Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.690
Filtrar
1.
Biomolecules ; 14(7)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-39062526

RESUMO

Red blood cell (RBC) storage solutions have evolved significantly over the past decades to optimize the preservation of cell viability and functionality during hypothermic storage. This comprehensive review provides an in-depth analysis of the effects of various storage solutions and conditions on critical RBC parameters during refrigerated preservation. A wide range of solutions, from basic formulations such as phosphate-buffered saline (PBS), to advanced additive solutions (ASs), like AS-7 and phosphate, adenine, glucose, guanosine, saline, and mannitol (PAGGSM), are systematically compared in terms of their ability to maintain key indicators of RBC integrity, including adenosine triphosphate (ATP) levels, morphology, and hemolysis. Optimal RBC storage requires a delicate balance of pH buffering, metabolic support, oxidative damage prevention, and osmotic regulation. While the latest alkaline solutions enable up to 8 weeks of storage, some degree of metabolic and morphological deterioration remains inevitable. The impacts of critical storage conditions, such as the holding temperature, oxygenation, anticoagulants, irradiation, and processing methods, on the accumulation of storage lesions are also thoroughly investigated. Personalized RBC storage solutions, tailored to individual donor characteristics, represent a promising avenue for minimizing storage lesions and enhancing transfusion outcomes. Further research integrating omics profiling with customized preservation media is necessary to maximize post-transfusion RBC survival and functions. The continued optimization of RBC storage practices will not only enhance transfusion efficacy but also enable blood banking to better meet evolving clinical needs.


Assuntos
Preservação de Sangue , Sobrevivência Celular , Eritrócitos , Eritrócitos/metabolismo , Eritrócitos/citologia , Humanos , Preservação de Sangue/métodos , Sobrevivência Celular/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Glucose/metabolismo , Trifosfato de Adenosina/metabolismo , Manitol/farmacologia
2.
Mol Cell Proteomics ; 23(8): 100804, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38901673

RESUMO

Osmotic stress significantly hampers plant growth and crop yields, emphasizing the need for a thorough comprehension of the underlying molecular responses. Previous research has demonstrated that osmotic stress rapidly induces calcium influx and signaling, along with the activation of a specific subset of protein kinases, notably the Raf-like protein (RAF)-sucrose nonfermenting-1-related protein kinase 2 (SnRK2) kinase cascades within minutes. However, the intricate interplay between calcium signaling and the activation of RAF-SnRK2 kinase cascades remains elusive. Here, in this study, we discovered that Raf-like protein (RAF) kinases undergo hyperphosphorylation in response to osmotic shocks. Intriguingly, treatment with the calcium chelator EGTA robustly activates RAF-SnRK2 cascades, mirroring the effects of osmotic treatment. Utilizing high-throughput data-independent acquisition-based phosphoproteomics, we unveiled the global impact of EGTA on protein phosphorylation. Beyond the activation of RAFs and SnRK2s, EGTA treatment also activates mitogen-activated protein kinase cascades, Calcium-dependent protein kinases, and receptor-like protein kinases, etc. Through overlapping assays, we identified potential roles of mitogen-activated protein kinase kinase kinase kinases and receptor-like protein kinases in the osmotic stress-induced activation of RAF-SnRK2 cascades. Our findings illuminate the regulation of phosphorylation and cellular events by Ca2+ signaling, offering insights into the (exocellular) Ca2+ deprivation during early hyperosmolality sensing and signaling.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ácido Egtázico , Manitol , Pressão Osmótica , Proteômica , Arabidopsis/metabolismo , Arabidopsis/efeitos dos fármacos , Fosforilação , Proteínas de Arabidopsis/metabolismo , Proteômica/métodos , Ácido Egtázico/farmacologia , Ácido Egtázico/análogos & derivados , Manitol/farmacologia , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Quinases raf/metabolismo
3.
BMC Plant Biol ; 24(1): 472, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38811894

RESUMO

Salinity stress, an ever-present challenge in agriculture and environmental sciences, poses a formidable hurdle for plant growth and productivity in saline-prone regions worldwide. Therefore, this study aimed to explore the effectiveness of trehalose and mannitol induce salt resistance in wheat seedlings. Wheat grains of the commercial variety Sakha 94 were divided into three groups : a group that was pre-soaked in 10 mM trehalose, another group was soaked in 10 mM mannitol, and the last was soaked in distilled water for 1 hour, then the pre soaked grains cultivated in sandy soil, each treatment was divided into two groups, one of which was irrigated with 150 mM NaCl and the other was irrigated with tap water. The results showed that phenols content in wheat seedlings increased and flavonoids reduced due to salt stress. Trehalose and mannitol cause slight increase in total phenols content while total flavonoids were elevated highy in salt-stressed seedlings. Furthermore, Trehalose or mannitol reduced salt-induced lipid peroxidation. Salt stress increases antioxidant enzyme activities of guaiacol peroxidase (G-POX), ascorbate peroxidase (APX), and catalase (CAT) in wheat seedlings, while polyphenol oxidase (PPO) unchanged. Trehalose and mannitol treatments caused an increase in APX, and CAT activities, whereas G-POX not altered but PPO activity were decreased under salt stress conditions. Molecular docking confirmed the interaction of Trehalose or mannitol with peroxidase and ascorbic peroxidase enzymes. Phenyl alanine ammonia layase (PAL) activity was increased in salt-stressed seedlings. We can conclude that pre-soaking of wheat grains in 10 mM trehalose or mannitol improves salinity stress tolerance by enhancing antioxidant defense enzyme and/or phenol biosynthesis, with docking identifying interactions with G-POX, CAT, APX, and PPO.


