Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.432
Filtrar
1.
Physiol Plant ; 176(4): e14463, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39113602

RESUMO

The behavior of many plant enzymes depends on the metals and other ligands to which they are bound. A previous study demonstrated that tobacco Rubisco binds almost equally to magnesium and manganese and rapidly exchanges one metal for the other. The present study characterizes the kinetics of Rubisco and the plastidial malic enzyme when bound to either metal. When Rubisco purified from five C3 species was bound to magnesium rather than manganese, the specificity for CO2 over O2, (Sc/o) increased by 25% and the ratio of the maximum velocities of carboxylation / oxygenation (Vcmax/Vomax) increased by 39%. For the recombinant plastidial malic enzyme, the forward reaction (malate decarboxylation) was 30% slower and the reverse reaction (pyruvate carboxylation) was three times faster when bound to manganese rather than magnesium. Adding 6-phosphoglycerate and NADP+ inhibited carboxylation and oxygenation when Rubisco was bound to magnesium and stimulated oxygenation when it was bound to manganese. Conditions that favored RuBP oxygenation stimulated Rubisco to convert as much as 15% of the total RuBP consumed into pyruvate. These results are consistent with a stromal biochemical pathway in which (1) Rubisco when associated with manganese converts a substantial amount of RuBP into pyruvate, (2) malic enzyme when associated with manganese carboxylates a substantial portion of this pyruvate into malate, and (3) chloroplasts export additional malate into the cytoplasm where it generates NADH for assimilating nitrate into amino acids. Thus, plants may regulate the activities of magnesium and manganese in leaves to balance organic carbon and organic nitrogen as atmospheric CO2 fluctuates.


Assuntos
Cloroplastos , Ribulose-Bifosfato Carboxilase , Cloroplastos/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , Ligantes , Dióxido de Carbono/metabolismo , Manganês/metabolismo , Ciclo do Carbono , Oxigênio/metabolismo , Fotossíntese/fisiologia , Magnésio/metabolismo , Metais/metabolismo , Cinética , Carbono/metabolismo , Malatos/metabolismo , Malato Desidrogenase/metabolismo
2.
Nat Commun ; 15(1): 6777, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39117624

RESUMO

Metabolic rewiring during the proliferation-to-quiescence transition is poorly understood. Here, using a model of contact inhibition-induced quiescence, we conducted 13C-metabolic flux analysis in proliferating (P) and quiescent (Q) mouse embryonic fibroblasts (MEFs) to investigate this process. Q cells exhibit reduced glycolysis but increased TCA cycle flux and mitochondrial respiration. Reduced glycolytic flux in Q cells correlates with reduced glycolytic enzyme expression mediated by yes-associated protein (YAP) inhibition. The increased TCA cycle activity and respiration in Q cells is mediated by induced mitochondrial pyruvate carrier (MPC) expression, rendering them vulnerable to MPC inhibition. The malate-to-pyruvate flux, which generates NADPH, is markedly reduced by modulating malic enzyme 1 (ME1) dimerization in Q cells. Conversely, the malate dehydrogenase 1 (MDH1)-mediated oxaloacetate-to-malate flux is reversed and elevated in Q cells, driven by high mitochondrial-derived malate levels, reduced cytosolic oxaloacetate, elevated MDH1 levels, and a high cytoplasmic NAD+/NADH ratio. Transcriptomic analysis revealed large number of genes are induced in Q cells, many of which are associated with the extracellular matrix (ECM), while YAP-dependent and cell cycle-related genes are repressed. The results suggest that high TCA cycle flux and respiration in Q cells are required to generate ATP and amino acids to maintain de-novo ECM protein synthesis and secretion.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Ciclo do Ácido Cítrico , Inibição de Contato , Fibroblastos , Glicólise , Malato Desidrogenase , Mitocôndrias , Transcriptoma , Proteínas de Sinalização YAP , Animais , Proteínas de Sinalização YAP/metabolismo , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Fibroblastos/metabolismo , Malato Desidrogenase/metabolismo , Malato Desidrogenase/genética , Mitocôndrias/metabolismo , Malatos/metabolismo , Proliferação de Células , Ácido Pirúvico/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Fosfoproteínas/metabolismo , Fosfoproteínas/genética
3.
Microb Cell Fact ; 23(1): 233, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39174991

