Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.230
Filtrar
1.
J Biol Rhythms ; 39(4): 323-330, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39086225

RESUMO

Light is recognized as an important component of the environment for laboratory animals. It supports vision, sets the phase of circadian clocks, and drives wide-ranging adjustments in physiological and behavioral state. Manipulating light is meanwhile a key experimental approach in the fields of vision science and chronobiology. Nevertheless, until recently, there has been no consensus on methods for quantifying light as experienced by laboratory animals. Widely adopted practices employ metrics such as illuminance (units = lux) that are designed to quantify light as experienced by human observers. These weight energy across the spectrum according to a spectral sensitivity profile for human vision that is not widely replicated for non-human species. Recently, a Consensus View was published that proposes methods of light measurement and standardization that take account of these species-specific differences in wavelength sensitivity. Here, we draw upon the contents of that consensus to provide simplified advice on light measurement in laboratory mammal experimentation and husbandry and quantitative guidance on what constitutes appropriate lighting for both visual and circadian function.


Assuntos
Ritmo Circadiano , Luz , Mamíferos , Animais , Ritmo Circadiano/fisiologia , Mamíferos/fisiologia , Iluminação , Humanos , Animais de Laboratório/fisiologia , Visão Ocular/fisiologia , Relógios Circadianos/fisiologia
2.
Sci Rep ; 14(1): 17868, 2024 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-39090258

RESUMO

Extreme ecosystem modification by humans has caused drastic reductions in populations and ranges of top mammalian predators, while simultaneously allowing synanthropic mesopredator species to expand. These conditions often result in inflated local densities of highly adaptable mesopredators that disrupt trophic dynamics and place unsustainable predation pressure on native prey populations. Colonization of a dominant predator may lead to top-down control of mesopredators and restore trophic balance. Coyotes are a novel colonizer of some coastal barrier islands of eastern North America, offering an opportunity to test how the addition of an apex predator impacts an established guild of mesopredators. To assess their trophic impact, we conducted 75,576 camera trapping hours over an 18-month study period, capturing > 1.5 million images across 108 coastal camera sites. Using two-species occupancy and habitat use models, we found sizeable effects of coyote habitat use on that of red foxes and free-ranging domestic cats, suggesting that coyotes function as apex predators in barrier island ecosystems. In fact, the only factor that determined the spatial pattern of highly ubiquitous red foxes was the sympatric habitat use of the largest carnivore in the food web-coyotes. That 'novel' apex predators can become established in coastal food webs illustrates the highly dynamic nature of conservation challenges for habitats and species at the edge of the sea.


Assuntos
Coiotes , Ecossistema , Cadeia Alimentar , Raposas , Comportamento Predatório , Animais , Comportamento Predatório/fisiologia , Coiotes/fisiologia , Raposas/fisiologia , Mamíferos/fisiologia , Gatos , América do Norte
3.
Am Nat ; 204(3): 274-288, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39179233

RESUMO

AbstractEnergy flow through consumer-resource interactions is largely determined by body size. Allometric relationships govern the dynamics of populations by impacting rates of reproduction as well as alternative sources of mortality, which have differential impacts on smaller to larger organisms. Here we derive and investigate the timescales associated with four alternative sources of mortality for terrestrial mammals: mortality from starvation, mortality associated with aging, mortality from consumption by predators, and mortality introduced by anthropogenic subsidized harvest. The incorporation of these allometric relationships into a minimal consumer-resource model illuminates central constraints that may contribute to the structure of mammalian communities. Our framework reveals that while starvation largely impacts smaller-bodied species, the allometry of senescence is expected to be more difficult to observe. In contrast, external predation and subsidized harvest have greater impacts on the populations of larger-bodied species. Moreover, the inclusion of predation mortality reveals mass thresholds for mammalian herbivores, where dynamic instabilities may limit the feasibility of megafaunal populations. We show how these thresholds vary with alternative predator-prey mass relationships, which are not well understood within terrestrial systems. Finally, we use our framework to predict the harvest pressure required to induce mass-specific extinctions, which closely align with previous estimates of anthropogenic megafaunal exploitation in both paleontological and historical contexts. Together our results underscore the tenuous nature of megafaunal populations and how different sources of mortality may contribute to their ephemeral nature over evolutionary time.