Assuntos
Manitol , Tolerância ao Sal , Plântula , Trealose , Triticum , Triticum/efeitos dos fármacos , Triticum/fisiologia , Triticum/metabolismo , Trealose/metabolismo , Plântula/efeitos dos fármacos , Plântula/fisiologia , Manitol/farmacologia , Tolerância ao Sal/efeitos dos fármacos , Simulação de Acoplamento Molecular , Antioxidantes/metabolismo , Estresse Salino/efeitos dos fármacos , Flavonoides/metabolismo , Fenóis/metabolismo
4.
Exp Parasitol ; 260: 108725, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38458554

RESUMO

Duddingtonia flagrans is a nematophagous fungus which has shown promising results as a non-chemical parasitic control tool. The fungus disrupts the parasite's life cycle by trapping larvae in the environment through the networks generated from chlamydospores, thus preventing the reinfection of animals. One barrier to the development of a commercial product using this tool is the need to increase chlamydospore production in the laboratory for its administration to livestock. The purpose of this study was to evaluate the addition of mannitol to an enriched culture medium and the effect of adverse cultivation conditions on chlamydospore production. D. flagrans was cultivated on Petri dishes with corn agar for 4 weeks at 27 °C and 70% relative humidity (RH). Four groups were then formed, all with Sabouraud agar as a base, to which different growth inducers were added: GSA (glucose Sabouraud agar), GSA-MI (glucose Sabouraud agar + meso inositol), GSA-E (enriched glucose Sabouraud agar), and AE-M (enriched agar + mannitol). After 4 weeks, chlamydospores were recovered by washing the surface of each plate with distilled water and then quantified. The medium that yielded the highest amount of chlamydospores was subjected to different cultivation conditions: NC (normal conditions): 70% RH and 27 °C, AC (adverse conditions) 1: 20% RH and 40 °C, CA2: 60% RH and 27 °C, and CA3: 55% RH and 24 °C. It was determined that mannitol increases chlamydospore production (65x106 chlamydospores/plate), and when reducing humidity by 10% under cultivation conditions it resulted in an approximately 10% increase in chlamydospore production compared to the control group. These results suggest that the addition of polyols, as well as its cultivation under certain environmental conditions, can improve chlamydospore production on a laboratory scale.


Assuntos
Ágar , Meios de Cultura , Duddingtonia , Manitol , Esporos Fúngicos , Manitol/farmacologia , Meios de Cultura/química , Esporos Fúngicos/crescimento & desenvolvimento , Duddingtonia/crescimento & desenvolvimento , Duddingtonia/fisiologia , Glucose/metabolismo , Animais , Inositol/farmacologia , Umidade , Temperatura , Agentes de Controle Biológico/farmacologia
5.
BMC Vet Res ; 20(1): 99, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38468237

RESUMO

OBJECTIVES: The aim of the present study was to examine donkey sperm quality after intratesticular injection of hypertonic mannitol (HM) and saline (HS). METHODS: Randomly assigned to five treatment groups were 15 adult male donkeys: (1) Control group (no treatment), (2) Surgery group (surgical castration for testosterone control), (3) NS group (normal saline intratesticular injection), (4) HS group (hypertonic saline), and (5) HM group. We injected 20 mL per testicle. We took 5 mL blood from all donkeys before injection. Castration was performed under general anesthesia 60 days later. Samples included blood and testicular tissue. Total motility (TM), progressive motility (PM), movementy features, DNA damage, morphology, viability, and plasma membrane functionality were evaluated. Hormone analyses, histomorphometric studies and oxidative stress indices including total antioxidant capacity (TAC), glutathione peroxidase (GPx), glutathione (GSH), superoxide dismutase (SOD), malondialdehyde (MDA), and NADP+/NADPH were evaluated. Apoptosis, pyroptosis-related Bax, Caspase-1, GSDMD, and Bcl-2 expression were also assessed. RESULTS: In HS and HM groups, testosterone, epididymal sperm count, motility, viability, and plasma membrane functionality dropped while sperm DNA damage increased. HS and HM groups had significantly lower histomorphometric parameters, TAC, GPx, SOD, GSH, and Bcl-2 gene expression. MDA, NADP+/NADPH, Bax, Caspase-1, and GSDMD gene expression were substantially higher in the HS and HM groups than in the control group. CONCLUSIONS: Toxic effects of hypertonic saline and mannitol on reproductive parameters were seen following, hence, they might be considered as a good chemical sterilizing treatment in donkeys.