RESUMO

BACKGROUND: Methyl methacrylate (MMA) is a key precursor of polymethyl methacrylate, extensively used as a transparent thermoplastic in various industries. Conventional MMA production poses health and environmental risks; hence, citramalate serves as an alternative bacterial compound precursor for MMA production. The highest citramalate titer was previously achieved by Escherichia coli BW25113. However, studies on further improving citramalate production through metabolic engineering are limited, and phage contamination is a persistent problem in E. coli fermentation. RESULTS: This study aimed to construct a phage-resistant E. coli BW25113 strain capable of producing high citramalate titers from glucose. First, promoters and heterologous cimA genes were screened, and an effective biosynthetic pathway for citramalate was established by overexpressing MjcimA3.7, a mutated cimA gene from Methanococcus jannaschii, regulated by the BBa_J23100 promoter in E. coli. Subsequently, a phage-resistant E. coli strain was engineered by integrating the Ssp defense system into the genome and mutating key components of the phage infection cycle. Then, the strain was engineered to include the non-oxidative glycolysis pathway while removing the acetate synthesis pathway to enhance the supply of acetyl-CoA. Furthermore, glucose utilization by the strain improved, thereby increasing citramalate production. Ultimately, 110.2 g/L of citramalate was obtained after 80 h fed-batch fermentation. The citramalate yield from glucose and productivity were 0.4 g/g glucose and 1.4 g/(L·h), respectively. CONCLUSION: This is the highest reported citramalate titer and productivity in E. coli without the addition of expensive yeast extract and additional induction in fed-bath fermentation, emphasizing its potential for practical applications in producing citramalate and its derivatives.


Assuntos
Escherichia coli , Fermentação , Glucose , Glicólise , Engenharia Metabólica , Escherichia coli/metabolismo , Escherichia coli/genética , Engenharia Metabólica/métodos , Glucose/metabolismo , Vias Biossintéticas , Regiões Promotoras Genéticas , Malatos
4.
Georgian Med News ; (349): 154-160, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38963220

RESUMO

Mitochondrial dysfunction in autism leads to impair the mitochondria's ability to synthesis adenosine triphosphate (ATP) by impairment citric acid cycle as well as increase anaerobic glycolysis. Aim - measuring and evaluating the levels of mitochondrial markers; including glutamate oxaloacetate transaminase (GOT), glutamate pyruvate transaminase (GPT), malate dehydrogenase, and pyruvate kinase) in the autistic group and knowing the possibility of using these markers to diagnose children with autism spectrum disorder. A case-control study was done in the Al-Zahraa Teaching Hospital (Kut City, Iraq) on 100 Iraqi children (male and female), between (April 2023 and January 2024). Their ages ranged between 3 and 9 years. Among them were 50 patients enrolled as autistic group and 50 healthy enrolled as control group. Blood samples were collected and bioassays for GOT, GPT, pyruvate kinase, and malate dehydrogenase were measured by ELISA technique. The autistic group showed that the urine GOT, urine GPT, serum malate, and serum pyruvate levels in the ASD group was significantly higher (P<0.001) than the control group. The ROC analysis showed that urine GOT, urine GOT, serum malate and serum pyruvate had an accuracy level of (81%,71%,77%, and 80 %) and the area under the curve (AUC) was > 0.7 (0.8),0.7, 0.7(0.76), and 0.7(0.8) thus urine GOT, urine GPT, serum, malate, and serum pyruvate are a valid diagnostic marker. There was a significant difference in the mean urine and serum concentrations of mitochondrial markers (GOT, GPT, malate dehydrogenase, and pyruvate kinase) between autistic children and the control group due to mitochondrial dysfunction.


Assuntos
Aspartato Aminotransferases , Transtorno do Espectro Autista , Biomarcadores , Malato Desidrogenase , Mitocôndrias , Piruvato Quinase , Humanos , Criança , Masculino , Feminino , Transtorno do Espectro Autista/sangue , Malato Desidrogenase/sangue , Pré-Escolar , Estudos de Casos e Controles , Piruvato Quinase/sangue , Biomarcadores/sangue , Biomarcadores/urina , Aspartato Aminotransferases/sangue , Mitocôndrias/metabolismo , Alanina Transaminase/sangue , Ácido Pirúvico/sangue , Malatos/sangue , Curva ROC
5.
Food Res Int ; 191: 114644, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39059899

RESUMO

With the increasing threat of global warming, the cultivation of wine grapes in high-altitude with cool-temperature climates has become a viable option. However, the precise mechanism of environmental factors regulating grape quality remains unclear. Therefore, principal component analysis (PCA) was utilized to evaluate the quality of wine grape (Cabernet Sauvignon) in six high-altitude wine regions (1987, 2076, 2181, 2300, 2430, 2540 m). Structural equation modeling (SEM) was applied for the first time to identify the environmental contribution to grape quality. The wine grape quality existed spatial variation in basic physical attributes (BP), basic chemical compositions (BC), phenolic compounds (PC) and individual phenols. The PCA models (variance > 85 %) well separate wine grapes from the six altitudes into three groups according to scores. The score of grapes at 2300 m was significantly high (3.83), and the grapes of 2540 m showed a significantly low score (1.46). Subsequently, the malic acid, total tannin, total phenol, titratable acid, total anthocyanin, and skin thickness were the main differing indexes. SEM model characterized the relational network of differing indexes and microclimatic factors, which showed that temperature and extreme air temperature had a greater direct effect on differing indexes than light, with great contributions from soil temperature (0.98**), day-night temperature difference (0.825*), and day air temperature (0.789**). Our findings provided a theoretical basis for grape cultivation management in high-altitude regions and demonstrated that the SEM model is a useful tool for exploring the relationship between climate and fruit quality.


