl), the overexpressers had higher Chl, protein content, Fv/Fm, ETR, and biomass than the vector control. NADPH generated in the transgenics due to increased malate decarboxylation, contributed to augmented synthesis of proline, the osmoprotectant required to alleviate the reactive oxygen species-mediated membrane damage and oxidative stress. Consequently, the glutathione peroxidase activity increased and H2O2 content decreased in the salt-stressed transgenics. The reduced membrane lipid peroxidation and lower malondialdehyde production resulted in better preservation, of thylakoid integrity and membrane architecture in the transgenics under saline environment. Our results clearly demonstrate that overexpression of C4 chloroplastic ZmNADP-ME in the C3 Arabidopsis thaliana, although decrease their photosynthetic efficiency, protects the transgenics from salinity stress.


Assuntos
Arabidopsis , Zea mays , Arabidopsis/genética , Arabidopsis/metabolismo , Malatos/metabolismo , Peróxido de Hidrogênio/metabolismo , NADP/metabolismo , Malato Desidrogenase/genética , Malato Desidrogenase/metabolismo , Fotossíntese , Estresse Salino , Aminoácidos/metabolismo
18.
Int J Mol Sci ; 24(12)2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37373359

RESUMO

The expression and methylation of promoters of the genes encoding succinate dehydrogenase, fumarase, and NAD-malate dehydrogenase in maize (Zea mays L.) leaves depending on the light regime were studied. The genes encoding the catalytic subunits of succinate dehydrogenase showed suppression of expression upon irradiation by red light, which was abolished by far-red light. This was accompanied by an increase in promoter methylation of the gene Sdh1-2 encoding the flavoprotein subunit A, while methylation was low for Sdh2-3 encoding the iron-sulfur subunit B under all conditions. The expression of Sdh3-1 and Sdh4 encoding the anchoring subunits C and D was not affected by red light. The expression of Fum1 encoding the mitochondrial form of fumarase was regulated by red and far-red light via methylation of its promoter. Only one gene encoding the mitochondrial NAD-malate dehydrogenase gene (mMdh1) was regulated by red and far-red light, while the second gene (mMdh2) did not respond to irradiation, and neither gene was controlled by promoter methylation. It is concluded that the dicarboxylic branch of the tricarboxylic acid cycle is regulated by light via the phytochrome mechanism, and promoter methylation is involved with the flavoprotein subunit of succinate dehydrogenase and the mitochondrial fumarase.


Assuntos
Fumarato Hidratase , Succinato Desidrogenase , Succinato Desidrogenase/genética , Succinato Desidrogenase/metabolismo , Fumarato Hidratase/genética , Metilação , Zea mays/genética , Zea mays/metabolismo , Malato Desidrogenase/genética , Malato Desidrogenase/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo
19.
Plant Physiol Biochem ; 201: 107814, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37321041

RESUMO

Malate dehydrogenase (MDH) as an essential metabolic enzyme is widely involved in plant developmental processes. However, the direct relationship between its structural basis and in vivo roles especially in plant immunity remains elusive. In this study, we found that cytoplasmic cassava (Manihot esculenta, Me) MDH1 was essential for plant disease resistance against cassava bacterial blight (CBB). Further investigation revealed that MeMDH1 positively modulated cassava disease resistance, accompanying the regulation of salicylic acid (SA) accumulation and pathogensis-related protein 1 (MePR1) expression. Notably, the metabolic product of MeMDH1 (malate) also improved disease resistance in cassava, and its application rescued the disease susceptibility and decreased immune responses of MeMDH1-silenced plants, indicating that malate was responsible for MeMDH1-mediated disease resistance. Interestingly, MeMDH1 relied on Cys330 residues to form homodimer, which was directly related with MeMDH1 enzyme activity and the corresponding malate biosynthesis. The crucial role of Cys330 residue in MeMDH1 was further confirmed by in vivo functional comparison between overexpression of MeMDH1 and MeMDH1C330A in cassava disease resistance. Taken together, this study highlights that MeMDH1 confers improved plant disease resistance through protein self-association to promote malate biosynthesis, extending the knowledge of the relationship between its structure and cassava disease resistance.


Assuntos
Manihot , Manihot/metabolismo , Resistência à Doença/fisiologia , Malato Desidrogenase/genética , Malato Desidrogenase/metabolismo , Malatos/metabolismo , Doenças das Plantas/microbiologia , Verduras
20.
Proc Natl Acad Sci U S A ; 120(23): e2217869120, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37253016

RESUMO

T cell lymphomas (TCLs) are a group of rare and heterogeneous tumors. Although proto-oncogene MYC has an important role in driving T cell lymphomagenesis, whether MYC carries out this function remains poorly understood. Here, we show that malic enzyme 2 (ME2), one of the NADPH-producing enzymes associated with glutamine metabolism, is essential for MYC-driven T cell lymphomagenesis. We establish a CD4-Cre; Myc flox/+transgenic mouse mode, and approximately 90% of these mice develop TCL. Interestingly, knockout of Me2 in Myc transgenic mice almost completely suppresses T cell lymphomagenesis. Mechanistically, by transcriptionally up-regulating ME2, MYC maintains redox homeostasis, thereby increasing its tumorigenicity. Reciprocally, ME2 promotes MYC translation by stimulating mTORC1 activity through adjusting glutamine metabolism. Treatment with rapamycin, an inhibitor of mTORC1, blocks the development of TCL both in vitro and in vivo. Therefore, our findings identify an important role for ME2 in MYC-driven T cell lymphomagenesis and reveal that MYC-ME2 circuit may be an effective target for TCL therapy.


Assuntos
Glutamina , Malato Desidrogenase , Linfócitos T , Animais , Camundongos , Glutamina/metabolismo , Homeostase , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Camundongos Transgênicos , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Linfócitos T/metabolismo , Malato Desidrogenase/genética , Malato Desidrogenase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...