Assuntos
Mamíferos , Animais , Mamíferos/fisiologia , Tamanho Corporal , Dinâmica Populacional , Modelos Biológicos , Comportamento Predatório , Mortalidade , Cadeia Alimentar , Extinção Biológica , Herbivoria , Envelhecimento
4.
Sci Rep ; 14(1): 19668, 2024 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-39181911

RESUMO

Mid-sized mammals (i.e., mesomammals) fulfill important ecological roles, serving as essential scavengers, predators, pollinators, and seed dispersers in the ecosystems they inhabit. Consequently, declines in mesomammal populations have the potential to alter ecological processes and fundamentally change ecosystems. However, ecosystems characterized by high functional redundancy, where multiple species can fulfil similar ecological roles, may be less impacted by the loss of mesomammals and other vertebrates. The Greater Everglades Ecosystem in southern Florida is a historically biodiverse region that has recently been impacted by multiple anthropogenic threats, most notably the introduction of the Burmese python (Python molurus bivittatus). Since pythons became established, mesomammal populations have become greatly reduced. To assess whether these declines in mesomammals have affected two critical ecosystem functions-scavenging and frugivory-we conducted experiments in areas where mesomammals were present and absent. We did not observe significant differences in scavenging or frugivory efficiency in areas with and without mesomammals, but we did observe significant differences in the communities responsible for scavenging and frugivory. Despite the observed evidence of redundancy, the changes in community composition could potentially lead to indirect consequences on processes like seed dispersal and disease dynamics within this ecosystem, emphasizing the need for further study.


Assuntos
Ecossistema , Animais , Florida , Boidae/fisiologia , Mamíferos/fisiologia , Dinâmica Populacional , Dispersão de Sementes/fisiologia , Espécies Introduzidas
5.
Proc Biol Sci ; 291(2026): 20240778, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38955231

RESUMO

Mammals influence nearly all aspects of energy flow and habitat structure in modern terrestrial ecosystems. However, anthropogenic effects have probably altered mammalian community structure, raising the question of how past perturbations have done so. We used functional diversity (FD) to describe how the structure of North American mammal palaeocommunities changed over the past 66 Ma, an interval spanning the radiation following the K/Pg and several subsequent environmental disruptions including the Palaeocene-Eocene Thermal Maximum (PETM), the expansion of grassland, and the onset of Pleistocene glaciation. For 264 fossil communities, we examined three aspects of ecological function: functional evenness, functional richness and functional divergence. We found that shifts in FD were associated with major ecological and environmental transitions. All three measures of FD increased immediately following the extinction of the non-avian dinosaurs, suggesting that high degrees of ecological disturbance can lead to synchronous responses both locally and continentally. Otherwise, the components of FD were decoupled and responded differently to environmental changes over the last ~56 Myr.


Assuntos
Biodiversidade , Fósseis , Mamíferos , Animais , Mamíferos/fisiologia , América do Norte , Ecossistema , Evolução Biológica
6.
Development ; 151(14)2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39036999

RESUMO

Infertility is a global health problem affecting one in six couples, with 50% of cases attributed to male infertility. Spermatozoa are male gametes, specialized cells that can be divided into two parts: the head and the flagellum. The head contains a vesicle called the acrosome that undergoes exocytosis and the flagellum is a motility apparatus that propels the spermatozoa forward and can be divided into two components, axonemes and accessory structures. For spermatozoa to fertilize oocytes, the acrosome and flagellum must be formed correctly. In this Review, we describe comprehensively how functional spermatozoa develop in mammals during spermiogenesis, including the formation of acrosomes, axonemes and accessory structures by focusing on analyses of mouse models.