Assuntos
Manitol , Solução Salina , Animais , Masculino , Antioxidantes/metabolismo , Proteína X Associada a bcl-2 , Caspases/metabolismo , Manitol/farmacologia , Manitol/metabolismo , NADP/metabolismo , Estresse Oxidativo , Solução Salina/metabolismo , Solução Salina/farmacologia , Sêmen , Espermatozoides , Superóxido Dismutase/metabolismo , Testículo/metabolismo , Testosterona
6.
Eur J Appl Physiol ; 124(7): 2045-2056, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38386104

RESUMO

PURPOSE: Intestinal permeability is a critical component of gut barrier function. Barrier dysfunction can be triggered by certain stressors such as exercise, and if left unmanaged can lead to local and systemic disorders. The aim of this study was to investigate the effects of a specific whey protein fraction in alleviating exercise-induced gut permeability as assessed by recovery of lactulose/rhamnose (L/R) and lactulose/mannitol (L/M) urinary probes. METHODS: Eight males and eight females (aged 18-50) completed two arms of a double-blind, placebo-controlled, crossover study. For each arm participants performed two baseline intestinal permeability assessments, following which they consumed the treatment (2 g/day of milk powder containing 200 mg of whey protein) or placebo (2 g/day of milk powder) for 14 days, before performing a post-exercise permeability assessment. The exercise protocol involved a 20-min run at 80% of maximal oxygen uptake on a 1% incline. RESULTS: Mixed model analysis revealed an increase in L/R (23%; P < 0.001) and L/M (20%; P < 0.01) recovery following exercise. However, there was no treatment or treatment × exercise effect. CONCLUSION: The exercise protocol utilised in our study induces gut permeability. However, consuming whey protein, at the dose and timing prescribed, is not able to mitigate this effect.


Assuntos
Exercício Físico , Permeabilidade , Proteínas do Soro do Leite , Humanos , Proteínas do Soro do Leite/farmacologia , Proteínas do Soro do Leite/administração & dosagem , Masculino , Adulto , Feminino , Exercício Físico/fisiologia , Permeabilidade/efeitos dos fármacos , Animais , Método Duplo-Cego , Pessoa de Meia-Idade , Adulto Jovem , Lactulose/urina , Lactulose/farmacologia , Estudos Cross-Over , Adolescente , Bovinos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Ramnose/farmacologia , Manitol/farmacologia
7.
Int J Mol Sci ; 25(3)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38338808

RESUMO

Peyer's patches (PPs) are part of the gut-associated lymphatic tissue (GALT) and represent the first line of the intestinal immunological defense. They consist of follicles with lymphocytes and an overlying subepithelial dome with dendritic cells and macrophages, and they are covered by the follicle-associated epithelium (FAE). A sealed paracellular pathway in the FAE is crucial for the controlled uptake of luminal antigens. Quercetin is the most abundant plant flavonoid and has a barrier-strengthening effect on tight junctions (TJs), a protein complex that regulates the paracellular pathway. In this study, we aimed to analyze the effect of quercetin on porcine PPs and the surrounding villus epithelium (VE). We incubated both tissue types for 4 h in Ussing chambers, recorded the transepithelial electrical resistance (TEER), and measured the unidirectional tracer flux of [3H]-mannitol. Subsequently, we analyzed the expression, protein amount, and localization of three TJ proteins, claudin 1, claudin 2, and claudin 4. In the PPs, we could not detect an effect of quercetin after 4 h, neither on TEER nor on the [3H]-mannitol flux. In the VE, quercetin led to a higher TEER value, while the [3H]-mannitol flux was unchanged. The pore-forming claudin 2 was decreased while the barrier-forming claudin 4 was increased and the expression was upregulated. Claudin 1 was unchanged and all claudins could be located in the paracellular membrane by immunofluorescence microscopy. Our study shows the barrier-strengthening effect of quercetin in porcine VE by claudin 4 upregulation and a claudin 2 decrease. Moreover, it underlines the different barrier properties of PPs compared to the VE.