Assuntos
Altitude , Microclima , Análise de Componente Principal , Vitis , Vinho , Vitis/química , Vinho/análise , Fenóis/análise , Temperatura , Frutas/química , Antocianinas/análise , Taninos/análise , Malatos/análise
6.
Molecules ; 29(13)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38998906

RESUMO

The effects of normal (NA) and controlled atmosphere (CA) storage and postharvest treatment with 1-methylcyclopropene (1-MCP) before CA storage for 5 months on the volatilome, biochemical composition and quality of 'Golden Delicious' (GD) and 'Red Delicious' (RD) apples were studied. Apples stored under NA and CA maintained and 1-MCP treatment increased firmness in both cultivars. NA storage resulted in a decrease of glucose, sucrose and fructose levels in both cultivars. When compared to CA storage, 1-MCP treatment caused a more significant decrease in sucrose levels and an increase in glucose levels. Additionally, 1-MCP-treated apples exhibited a significant decrease in malic acid content for both cultivars. All storage conditions led to significant changes in the abundance and composition of the volatilome in both cultivars. GD and RD apples responded differently to 1-MCP treatment compared to CA storage; higher abundance of hexanoate esters and (E,E)-α-farnesene was observed in RD apples treated with 1-MCP. While 1-MCP was effective in reducing (E,E)-α-farnesene abundance in GD apples, its impact on RD apples was more limited. However, for both cultivars, all storage conditions resulted in lower levels of 2-methylbutyl acetate, butyl acetate and hexyl acetate. The effectiveness of 1-MCP is cultivar dependent, with GD showing better results than RD.


Assuntos
Armazenamento de Alimentos , Malus , Malus/química , Malus/metabolismo , Ciclopropanos/farmacologia , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/química , Frutas/química , Frutas/metabolismo , Sacarose/metabolismo , Malatos , Sesquiterpenos/análise , Glucose/metabolismo , Frutose/metabolismo , Frutose/análise
7.
Bull Exp Biol Med ; 177(1): 22-25, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38954297

RESUMO

We studied the respiratory activity of mitochondria in peripheral blood leukocytes from 36 patients with coronary heart disease (CHD) and a history of ventricular tachyarrhythmias required cardioverter-defibrillator implantation. The measurements were carried out in incubation buffers with different oxidation substrates (succinate and pyruvate-malate mixture). In pyruvate-malate incubation buffer, oxygen consumption rate and respiratory control coefficients in patients with triggered device did not differ significantly from those in patients without cardioverter-defibrillator triggering. At the same time, respiratory control coefficients were below the reference values. In succinate buffer, values of mitochondrial parameters were significantly lower in patients with triggered devices. Our findings indicate that mitochondria of patients with non-triggered cardioverters-defibrillators have better functional and metabolic plasticity. It was concluded that activity of respiratory processes in mitochondria could be an indicator that should be taken into the account when assessing the risk of developing ventricular tachyarrhythmias.


Assuntos
Doença das Coronárias , Desfibriladores Implantáveis , Consumo de Oxigênio , Humanos , Masculino , Pessoa de Meia-Idade , Doença das Coronárias/fisiopatologia , Doença das Coronárias/terapia , Consumo de Oxigênio/fisiologia , Feminino , Mitocôndrias/metabolismo , Idoso , Taquicardia Ventricular/fisiopatologia , Taquicardia Ventricular/terapia , Ácido Pirúvico/metabolismo , Ácido Succínico/metabolismo , Malatos/metabolismo , Mitocôndrias Cardíacas/metabolismo
8.
J Environ Manage ; 366: 121706, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38981270

RESUMO

Recycling waste Ni-Cd batteries has received much attention recently because of the serious environmental pollution they cause and to avoid the dissipation of valuable metals. Despite significant research, it is still difficult to efficiently recycle valuable and hazardous metals from waste Ni-Cd batteries in an economical and environmentally friendly manner. This study employed a novel process utilizing ultrasound-assisted leaching to recover Ni, Cd, and Co from waste nickel-cadmium (Ni-Cd) batteries. Organic DL-malic acid served as the leaching agent and H2O2 was employed as an oxidizing agent. The effects of various factors on the recovery efficiency of Ni, Cd, and Co, such as leaching temperature, time, DL-malic acid concentration, pulp density, H2O2 concentration, and ultrasound frequency, were also examined. To predict the chemical compounds present before and after the recycling experiments, the solid residues from the metal extraction were analyzed using XRD, XPS, FE-SEM, and EDS element mapping. Concurrently, ICP-OES was utilized to determine the metal content in the leachate. Under optimized conditions of 90 °C, 90 min, 2M DL-malic acid, 160 mL/g pulp density, and 20% ultrasound frequency, over 83% of Ni, 94% of Cd, and 98% of Co were effectively leached from the waste Ni-Cd battery powder. The leaching kinetics of Ni, Cd, and Co followed the surface chemical reaction control model. The activation energies (Ea) for Ni, Cd, and Co leaching were 21.34, 20.47, and 18.38 kJ/mol, respectively. The findings suggest that ultrasound-assisted leaching is an efficient, cost-effective, environmentally friendly, and sustainable alternative for extracting precious and hazardous metals from waste Ni-Cd batteries. Additionally, it reduces industrial chemical usage and enhances waste management sustainability.