Assuntos
Acrossomo , Espermatogênese , Espermatozoides , Animais , Masculino , Espermatogênese/fisiologia , Espermatozoides/fisiologia , Espermatozoides/metabolismo , Acrossomo/metabolismo , Acrossomo/fisiologia , Humanos , Mamíferos/fisiologia , Camundongos , Axonema/metabolismo , Flagelos/fisiologia , Flagelos/metabolismo
7.
Biol Lett ; 20(7): 20240054, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39046286

RESUMO

As humans clear natural habitat, they are brought into increased conflict with wild animals. Some conflict is direct (e.g. elevated exposure of people to predators), some indirect (e.g. abandoning suitable habitat because of human activity). The magnitude of avoidance is expected to track frequency of human activity, but the type of response is an open question. We postulated that animals do not respond passively to increased disturbance nor does response follow a power law; instead, their ability to estimate magnitude leads to 'discounting' behaviour, as in classic time-to-reward economic models in which individuals discount larger value (or risk) in more distant time. We used a 10-year camera dataset from southern California to characterize response curves of seven mammal species. Bayesian regressions of two non-discounting models (exponential and inverse polynomial) and two discounting models (hyperbolic and harmonic) revealed that the latter better fit response curves. The Arps equation, from petroleum extraction modelling, was used to estimate a discount exponent, a taxon-specific 'sensitivity' to humans, yielding a general model across species. Although discounting can mean mammal activity recovers rapidly after disturbance, increased recreational pressure on reserves limits recovery potential, highlighting a need to strike a balance between animal conservation and human use.


Assuntos
Aprendizagem da Esquiva , Mamíferos , Animais , Mamíferos/fisiologia , Teorema de Bayes , California , Humanos , Comportamento Animal
8.
Philos Trans R Soc Lond B Biol Sci ; 379(1909): 20230166, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39034704

RESUMO

Knowledge about how ecological networks vary across global scales is currently limited given the complexity of acquiring repeated spatial data for species interactions. Yet, recent developments in metawebs highlight efficient ways to first document possible interactions within regional species pools. Downscaling metawebs towards local network predictions is a promising approach to using the current data to investigate the variation of networks across space. However, issues remain in how to represent the spatial variability and uncertainty of species interactions, especially for large-scale food webs. Here, we present a probabilistic framework to downscale a metaweb based on the Canadian mammal metaweb and species occurrences from global databases. We investigated how our approach can be used to represent the variability of networks and communities between ecoregions in Canada. Species richness and interactions followed a similar latitudinal gradient across ecoregions but simultaneously identified contrasting diversity hotspots. Network motifs revealed additional areas of variation in network structure compared with species richness and number of links. Our method offers the potential to bring global predictions down to a more actionable local scale, and increases the diversity of ecological networks that can be projected in space. This article is part of the theme issue 'Connected interactions: enriching food web research by spatial and social interactions'.


Assuntos
Biodiversidade , Cadeia Alimentar , Canadá , Animais , Mamíferos/fisiologia , Modelos Biológicos
9.
PLoS One ; 19(7): e0300870, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39024232

RESUMO

Rapid growth in outdoor recreation may have important and varied effects on terrestrial mammal communities. Few studies have investigated factors influencing variation in observed responses of multiple mammal species to recreation. We used data from 155 camera traps, in western Alberta (Canada), and a hierarchical Bayesian community modelling framework to document 15 mammal species responses to recreation, test for differential responses between predators and prey, and evaluate the influence of local context. Factors characterizing context were trail designation (i.e., use by motorized vs non-motorized), management type, forest cover, landscape disturbance, and season. We used three measures to characterize variation in recreation pressure: distance to trail, trail density, and an index of recreation intensity derived from the platform Strava. We found limited evidence for strong or consistent effects of recreation on mammal space use. However, mammal space use was better explained by an interaction between recreation and the influencing factors than by either on their own. The strongest interaction was between trail density and management type; mammals were more likely to avoid sites near a higher density of trails in areas with more restrictive management. We found that responses to recreation varied with the trail designation, although there were not clear or consistent differences between responses to trails designated for motorized vs. non-motorized use. Overall, we found that responses were species- and context-dependent. Limiting the density of trails may be important for reducing negative impacts to mammals within conservation areas. We show that using multiple measures of recreation yields more insight into the varied effects of human disturbances on wildlife. We recommend investigating how different characteristics of recreation (noise, speed, and visibility) influence animal behaviors. Multispecies monitoring and modelling across multiple landscapes that vary in recreation pressure can lead to an adaptive management approach to ensuring outdoor recreation coexistence with wildlife.