Assuntos
Nódulos Linfáticos Agregados , Quercetina , Animais , Suínos , Quercetina/farmacologia , Quercetina/metabolismo , Nódulos Linfáticos Agregados/metabolismo , Claudina-4/metabolismo , Claudina-2/metabolismo , Claudina-1/metabolismo , Intestino Delgado/metabolismo , Claudinas/metabolismo , Junções Íntimas/metabolismo , Manitol/farmacologia
8.
J Econ Entomol ; 117(2): 595-600, 2024 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-38266274

RESUMO

Native apple maggot fly, Rhagoletis pomonella, and invasive spotted-wing drosophila, Drosophila suzukii, are key pests of apple and small fruit, respectively, in the United States. Both species are typically managed with standard insecticide applications. However, interest in alternative strategies that result in insecticide reductions has led to evaluations of nonnutritive sugars as toxicants for Drosophila species and development of attracticidal spheres for both species. Here, we evaluated the survivorship of R. pomonella and D. suzukii when provided with standard diets that substituted saccharin, sucralose, aspartame, erythritol, dextrose, or mannitol for the sucrose component and compared them with standard diets and water-only controls for up to 15 days. Presence of erythritol and mannitol significantly decreased survivorship of R. pomonella and erythritol significantly decreased the survivorship of D. suzukii. However, mobility trials following a 2 h exposure to aqueous solutions of each sugar treatment resulted in no strong impact on either species. Survivorship after 30 min exposure to erythritol or mannitol alone, or in combination with varying concentrations of sucrose (serving as a phagostimulant) at 30 min and 24 h were evaluated for both species. Only D. suzukii survivorship was affected with decreased survivorship on erythritol:sucrose solutions of 20:0% and 15:5% for 24 h. Based on all results, erythritol appeared most promising, and was integrated into attracticidal spheres as a toxicant but even at the highest concentration, survivorship remained unaffected for either species, thus making this nonnutritive sugar impractical and ineffective as a toxicant substitute in attracticidal spheres.


Assuntos
Inseticidas , Tephritidae , Animais , Drosophila , Inseticidas/farmacologia , Controle de Insetos/métodos , Sobrevivência , Sacarose , Açúcares/farmacologia , Eritritol/farmacologia , Manitol/farmacologia , Dieta
9.
Chin J Traumatol ; 27(1): 42-52, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37953130

RESUMO

PURPOSE: Mannitol is one of the first-line drugs for reducing cerebral edema through increasing the extracellular osmotic pressure. However, long-term administration of mannitol in the treatment of cerebral edema triggers damage to neurons and astrocytes. Given that neural stem cell (NSC) is a subpopulation of main regenerative cells in the central nervous system after injury, the effect of mannitol on NSC is still elusive. The present study aims to elucidate the role of mannitol in NSC proliferation. METHODS: C57 mice were derived from the animal house of Zunyi Medical University. A total of 15 pregnant mice were employed for the purpose of isolating NSCs in this investigation. Initially, mouse primary NSCs were isolated from the embryonic cortex of mice and subsequently identified through immunofluorescence staining. In order to investigate the impact of mannitol on NSC proliferation, both cell counting kit-8 assays and neurospheres formation assays were conducted. The in vitro effects of mannitol were examined at various doses and time points. In order to elucidate the role of Aquaporin 4 (AQP4) in the suppressive effect of mannitol on NSC proliferation, various assays including reverse transcription polymerase chain reaction, western blotting, and immunocytochemistry were conducted on control and mannitol-treated groups. Additionally, the phosphorylated p38 (p-p38) was examined to explore the potential mechanism underlying the inhibitory effect of mannitol on NSC proliferation. Finally, to further confirm the involvement of the p38 mitogen-activated protein kinase-dependent (MAPK) signaling pathway in the observed inhibition of NSC proliferation by mannitol, SB203580 was employed. All data were analyzed using SPSS 20.0 software (SPSS, Inc., Chicago, IL). The statistical analysis among multiple comparisons was performed using one-way analysis of variance (ANOVA), followed by Turkey's post hoc test in case of the data following a normal distribution using a Shapiro-Wilk normality test. Comparisons between 2 groups were determined using Student's t-test, if the data exhibited a normal distribution using a Shapiro-Wilk normality test. Meanwhile, data were shown as median and interquartile range and analyzed using the Mann-Whitney U test, if the data failed the normality test. A p < 0.05 was considered as significant difference. RESULTS: Primary NSC were isolated from the mice, and the characteristics were identified using immunostaining analysis. Thereafter, the results indicated that mannitol held the capability of inhibiting NSC proliferation in a dose-dependent and time-dependent manner using cell counting kit-8, neurospheres formation, and immunostaining of Nestin and Ki67 assays. During the process of mannitol suppressing NSC proliferation, the expression of AQP4 mRNA and protein was downregulated, while the gene expression of p-p38 was elevated by reverse transcription polymerase chain reaction, immunostaining, and western blotting assays. Subsequently, the administration of SB203580, one of the p38 MAPK signaling pathway inhibitors, partially abrogated this inhibitory effect resulting from mannitol, supporting the fact that the p38 MAPK signaling pathway participated in curbing NSC proliferation induced by mannitol. CONCLUSIONS: Mannitol inhibits NSC proliferation through downregulating AQP4, while upregulating the expression of p-p38 MAPK.