Assuntos
Cádmio , Níquel , Reciclagem , Cádmio/química , Níquel/química , Metais/química , Malatos/química , Cobalto/química
9.
Environ Geochem Health ; 46(8): 289, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38970698

RESUMO

Low molecular weight organic acids (LMWOAs) are important soil components and play a key role in regulating the geochemical behavior of heavy metal(loid)s. Biochar (BC) is a commonly used amendment that could change LMWOAs in soil. Here, four LMWOAs of oxalic acid (OA), tartaric acid (TA), malic acid (MA), and citric acid (CA) were evaluated for their roles in changing Cd and SB desorption behavior in contaminated soil with (S1-BC) or without BC (S1) produced from Paulownia biowaste. The results showed that OA, TA, MA, and CA reduced soil pH with rising concentrations, and biochar partially offset the pH reduction by LMWOAs. The LMWOAs reduced Cd desorption from the soil at low concentrations but increased Cd desorption at high concentrations, and CA was the most powerful in this regard. The LMWOAs had a similar effect on Sb desorption, and CA was the most effective species of LMWOAs. Adding BC to the soil affects Cd and Sb dynamics by reducing the Cd desorption but increasing Sb desorption from the soil and increasing the distribution coefficient (Kd) values of Cd but lowering the Kd values of Sb. This study helped understand the effects of LMWOAs on the geochemical behavior of Cd and Sb in the presence of biochar, as well as the potential risks of biochar amendment in enhancing Sb desorption from contaminated soil.


Assuntos
Carvão Vegetal , Metais Pesados , Poluentes do Solo , Solo , Carvão Vegetal/química , Poluentes do Solo/química , Metais Pesados/química , Solo/química , Peso Molecular , Concentração de Íons de Hidrogênio , Cádmio/química , Tartaratos/química , Malatos/química , Ácido Cítrico/química , Recuperação e Remediação Ambiental/métodos , Ácido Oxálico/química , Adsorção , Oryza/química
10.
Eur J Sport Sci ; 24(6): 758-765, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38874989

RESUMO

Citrulline malate (CM) is purported to be an ergogenic aid during various types of exercise performance. However, the effects of CM on repeated sprint performance (RSP) are under-explored. In a placebo-controlled, double-blind, counterbalanced cross-over design, male university-level team sport athletes (n = 13) performed two familiarization trials, after which CM or placebo (PLA) (8 × 1 g tablets each day) were taken on the 2 days prior to, and with breakfast on the morning of, each main experimental trial. The main experimental trials employed a RSP protocol consisting of 10 repetitions of 40 m maximal shuttle run test (MST) with a 30 s interval between the start of each sprint. Sprint times and heart rate were recorded throughout the MST, and blood lactate concentrations were measured before, immediately after, and 5 min after completing the MST. CM resulted in better RSP compared to PLA, as indicated by a lower sprint performance decrement (Sdec: CM, 4.68% ± 1.82% vs. PLA, 6.10% ± 1.83%; p = 0.03; ES = 0.77), which was possibly influenced by the fastest sprint time being faster in CM (CM, 8.16 ± 0.34 s vs. PLA, 8.29 ± 0.39 s; p = 0.011; ES = 0.34). There were no differences between CM and PLA in average sprint time (p = 0.54), slowest sprint time (p = 0.48), blood lactate concentrations (p = 0.73) or heart rate (p = 0.18), nor was there a condition × time interaction effect across the 10 sprints (p = 0.166). Three days of CM supplementation (8 g daily) attenuated the sprint performance decrement during short-duration high-intensity exercise in the form of running RSP in male university-level team sport athletes.