Assuntos
Mamíferos , Recreação , Animais , Mamíferos/fisiologia , Humanos , Alberta , Ecossistema , Conservação dos Recursos Naturais , Teorema de Bayes
10.
Proc Biol Sci ; 291(2026): 20240820, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38981526

RESUMO

Unravelling the functional steps that underlie major transitions in the fossil record is a significant challenge for biologists owing to the difficulties of interpreting functional capabilities of extinct organisms. New computational modelling approaches provide exciting avenues for testing function in the fossil record. Here, we conduct digital bending experiments to reconstruct vertebral function in non-mammalian synapsids, the extinct forerunners of mammals, to provide insights into the functional underpinnings of the synapsid-mammal transition. We estimate range of motion and stiffness of intervertebral joints in eight non-mammalian synapsid species alongside a comparative sample of extant tetrapods, including salamanders, reptiles and mammals. We show that several key aspects of mammalian vertebral function evolved outside crown Mammalia. Compared to early diverging non-mammalian synapsids, cynodonts stabilized the posterior trunk against lateroflexion, while evolving axial rotation in the anterior trunk. This was later accompanied by posterior sagittal bending in crown mammals, and perhaps even therians specifically. Our data also support the prior hypothesis that functional diversification of the mammalian trunk occurred via co-option of existing morphological regions in response to changing selective demands. Thus, multiple functional and evolutionary steps underlie the origin of remarkable complexity in the mammalian backbone.


Assuntos
Evolução Biológica , Fósseis , Mamíferos , Coluna Vertebral , Animais , Mamíferos/fisiologia , Fósseis/anatomia & histologia , Coluna Vertebral/anatomia & histologia , Coluna Vertebral/fisiologia , Fenômenos Biomecânicos , Amplitude de Movimento Articular , Répteis/fisiologia , Répteis/anatomia & histologia
11.
Glob Chang Biol ; 30(6): e17375, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38895806

RESUMO

Islands are biodiversity hotspots that host unique assemblages. However, a substantial proportion of island species are threatened and their long-term survival is uncertain. Identifying and preserving vulnerable species has become a priority, but it is also essential to combine this information with other facets of biodiversity like functional diversity, to understand how future extinctions might affect ecosystem stability and functioning. Focusing on mammals, we (i) assessed how much functional space would be lost if threatened species go extinct, (ii) determined the minimum number of extinctions that would cause a significant functional loss, (iii) identified the characteristics (e.g., biotic, climatic, geographic, or orographic) of the islands most vulnerable to future changes in the functional space, and (iv) quantified how much of that potential functional loss would be offset by introduced species. Using trait information for 1474 mammal species occurring in 318 islands worldwide, we built trait probability density functions to quantify changes in functional richness and functional redundancy in each island if the mammals categorized by IUCN as threatened disappeared. We found that the extinction of threatened mammals would reduce the functional space in 63% of the assessed islands, although these extinctions in general would cause a reduction of less than 15% of their overall functional space. Also, on most islands, the extinction of just a few species would be sufficient to cause a significant loss of functional diversity. The potential functional loss would be higher on small, isolated, and/or species-rich islands, and, in general, the functional space lost would not be offset by introduced species. Our results show that the preservation of native species and their ecological roles remains crucial for maintaining the current functioning of island ecosystems. Therefore, conservation measures considering functional diversity are imperative to safeguard the unique functional roles of threatened mammal species on islands.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Espécies em Perigo de Extinção , Extinção Biológica , Ilhas , Mamíferos , Animais , Mamíferos/fisiologia , Espécies Introduzidas
12.
J Anim Ecol ; 93(8): 1065-1077, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38932441