Assuntos
Edema Encefálico , Células-Tronco Neurais , Humanos , Animais , Manitol/farmacologia , Células-Tronco Neurais/metabolismo , Sistema de Sinalização das MAP Quinases , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/farmacologia , Proliferação de Células
10.
Clin Exp Pharmacol Physiol ; 51(2): e13835, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37994166

RESUMO

Ischemic reperfusion injury, caused by oxidative stress during reperfusion, is an inevitable outcome of organ transplantation, especially when the organ preservation time is prolonged. Prolonged ischaemic preservation is a valuable technique for improving the success of organ transplantation, but numerous challenges remain. 3-nitro-N-methyl salicylamide (3-NNMS), an inhibitor of mitochondrial electron transport chain complex III, can be used to reduce reactive oxygen species production during blood reperfusion by slowing the electron flow rate of the respiratory chain. Based on this property, a novel preservation solution was developed for the preservation of isolated rat heart and its cardioprotective effect was investigated during an 8-h cold ischaemia preservation time for the first time. For comparison, 3-NNMS was also included in the histidine-tryptophan-ketoglutarate (HTK) solution. Compared to HTK, HTK supplemented with 3-NNMS significantly improved the heart rate of isolated rat hearts after 8 h of cold storage. Both 3-NNMS solution and HTK supplemented with 3-NNMS solution decreased cardiac troponin T and lactate dehydrogenase levels in perfusion fluid and reduced reactive oxygen species and malondialdehyde levels in the myocardium. The 3-NNMS also maintained the membrane potential of myocardial mitochondria and significantly increased superoxide dismutase levels. These results showed that the new 3-NNMS solution can protect mitochondrial and cardiomyocyte function by increasing antioxidant capacity and reducing oxidative stress in cryopreserved rat hearts during a prolonged preservation time, resulting in less myocardial injury and better heart rate.


Assuntos
Coração , Soluções para Preservação de Órgãos , Ratos , Animais , Soluções para Preservação de Órgãos/farmacologia , Espécies Reativas de Oxigênio , Miocárdio , Glucose/farmacologia , Manitol/farmacologia , Salicilamidas/farmacologia
11.
Int J Mol Sci ; 24(19)2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37834024

RESUMO

Plant roots show distinct gene-expression profiles from those of shoots under abiotic stress conditions. In this study, we performed mRNA sequencing (mRNA-Seq) to analyze the transcriptional profiling of Arabidopsis roots under osmotic stress conditions-high salinity (NaCl) and drought (mannitol). The roots demonstrated significantly distinct gene-expression changes from those of the aerial parts under both the NaCl and the mannitol treatment. We identified 68 closely connected transcription-factor genes involved in osmotic stress-signal transduction in roots. Well-known abscisic acid (ABA)-dependent and/or ABA-independent osmotic stress-responsive genes were not considerably upregulated in the roots compared to those in the aerial parts, indicating that the osmotic stress response in the roots may be regulated by other uncharacterized stress pathways. Moreover, we identified 26 osmotic-stress-responsive genes with distinct expressions of alternative splice variants in the roots. The quantitative reverse-transcription polymerase chain reaction further confirmed that alternative splice variants, such as those for ANNAT4, MAGL6, TRM19, and CAD9, were differentially expressed in the roots, suggesting that alternative splicing is an important regulatory mechanism in the osmotic stress response in roots. Altogether, our results suggest that tightly connected transcription-factor families, as well as alternative splicing and the resulting splice variants, are involved in the osmotic stress response in roots.


Assuntos
Arabidopsis , Arabidopsis/metabolismo , Pressão Osmótica/fisiologia , Cloreto de Sódio/farmacologia , Cloreto de Sódio/metabolismo , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Raízes de Plantas/metabolismo , Manitol/farmacologia , Manitol/metabolismo , RNA Mensageiro/metabolismo , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico/genética , Secas , Plantas Geneticamente Modificadas/genética
12.
Biomater Adv ; 154: 213635, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37804683