Assuntos
Desempenho Atlético , Citrulina , Estudos Cross-Over , Suplementos Nutricionais , Frequência Cardíaca , Ácido Láctico , Malatos , Corrida , Humanos , Masculino , Corrida/fisiologia , Desempenho Atlético/fisiologia , Método Duplo-Cego , Adulto Jovem , Citrulina/administração & dosagem , Citrulina/farmacologia , Citrulina/análogos & derivados , Ácido Láctico/sangue , Malatos/administração & dosagem , Malatos/farmacologia , Atletas , Esportes de Equipe , Substâncias para Melhoria do Desempenho/administração & dosagem , Substâncias para Melhoria do Desempenho/farmacologia , Adulto
11.
Planta ; 260(1): 33, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38896325

RESUMO

MAIN CONCLUSION: γ-Aminobutyric acid alleviates acid-aluminum toxicity to roots associated with enhanced antioxidant metabolism as well as accumulation and transportation of citric and malic acids. Aluminum (Al) toxicity has become the main limiting factor for crop growth and development in acidic soils and is further being aggravated worldwide due to continuous industrial pollution. The current study was designed to examine effects of GABA priming on alleviating acid-Al toxicity in terms of root growth, antioxidant defense, citrate and malate metabolisms, and extensive metabolites remodeling in roots under acidic conditions. Thirty-seven-day-old creeping bentgrass (Agrostis stolonifera) plants were used as test materials. Roots priming with or without 0.5 mM GABA for 3 days were cultivated in standard nutrient solution for 15 days as control or subjected to nutrient solution containing 5 mM AlCl3·6H2O for 15 days as acid-Al stress treatment. Roots were sampled for determinations of root characteristics, physiological and biochemical parameters, and metabolomics. GABA priming significantly alleviated acid-Al-induced root growth inhibition and oxidative damage, despite it promoted the accumulation of Al in roots. Analysis of metabolomics showed that GABA priming significantly increased accumulations of organic acids, amino acids, carbohydrates, and other metabolites in roots under acid-Al stress. In addition, GABA priming also significantly up-regulated key genes related to accumulation and transportation of malic and citric acids in roots under acid-Al stress. GABA-regulated metabolites participated in tricarboxylic acid cycle, GABA shunt, antioxidant defense system, and lipid metabolism, which played positive roles in reactive oxygen species scavenging, energy conversion, osmotic adjustment, and Al ion chelation in roots.


Assuntos
Agrostis , Alumínio , Antioxidantes , Malatos , Raízes de Plantas , Ácido gama-Aminobutírico , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Antioxidantes/metabolismo , Ácido gama-Aminobutírico/metabolismo , Alumínio/toxicidade , Agrostis/efeitos dos fármacos , Agrostis/metabolismo , Agrostis/fisiologia , Malatos/metabolismo , Ácido Cítrico/metabolismo , Estresse Oxidativo/efeitos dos fármacos
12.
J Food Sci ; 89(8): 5047-5064, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38922911

RESUMO

In vegetable fermentation, pellicle is a common quality deterioration phenomenon. This study investigates the characteristics of glucose, organic acids, amino acids, and biogenic amines during the pellicle occurrence and disappearance of paocai. The results revealed a slight increase in pH of the fermentation system after pellicle occurred, and glucose was the main carbohydrate that microbial activity primary relied on. The microorganisms responsible for pellicle formation consumed organic acids in brine, but the lactic acid in paocai gradually increased and exceeded 25 mg/g. The appearance of pellicle caused a decrease in total free amino acids from 200.390 mg/100 g to 172.079 when pellicle occurred, whereas its impact on biogenic amines was not apparent. Through Kyoto Encyclopedia of Genes and Genomes pathway enrichment of metagenomics sequencing data, screening, and sorting of the key enzymes involved in organic acid metabolism, it was observed that the composition and species of the key microorganisms capable of metabolizing organic acids were more abundant before the appearance of pellicle. When pellicle occurred, lactic acid may be metabolized by Lactobacillus plantarum; in contrast, Lactobacillus and Pichia were associated with citric acid metabolism, and Lactobacillus, Pichia, Saccharomycodes, and Kazachstania were linked to malic acid metabolism. Moreover, Prevotella, Kazachstania, Lactobacillus, Vibrio, and Siphonobacter were implicated in succinic acid metabolism. Additionally, the production of tartaric acid and oxalic acid in paocai and brine resulted from abiotic effects. This knowledge offers a theoretical basis for precise control of paocai fermentation process. PRACTICAL APPLICATION: Our study revealed the specific situation of the metabolites produced by the microorganisms during the pollution and recovery process of pellicle in paocai fermentation, especially the effect of pellicle on the key process of organic acid metabolism. These research results provided theoretical basis for precise control of paocai fermentation.