RESUMO

Unravelling the intricate mechanisms that govern community coexistence remains a daunting challenge, particularly amidst ongoing environmental change. Individual physiology and metabolism are often studied to understand the response of individual animals to environmental change. However, this perspective is currently largely lacking in community ecology. We argue that the integration of individual metabolism into community theory can offer new insights into coexistence. We present the first individual-based metabolic community model for a terrestrial mammal community to simulate energy dynamics and home range behaviour in different environments. Using this model, we investigate how ecologically similar species coexist and maintain their energy balance under food competition. Only if individuals of different species are able to balance their incoming and outgoing energy over the long-term will they be able to coexist. After thoroughly testing and validating the model against real-world patterns such as of home range dynamics and field metabolic rates, we applied it as a case study to scenarios of habitat fragmentation - a widely discussed topic in biodiversity research. First, comparing single-species simulations with community simulations, we find that the effect of habitat fragmentation on populations is strongly context-dependent. While populations of species living alone in the landscape were mostly positively affected by fragmentation, the diversity of a community of species was highest under medium fragmentation scenarios. Under medium fragmentation, energy balance and reproductive investment were also most similar among species. We therefore suggest that similarity in energy balance among species promotes coexistence. We argue that energetics should be part of community ecology theory, as the relative energetic status and reproductive investment can reveal why and under what environmental conditions coexistence is likely to occur. As a result, landscapes can potentially be protected and designed to maximize coexistence. The metabolic community model presented here can be a promising tool to investigate other scenarios of environmental change or other species communities to further disentangle global change effects and preserve biodiversity.


Assuntos
Biodiversidade , Metabolismo Energético , Modelos Biológicos , Animais , Mamíferos/fisiologia , Ecossistema , Comportamento de Retorno ao Território Vital
13.
Mar Environ Res ; 199: 106571, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38833807

RESUMO

Passive acoustics is an effective method for monitoring marine mammals, facilitating both detection and population estimation. In warm tropical waters, this technique encounters challenges due to the high persistent level of ambient impulsive noise originating from the snapping shrimp present throughout this region. This study presents the development and application of a neural-network based detector for marine-mammal vocalizations in long term acoustic data recorded by us at ten locations in Singapore waters. The detector's performance is observed to be impeded by the high shrimp noise activity. To counteract this, we investigate several techniques to improve detection capabilities in shrimp noise including the use of simple nonlinear denoisers and a machine-learning based denoiser. These are shown to enhance the detection performance significantly. Finally, we discuss some of the vocalizations detected over three years of our acoustic recorder deployments using the robust detectors developed.


Assuntos
Acústica , Monitoramento Ambiental , Aprendizado de Máquina , Ruído , Vocalização Animal , Animais , Monitoramento Ambiental/métodos , Singapura , Mamíferos/fisiologia
14.
Proc Biol Sci ; 291(2024): 20232889, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38864336

RESUMO

Food availability and distribution are key drivers of animal space use. Supplemental food provided by humans can be more abundant and predictable than natural resources. It is thus believed that supplementary feeding modifies the spatial behaviour of wildlife. Yet, such effects have not been tested quantitatively across species. Here, we analysed changes in home range size owing to supplementary feeding in 23 species of terrestrial mammals using a meta-analysis of 28 studies. Additionally, we investigated the moderating effect of factors related to (i) species biology (sex, body mass and taxonomic group), (ii) feeding regimen (duration, amount and purpose), and (iii) methods of data collection and analysis (source of data, estimator and spatial confinement). We found no consistent effect of supplementary feeding on changes in home range size. While an overall tendency of reduced home range was observed, moderators varied in the direction and strength of the trends. Our results suggest that multiple drivers and complex mechanisms of home range behaviour can make it insensitive to manipulation with supplementary feeding. The small number of available studies stands in contrast with the ubiquity and magnitude of supplementary feeding worldwide, highlighting a knowledge gap in our understanding of the effects of supplementary feeding on ranging behaviour.