RESUMO

We investigate the formation and maintenance of the homeostatic state in the case of 2D epithelial tissues following an induction of hyperosmotic conditions, using media enriched with 80 to 320 mOsm of mannitol, NaCl, and urea. We characterise the changes in the tissue immediately after the osmotic shock, and follow it until the new homeostatic state is formed. We characterise changes in cooperative motility and proliferation pressure in the tissue upon treatment with the help of a theoretical model based on the delayed Fisher-Kolmogorov formalism, where the delay in density evolution is induced by the the finite time of the cell division. Finally we explore the adaptation of the homeostatic tissue to highly elevated osmotic conditions by evaluating the morphology and topology of cells after 20 days in incubation. We find that hyperosmotic environments together with changes in the extracellular matrix induce different mechanical states in viable tissues, where only some remain functional. The perspective is a relation between tissue topology and function, which could be explored beyond the scope of this manuscript. Experimental investigation of morphological effect of change of osmotic conditions on long-term tissue morphology and topology Effect of osmotic changes on transient tissue growth behaviour Analysis of recovery process of tissues post-osmotic-shock Toxicity limits of osmolytes in mid- to long-term tissue evolution Tissue adaptation to physiological changes in environment Long-term tissue stabilisation under altered osmotic conditions.


Assuntos
Manitol , Cloreto de Sódio , Pressão Osmótica , Cloreto de Sódio/farmacologia , Epitélio , Manitol/farmacologia , Matriz Extracelular
13.
J Oral Sci ; 65(4): 270-274, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37778986

RESUMO

PURPOSE: This study investigated the effectiveness of curcumin-based antimicrobial photodynamic therapy (aPDT) against Staphylococcus aureus (S. aureus), the causative agent of ventilator-associated pneumonia. METHODS: Curcumin was added to S. aureus culture medium at concentrations of 25, 2.5, and 0.25 µM. After 60 min (20-25°C), each culture was irradiated for 1 and 3 min, and viable bacteria were counted. Curcumin (25 µM) was also added to a bacterial suspension with D-mannitol and sodium azide; microbial counts were determined after irradiation for 3 min. RESULTS: S. aureus was significantly reduced in the 1-min (P = 0.043) and 3-min (P = 0.011) irradiation groups in comparison to the 0-min irradiation group with 25 µM curcumin. No significant differences were observed between the curcumin alone group and the curcumin plus D-mannitol or sodium azide group. CONCLUSION: The findings of this study indicate that prolonged exposure (≥1 min) of S. aureus to LED in 25 µM curcumin solution induces cell wall injury. Curcumin-based aPDT as an adjunct to conventional oral care, employing existing dentistry equipment, offers a promising approach that does not rely on antimicrobial drugs or allows the emergence of resistant bacterial strains. This suggests its potential role in future strategies aimed at preventing ventilator-associated pneumonia.


Assuntos
Anti-Infecciosos , Curcumina , Fotoquimioterapia , Pneumonia Associada à Ventilação Mecânica , Humanos , Staphylococcus aureus/efeitos da radiação , Curcumina/farmacologia , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Azida Sódica , Pneumonia Associada à Ventilação Mecânica/tratamento farmacológico , Biofilmes , Manitol/farmacologia
14.
Circ Res ; 133(8): 658-673, 2023 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-37681314

RESUMO

BACKGROUND: Cardiac conduction is understood to occur through gap junctions. Recent evidence supports ephaptic coupling as another mechanism of electrical communication in the heart. Conduction via gap junctions predicts a direct relationship between conduction velocity (CV) and bulk extracellular resistance. By contrast, ephaptic theory is premised on the existence of a biphasic relationship between CV and the volume of specialized extracellular clefts within intercalated discs such as the perinexus. Our objective was to determine the relationship between ventricular CV and structural changes to micro- and nanoscale extracellular spaces. METHODS: Conduction and Cx43 (connexin43) protein expression were quantified from optically mapped guinea pig whole-heart preparations perfused with the osmotic agents albumin, mannitol, dextran 70 kDa, or dextran 2 MDa. Peak sodium current was quantified in isolated guinea pig ventricular myocytes. Extracellular resistance was quantified by impedance spectroscopy. Intercellular communication was assessed in a heterologous expression system with fluorescence recovery after photobleaching. Perinexal width was quantified from transmission electron micrographs. RESULTS: CV primarily in the transverse direction of propagation was significantly reduced by mannitol and increased by albumin and both dextrans. The combination of albumin and dextran 70 kDa decreased CV relative to albumin alone. Extracellular resistance was reduced by mannitol, unchanged by albumin, and increased by both dextrans. Cx43 expression and conductance and peak sodium currents were not significantly altered by the osmotic agents. In response to osmotic agents, perinexal width, in order of narrowest to widest, was albumin with dextran 70 kDa; albumin or dextran 2 MDa; dextran 70 kDa or no osmotic agent, and mannitol. When compared in the same order, CV was biphasically related to perinexal width. CONCLUSIONS: Cardiac conduction does not correlate with extracellular resistance but is biphasically related to perinexal separation, providing evidence that the relationship between CV and extracellular volume is determined by ephaptic mechanisms under conditions of normal gap junctional coupling.