Assuntos
Aminoácidos , Fermentação , Ácido Láctico , Aminoácidos/metabolismo , Ácido Láctico/metabolismo , Bactérias/metabolismo , Bactérias/classificação , Bactérias/genética , Ácido Cítrico/metabolismo , Concentração de Íons de Hidrogênio , Aminas Biogênicas/metabolismo , Aminas Biogênicas/análise , Glucose/metabolismo , Malatos/metabolismo , Microbiologia de Alimentos , Alimentos Fermentados/microbiologia , Verduras/microbiologia , Sais
13.
J Plant Physiol ; 300: 154297, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38945071

RESUMO

Programmed cell death (PCD) is a genetically regulated process of cell suicide essential for plant development. The 'malate valve' is a mechanism that ensures redox balance across different subcellular compartments. In broccoli, the BomMDH1 gene encodes malate dehydrogenase in mitochondria, a critical enzyme in the 'malate circulation' pathway. This study investigates the functional role of BomMDH1 in malate (MA)-induced apoptosis in bright yellow-2 (BY-2) suspension cells. Findings revealed that transgenic cells overexpressing BomMDH1 showed enhanced viability under MA-induced oxidative stress compared to wild-type (WT) cells. Overexpression of BomMDH1 also reduced levels of reactive oxygen species (ROS), hydrogen peroxide (H2O2), and malondialdehyde (MDA), while increasing the expression of antioxidant enzyme genes such as NtAPX, NtAOX1a, NtSOD, and NtMDHAR. Additionally, treatment with salicylhydroxamic acid (SHAM), a characteristic inhibitor of mitochondrial respiration, further improved the anti-apoptotic activity of BY-2 cells. Overall, these results highlighted the function of the BomMDH1 gene and the potential of SHAM treatment in mitigating oxidative stress in BY-2 suspension cells.


Assuntos
Malatos , Nicotiana , Estresse Oxidativo , Espécies Reativas de Oxigênio , Estresse Oxidativo/efeitos dos fármacos , Malatos/metabolismo , Nicotiana/genética , Nicotiana/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Apoptose/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Malato Desidrogenase/metabolismo , Malato Desidrogenase/genética , Mitocôndrias/metabolismo , Malondialdeído/metabolismo , Regulação da Expressão Gênica de Plantas
14.
Mol Genet Metab ; 142(4): 108520, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38945121

RESUMO

The malate aspartate shuttle (MAS) plays a pivotal role in transporting cytosolic reducing equivalents - electrons - into the mitochondria for energy conversion at the electron transport chain (ETC) and in the process of oxidative phosphorylation. The MAS consists of two pairs of cytosolic and mitochondrial isoenzymes (malate dehydrogenases 1 and 2; and glutamate oxaloacetate transaminases 1 and 2) and two transporters (malate-2-oxoglutarate carrier and aspartate glutamate carrier (AGC), the latter of which has two tissue-dependent isoforms AGC1 and AGC2). While the inner mitochondrial membrane is impermeable to NADH, the MAS forms one of the main routes for mitochondrial electron uptake by promoting uptake of malate. Inherited bi-allelic pathogenic variants in five of the seven components of the MAS have been described hitherto and cause a wide spectrum of symptoms including early-onset epileptic encephalopathy. This review provides an overview of reported patients suffering from MAS deficiencies. In addition, we give an overview of diagnostic procedures and research performed on patient-derived cellular models and tissues. Current cellular models are briefly discussed and novel ways to achieve a better understanding of MAS deficiencies are highlighted.


Assuntos
Ácido Aspártico , Malato Desidrogenase , Malatos , Mitocôndrias , Humanos , Malatos/metabolismo , Malato Desidrogenase/metabolismo , Malato Desidrogenase/genética , Mitocôndrias/metabolismo , Mitocôndrias/genética , Mitocôndrias/patologia , Ácido Aspártico/metabolismo , Erros Inatos do Metabolismo/genética , Erros Inatos do Metabolismo/patologia , Erros Inatos do Metabolismo/metabolismo , Erros Inatos do Metabolismo/diagnóstico , Sistemas de Transporte de Aminoácidos Acídicos/genética , Sistemas de Transporte de Aminoácidos Acídicos/deficiência , Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Fosforilação Oxidativa , Antiporters
15.
Aquat Toxicol ; 273: 106986, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38851027

RESUMO

For continuous pumping of blood, the heart needs a constant supply of energy (ATP) that is primarily met via oxidative phosphorylation in the mitochondria of cardiomyocytes. However, sustained high rates of electron transport for energy conversion redox reactions predisposes the heart to the production of reactive oxygen species (ROS) and oxidative stress. Mitochondrial ROS are fundamental drivers of responses to environmental stressors including metals but knowledge of how combinations of metals alter mitochondrial ROS homeodynamics remains sparse. We explored the effects and interactions of binary mixtures of copper (Cu), cadmium (Cd), and zinc (Zn), metals that are common contaminants of aquatic systems, on ROS (hydrogen peroxide, H2O2) homeodynamics in rainbow trout (Oncorhynchus mykiss) heart mitochondria. Isolated mitochondria were energized with glutamate-malate or succinate and exposed to a range of concentrations of the metals singly and in equimolar binary concentrations. Speciation analysis revealed that Cu was highly complexed by glutamate or Tris resulting in Cu2+ concentrations in the picomolar to nanomolar range. The concentration of Cd2+ was 7.2-7.5 % of the total while Zn2+ was 15 % and 21 % of the total during glutamate-malate and succinate oxidation, respectively. The concentration-effect relationships for Cu and Cd on mitochondrial H2O2 emission depended on the substrate while those for Zn were similar during glutamate-malate and succinate oxidation. Cu + Zn and Cu + Cd mixtures exhibited antagonistic interactions wherein Cu reduced the effects of both Cd and Zn, suggesting that Cu can mitigate oxidative distress caused by Cd or Zn. Binary combinations of the metals acted additively to reduce the rate constant and increase the half-life of H2O2 consumption while concomitantly suppressing thioredoxin reductase and stimulating glutathione peroxidase activities. Collectively, our study indicates that binary mixtures of Cu, Zn, and Cd act additively or antagonistically to modulate H2O2 homeodynamics in heart mitochondria.