Assuntos
Comportamento Alimentar , Comportamento de Retorno ao Território Vital , Mamíferos , Animais , Mamíferos/fisiologia , Masculino , Feminino
15.
Proc Biol Sci ; 291(2025): rspb20240844, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38889781

RESUMO

Biological invasions are among the threats to global biodiversity and social sustainability, especially on islands. Identifying the threshold of area at which non-native species begin to increase abruptly is crucial for early prevention strategies. The small-island effect (SIE) was proposed to quantify the nonlinear relationship between native species richness and area but has not yet been applied to non-native species and thus to predict the key breakpoints at which established non-native species start to increase rapidly. Based on an extensive global dataset, including 769 species of non-native birds, mammals, amphibians and reptiles established on 4277 islands across 54 archipelagos, we detected a high prevalence of SIEs across 66.7% of archipelagos. Approximately 50% of islands have reached the threshold area and thus may be undergoing a rapid increase in biological invasions. SIEs were more likely to occur in those archipelagos with more non-native species introduction events, more established historical non-native species, lower habitat diversity and larger archipelago area range. Our findings may have important implications not only for targeted surveillance of biological invasions on global islands but also for predicting the responses of both non-native and native species to ongoing habitat fragmentation under sustained land-use modification and climate change.


Assuntos
Biodiversidade , Espécies Introduzidas , Ilhas , Animais , Conservação dos Recursos Naturais , Ecossistema , Aves/fisiologia , Anfíbios/fisiologia , Mamíferos/fisiologia , Répteis/fisiologia
16.
Reprod Fertil Dev ; 362024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38870344

RESUMO

In addition to its central role in cellular metabolism, adenosine 5'-triphosphate (ATP) is an important extracellular signalling molecule involved in various physiological processes. In reproduction, extracellular ATP participates in both autocrine and paracrine paths regulating gametogenesis, gamete maturation and fertilisation. This review focusses on how extracellular ATP modulates sperm physiology with emphasis on the mammalian acrosome reaction. The presence of extracellular ATP in the reproductive tract is primarily determined by the ion channels and transporters that influence its movement within the cells comprising the tract. The main targets of extracellular ATP in spermatozoa are its own transporters, particularly species-specific sperm purinergic receptors. We also discuss notable phenotypes from knock-out mouse models and human Mendelian inheritance related to ATP release mechanisms, along with immunological, proteomic, and functional observations regarding sperm purinergic receptors and their involvement in sperm signalling.


Assuntos
Trifosfato de Adenosina , Espermatozoides , Animais , Masculino , Espermatozoides/metabolismo , Espermatozoides/fisiologia , Trifosfato de Adenosina/metabolismo , Humanos , Reação Acrossômica/fisiologia , Receptores Purinérgicos/metabolismo , Transdução de Sinais , Mamíferos/fisiologia , Camundongos
17.
Science ; 384(6700): 1065-1066, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38843350

RESUMO

Comparative genomics elucidates the steps enabling heat production in fat tissue.


Assuntos
Tecido Adiposo Marrom , Evolução Biológica , Mamíferos , Termogênese , Animais , Mamíferos/genética , Mamíferos/fisiologia , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Marrom/fisiologia , Humanos , Genômica
18.
Sci Adv ; 10(25): eadn6842, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38896622

RESUMO

Landscape properties have a profound influence on the diversity and distribution of biota, with present-day biodiversity hot spots occurring in topographically complex regions globally. Complex topography is created by tectonic processes and further shaped by interactions between climate and land-surface processes. These processes enrich diversity at the regional scale by promoting speciation and accommodating increased species richness along strong environmental gradients. Synthesis of the mammalian fossil record and a geophysical model of topographic evolution of the Basin and Range Province in western North America enable us to directly quantify relationships between mammal diversity and landscape dynamics over the past 30 million years. We analyze the covariation between tectonic history (extensional strain rates, paleotopography, and ruggedness), global temperature, and diversity dynamics. Mammal species richness and turnover exhibit stronger responses to rates of change in landscape properties than to the specific properties themselves, with peaks in diversity coinciding with high tectonic strain rates and large changes in elevation across spatial scales.