Assuntos
Conexina 43 , Dextranos , Animais , Cobaias , Dextranos/metabolismo , Conexina 43/metabolismo , Miócitos Cardíacos/metabolismo , Sódio/metabolismo , Junções Comunicantes/metabolismo , Albuminas/metabolismo , Manitol/farmacologia , Manitol/metabolismo , Potenciais de Ação
15.
Genes (Basel) ; 14(7)2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37510313

RESUMO

Salt and osmotic stress seriously restrict the growth, development, and productivity of horticultural crops in the greenhouse. The papain-like cysteine proteases (PLCPs) participate in multi-stress responses in plants. We previously demonstrated that salt and osmotic stress affect cysteine protease 15 of pepper (Capsicum annuum L.) (CaCP15); however, the role of CaCP15 in salt and osmotic stress responses is unknown. Here, the function of CaCP15 in regulating pepper salt and osmotic stress resistance was explored. Pepper plants were subjected to abiotic (sodium chloride, mannitol, salicylic acid, ethrel, methyl jasmonate, etc.) and biotic stress (Phytophthora capsici inoculation). The CaCP15 was silenced through the virus-induced gene silencing (VIGS) and transiently overexpressed in pepper plants. The full-length CaCP15 fragment is 1568 bp, with an open reading frame of 1032 bp, encoding a 343 amino acid protein. CaCP15 is a senescence-associated gene 12 (SAG12) subfamily member containing two highly conserved domains, Inhibitor 129 and Peptidase_C1. CaCP15 expression was the highest in the stems of pepper plants. The expression was induced by salicylic acid, ethrel, methyl jasmonate, and was infected by Phytophthora capsici inoculation. Furthermore, CaCP15 was upregulated under salt and osmotic stress, and CaCP15 silencing in pepper enhanced salt and mannitol stress resistance. Conversely, transient overexpression of CaCP15 increased the sensitivity to salt and osmotic stress by reducing the antioxidant enzyme activities and negatively regulating the stress-related genes. This study indicates that CaCP15 negatively regulates salt and osmotic stress resistance in pepper via the ROS-scavenging.


Assuntos
Capsicum , Osmorregulação , Cloreto de Sódio/farmacologia , Cloreto de Sódio/metabolismo , Capsicum/genética , Antioxidantes/metabolismo , Ácido Salicílico/farmacologia , Ácido Salicílico/metabolismo , Manitol/farmacologia
16.
Prostaglandins Other Lipid Mediat ; 168: 106761, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37336434

RESUMO

Exercise-induced bronchoconstriction (EIB) is thought to be triggered by increased osmolarity at the airway epithelium. The aim of this study was to define the contractile prostanoid component of EIB, using an ex vivo model where intact segments of bronchi (inner diameter 0.5-2 mm) isolated from human lung tissue and subjected to mannitol. Exposure of bronchial segments to hyperosmolar mannitol evoked a contraction (64.3 ± 3.5 %) which could be prevented either by elimination of mast cells (15.8 ± 4.3 %) or a combination of cysteinyl leukotriene (cysLT1), histamine (H1) and thromboxane (TP) receptor antagonists (11.2 ± 2.3 %). Likewise, when antagonism of TP receptor was exchanged for inhibition of either cyclooxygenase-1 (8 ± 2.5 %), hematopoietic prostaglandin (PG)D synthase (20.7 ± 5.6 %), TXA synthase (14.8 ± 4.9 %), or the combination of the latter two (12.2 ± 4.6 %), the mannitol-induced contraction was prevented, suggesting that the TP-mediated component is induced by PGD2 and TXA2 generated by COX-1 and their respective synthases.


Assuntos
Broncoconstrição , Prostaglandinas , Humanos , Pulmão , Brônquios , Manitol/farmacologia
17.
J Intensive Care Med ; 38(7): 643-650, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36802976

RESUMO

Acutely elevated intracranial pressure (ICP) may have devastating effects on patient mortality and neurologic outcomes, yet its initial detection remains difficult because of the variety of manifestations that it can cause disease states it is associated with. Several treatment guidelines exist for specific disease processes such as trauma or ischemic stroke, but their recommendations may not apply to other causes. In the acute setting, management decisions must often be made before the underlying cause is known. In this review, we present an organized, evidence-based approach to the recognition and management of patients with suspected or confirmed elevated ICP in the first minutes to hours of resuscitation. We explore the utility of invasive and noninvasive methods of diagnosis, including history, physical examination, imaging, and ICP monitors. We synthesize various guidelines and expert recommendations and identify core management principles including noninvasive maneuvers, neuroprotective intubation and ventilation strategies, and pharmacologic therapies such as ketamine, lidocaine, corticosteroids, and the hyperosmolar agents mannitol and hypertonic saline. Although an in-depth discussion of the definitive management of each etiology is beyond the scope of this review, our goal is to provide an empirical approach to these time-sensitive, critical presentations in their initial stages.