Assuntos
Cádmio , Peróxido de Hidrogênio , Mitocôndrias Cardíacas , Oncorhynchus mykiss , Poluentes Químicos da Água , Animais , Oncorhynchus mykiss/metabolismo , Peróxido de Hidrogênio/metabolismo , Poluentes Químicos da Água/toxicidade , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Cádmio/toxicidade , Cobre/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Zinco/toxicidade , Zinco/metabolismo , Malatos/metabolismo , Ácido Succínico/metabolismo
16.
Biotechnol J ; 19(5): e2400014, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38719614

RESUMO

Microbial production of L-malic acid from renewable carbon sources has attracted extensive attention. The reduced cofactor NADPH plays a key role in biotransformation because it participates in both biosynthetic reactions and cellular stress responses. In this study, NADPH or its precursors nicotinamide and nicotinic acid were added to the fermentation medium of Aspergillus niger RG0095, which significantly increased the yield of malic acid by 11%. To further improve the titer and productivity of L-malic acid, we increased the cytoplasmic NADPH levels of A. niger by upregulating the NAD kinases Utr1p and Yef1p. Biochemical analyses demonstrated that overexpression of Utr1p and Yef1p reduced oxidative stress, while also providing more NADPH to catalyze the conversion of glucose into malic acid. Notably, the strain overexpressing Utr1p reached a malate titer of 110.72 ± 1.91 g L-1 after 108 h, corresponding to a productivity of 1.03 ± 0.02 g L-1 h-1. Thus, the titer and productivity of malate were increased by 24.5% and 44.7%, respectively. The strategies developed in this study may also be useful for the metabolic engineering of fungi to produce other industrially relevant bulk chemicals.


Assuntos
Aspergillus niger , Fermentação , Malatos , Engenharia Metabólica , NADP , Aspergillus niger/metabolismo , Aspergillus niger/genética , Malatos/metabolismo , Engenharia Metabólica/métodos , NADP/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Glucose/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo
17.
Protein Sci ; 33(6): e5010, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38723172

RESUMO

Recent studies have demonstrated that one can control the packing density, and in turn the filterability, of protein precipitates by changing the pH and buffer composition of the precipitating solution to increase the structure/order within the precipitate. The objective of this study was to examine the effect of sodium malonate, which is known to enhance protein crystallizability, on the morphology of immunoglobulin precipitates formed using a combination of ZnCl2 and polyethylene glycol. The addition of sodium malonate significantly stabilized the precipitate particles as shown by an increase in melting temperature, as determined by differential scanning calorimetry, and an increase in the enthalpy of interaction, as determined by isothermal titration calorimetry. The sodium malonate also increased the selectivity of the precipitation, significantly reducing the coprecipitation of DNA from a clarified cell culture fluid. The resulting precipitate had a greater packing density and improved filterability, enabling continuous tangential flow filtration with minimal membrane fouling relative to precipitates formed under otherwise identical conditions but in the absence of sodium malonate. These results provide important insights into strategies for controlling precipitate morphology to enhance the performance of precipitation-filtration processes for the purification of therapeutic proteins.


Assuntos
Malonatos , Malonatos/química , Filtração , Precipitação Química , Imunoglobulinas/química , Polietilenoglicóis/química , Cloretos/química , Varredura Diferencial de Calorimetria , Malatos/química , Compostos de Zinco
18.
Int J Mol Sci ; 25(10)2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38791318

RESUMO

Bryophyllum pinnatum (BP) is a medicinal plant used to treat many conditions when taken as a leaf juice, leaves in capsules, as an ethanolic extract, and as herbal tea. These preparations have been chemically analyzed except for decoctions derived from boiled green leaves. In preparation for a clinical trial to validate BP tea as a treatment for kidney stones, we used NMR and MS analyses to characterize the saturation kinetics of the release of metabolites. During boiling of the leaves, (a) the pH decreased to 4.8 within 14 min and then stabilized; (b) regarding organic acids, citric and malic acid were released with maximum release time (tmax) = 35 min; (c) for glycoflavonoids, quercetin 3-O-α-L-arabinopyranosyl-(1 → 2)-α-L-rhamnopyranoside (Q-3O-ArRh), myricetin 3-O-α-L-arabinopyranosyl-(1 → 2)-α-L-rhamnopyranoside (M-3O-ArRh), kappinatoside, myricitrin, and quercitrin were released with tmax = 5-10 min; and (d) the total phenolic content (TPC) and the total antioxidant capacity (TAC) reached a tmax at 55 min and 61 min, respectively. In summary, 24 g of leaves boiled in 250 mL of water for 61 min ensures a maximal release of key water-soluble metabolites, including organic acids and flavonoids. These metabolites are beneficial for treating kidney stones because they target oxidative stress and inflammation and inhibit stone formation.