Assuntos
Biodiversidade , Mamíferos , Animais , Mamíferos/fisiologia , América do Norte , Fósseis , Geografia , Ecossistema , Clima
19.
PLoS One ; 19(6): e0304885, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38900815

RESUMO

Same-sex sexual behaviour (SSSB) occurs in most animal clades, but published reports are largely concentrated in a few taxa. Thus, there remains a paucity of published reports for most mammalian species. We conducted a cross-sectional expert survey to better understand the underlying reasons for the lack of publications on this topic. Most respondents researched Primates (83.6%, N = 61), while the rest studied Carnivora (6.9%, N = 5), Rodentia (4.1%, N = 3), Artiodactyla (2.7%, N = 2), and Proboscidea (2.7%, N = 2). Most respondents (76.7%, N = 56) had observed SSSB in their study species, but only 48.2% (N = 27) collected data on SSSB, and few (18.5%, N = 5) had published papers on SSSB. Of the unique species identified as engaging in SSSB in the survey, 38.6% (N = 17) have no existing reports of SSSB to the knowledge of the authors. In both the survey questions and freeform responses, most respondents indicated that their lack of data collection or publication on SSSB was because the behaviours were rare, or because it was not a research priority of their lab. No respondents reported discomfort or sociopolitical concerns at their university or field site as a reason for why they did not collect data or publish on SSSB. Multiple logistic regressions were performed to assess whether taxa studied, education level, or identification within the LGBTQ+ community predicted observing, collecting data on, or publishing on SSSB, but none of these variables were significant predictors. These results provide preliminary evidence that SSSB occurs more frequently than what is available in the published record and suggest that this may be due to a publishing bias against anecdotal evidence.


Assuntos
Mamíferos , Animais , Masculino , Feminino , Inquéritos e Questionários , Mamíferos/fisiologia , Estudos Transversais , Humanos , Comportamento Sexual Animal/fisiologia , Homossexualidade Masculina/psicologia , Homossexualidade Masculina/estatística & dados numéricos
20.
J Anim Ecol ; 93(7): 862-875, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38831563

RESUMO

Food hoarding provides animals access to resources during periods of scarcity. Studies on mammalian caching indicate associations with brain size, seasonality and diet but are biased to a subset of rodents. Whether the behaviour is generalizable at other taxonomic scales and/or is influenced by other ecological factors is less understood. Population density may influence food caching due to food competition or pilferage, but this remains untested in a comparative framework. Using phylogenetic analyses, we assessed the role of morphology (body and brain size), climate, diet breadth and population density on food caching behaviour evolution at multiple taxonomic scales. We also used a long-term dataset on caching behaviour of red squirrels (Tamiasciurus fremonti) to test key factors (climate and population density) on hoarding intensity. Consistent with previous smaller scale studies, we found the mammalian ancestral state for food caching was larderhoarding, and scatterhoarding was derived. Caching strategy was strongly associated with brain size, population density and climate. Mammals with larger brains and hippocampal volumes were more likely to scatterhoard, and species living at higher population densities and in colder climates were more likely to larderhoard. Finer-scale analyses within families, sub-families and tribes indicated that the behaviour is evolutionary labile. Brain size in family Sciuridae and tribe Marmotini was larger in scatterhoarders, but not in other tribes. Scatterhoarding in tribe Marmotini was more likely in species with lower population densities while scatterhoarding in tribe Sciurini was associated with warmer climates. Red squirrel larderhoarding intensity was positively related to population density but not climate, implicating food competition or pilferage as an important mechanism mediating caching behaviour. Our results are consistent with previous smaller-scale studies on food caching and indicate the evolutionary patterns of mammalian food caching are broadly generalizable. Given the lability of caching behaviour as evidenced by the variability of our results at finer phylogenetic scales, comparative analyses must consider taxonomic scale. Applying our results to conservation could prove useful as changes in population density or climate may select for different food caching strategies and thus can inform management of threatened and endangered species and their habitats.


Assuntos
Evolução Biológica , Comportamento Alimentar , Mamíferos , Animais , Mamíferos/fisiologia , Classificação , Encéfalo , Sciuridae , Abastecimento de Alimentos , Clima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...