Assuntos
Kalanchoe , Cálculos Renais , Espectroscopia de Ressonância Magnética , Extratos Vegetais , Folhas de Planta , Kalanchoe/química , Espectroscopia de Ressonância Magnética/métodos , Cálculos Renais/tratamento farmacológico , Cálculos Renais/metabolismo , Cálculos Renais/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Folhas de Planta/química , Cinética , Espectrometria de Massas/métodos , Humanos , Malatos/química , Malatos/metabolismo
19.
Environ Pollut ; 351: 124059, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38703979

RESUMO

The hazards of man-made chiral compounds are of great public concern, with reports of worrying stereoselective compounds and an urgent need to assess their transport. This study evaluated the transport of 2-arylpropionic acid derivatives enantiomers (2-APA) in porous media under a variety of solution chemistry conditions via column packing assays. The results revealed the introduction of Malic acid (MA) enantiomers enhanced the mobility of 2-APA enantiomers, but the enhancement effect was different for different 2-APA enantiomers. Batch sorption experiments confirmed that the MA enantiomers occupied the sorption site of the quartz sand, thus reducing the deposition of the 2-APA enantiomer. Homo- or heterochirality between 2-APA and MA dominates the transport of 2-APA enantiomers, with homochirality between them triggering stronger retention and vice versa. Further evaluating the effect of solution chemistry conditions on the transport of 2-APA enantiomers, increased ionic strength attenuated the mobility of 2-APA enantiomers, whereas introduced coexisting cations enhanced the retention of 2-APA enantiomers in the column. The redundancy analyses corroborated these solution chemistry conditions were negatively correlated with the transport of 2-APA enantiomers. The coupling of pH and these conditions reveals electrostatic forces dominate the transport behavior and stereoselective interactions of 2-APA enantiomers. Distinguishing the transport of enantiomeric pair helps to understand the difference in stereoselectivity of enantiomers and promises to remove the more hazardous one.


Assuntos
Propionatos , Estereoisomerismo , Propionatos/química , Porosidade , Adsorção , Malatos/química , Concentração de Íons de Hidrogênio
20.
BMC Genom Data ; 25(1): 46, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38783179

RESUMO

BACKGROUND: Primulina juliae has recently emerged as a novel functional vegetable, boasting a significant biomass and high calcium content. Various breeding strategies have been employed to the domestication of P. juliae. However, the absence of genome and transcriptome information has hindered the research of mechanisms governing the taste and nutrients in this plant. In this study, we conducted a comprehensive analysis, combining the full-length transcriptomics and metabolomics, to unveil the molecular mechanisms responsible for the development of nutrients and taste components in P. juliae. RESULTS: We obtain a high-quality reference transcriptome of P. juliae by combing the PacBio Iso-seq and Illumina sequencing technologies. A total of 58,536 cluster consensus sequences were obtained, including 28,168 complete protein coding transcripts and 8,021 Long Non-coding RNAs. Significant differences were observed in the composition and content of compounds related to nutrients and taste, particularly flavonoids, during the leaf development. Our results showed a decrease in the content of most flavonoids as leaves develop. Malate and succinate accumulated with leaf development, while some sugar metabolites were decreased. Furthermore, we identified the different accumulation of amino acids and fatty acids, which are associated with taste traits. Moreover, our transcriptomic analysis provided a molecular basis for understanding the metabolic variations during leaf development. We identified 4,689 differentially expressed genes in the two developmental stages, and through a comprehensive transcriptome and metabolome analysis, we discovered the key structure genes and transcription factors involved in the pathways. CONCLUSIONS: This study provides a high-quality reference transcriptome and reveals molecular mechanisms associated with the development of nutrients and taste components in P. juliae. These findings will enhance our understanding of the breeding and utilization of P. juliae as a vegetable.


Assuntos
Metabolômica , Folhas de Planta , Paladar , Transcriptoma , Paladar/genética , Folhas de Planta/metabolismo , Folhas de Planta/genética , Regulação da Expressão Gênica de Plantas , Perfilação da Expressão Gênica/métodos , Nutrientes/metabolismo , Flavonoides/metabolismo , Flavonoides/análise , Aminoácidos/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Metaboloma/genética , Malatos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...