Assuntos
Lesões Encefálicas Traumáticas , Lesões Encefálicas , Hipertensão Intracraniana , Humanos , Manitol/farmacologia , Manitol/uso terapêutico , Hipertensão Intracraniana/diagnóstico , Hipertensão Intracraniana/etiologia , Hipertensão Intracraniana/terapia , Lesões Encefálicas/complicações , Solução Salina Hipertônica/farmacologia , Pressão Intracraniana
18.
Geroscience ; 45(1): 141-158, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35705837

RESUMO

Although aging is the biggest risk factor for human chronic (cancer, diabetic, cardiovascular, and neurodegenerative) diseases, few interventions are known besides caloric restriction and a small number of drugs (with substantial side effects) that directly address aging. Thus, there is an urgent need for new options that can generally delay aging processes and prevent age-related diseases. Cellular aging is at the basis of aging processes. Chronological lifespan (CLS) of yeast Saccharomyces cerevisiae is the well-established model system for investigating the interventions of human post-mitotic cellular aging. CLS is defined as the number of days cells remain viable in a stationary phase. We developed a new, cheap, and fast quantitative method for measuring CLS in cell cultures incubated together with various chemical agents and controls on 96-well plates. Our PICLS protocol with (1) the use of propidium iodide for fluorescent-based cell survival reading in a microplate reader and (2) total cell count measurement via OD600nm absorption from the same plate provides real high-throughput capacity. Depending on logistics, large numbers of plates can be processed in parallel so that the screening of thousands of compounds becomes feasible in a short time. The method was validated by measuring the effect of rapamycin and calorie restriction on yeast CLS. We utilized this approach for chemical agent screening. We discovered the anti-aging/geroprotective potential of 2,5-anhydro-D-mannitol (2,5-AM) and suggest its usage individually or in combination with other anti-aging interventions.


Assuntos
Ensaios de Triagem em Larga Escala , Saccharomyces cerevisiae , Humanos , Manitol/farmacologia , Envelhecimento , Senescência Celular
19.
J Neurosurg Anesthesiol ; 35(1): 56-64, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34267156

RESUMO

BACKGROUND: Hyperosmolar therapy is the mainstay of treatment to reduce brain bulk and optimize surgical exposure during craniotomy. This study investigated the effect of equiosmolar doses of 7.5% hypertonic saline (HTS) and 20% mannitol on intraoperative cerebral oxygenation and metabolic status, systemic hemodynamics, brain relaxation, markers of cerebral injury, and perioperative craniotomy outcomes. METHODS: A total of 51 patients undergoing elective supratentorial craniotomy were randomly assigned to receive 7.5% HTS (2 mL/kg) or 20% mannitol (4.6 mL/kg) at scalp incision. Intraoperative arterial and jugular bulb blood samples were collected at predefined time intervals for assessment of various indices of cerebral oxygenation; multiple hemodynamic variables were concomitantly recorded. S100B protein and neuron-specific enolase levels were determined at baseline, and at 6 and 12 hours after surgery for assessment of neuronal injury. Brain relaxation and perioperative outcomes were also assessed. RESULTS: Demographic and intraoperative data, brain relaxation score, and perioperative outcomes were comparable between groups. Jugular bulb oxygen saturation and partial pressure of oxygen, arterial-jugular oxygen and carbon dioxide differences, and brain oxygen extraction ratio were favorably affected by 7.5% HTS up to 240 minutes postinfusion ( P <0.05), whereas mannitol was associated with only a short-lived (up to 15 min) improvement of these indices ( P <0.05). The changes in cerebral oxygenation corresponded to transient expansion of intravascular volume and improvements of cardiovascular performance. Increases in S100B and neuron-specific enolase levels at 6 and 12 hours after surgery ( P <0.0001) were comparable between groups. CONCLUSIONS: The conclusion is that 7.5% HTS has a more beneficial effect on cerebral oxygenation than an equiosmolar dose of 20% mannitol during supratentorial craniotomy, yet no clear-cut clinical superiority of either solution could be demonstrated.


Assuntos
Lesões Encefálicas , Humanos , Lesões Encefálicas/cirurgia , Encéfalo/cirurgia , Dióxido de Carbono , Craniotomia , Manitol/farmacologia
20.
BMC Womens Health ; 22(1): 519, 2022 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-36510239

RESUMO

BACKGROUND: Brain edema is a rare and serious complication of assisted reproductive technology (ART). The increased intracranial pressure and injured brain parenchyma are life-threatening and may even result in death. The pathogenesis may involve increased vascular permeability mediated by vascular endothelial growth factor and other vasoactive substances, including interleukin 6, interleukin 1ß, angiotensin II, insulin-like growth factor 1, transforming growth factor ß, and the renin-angiotensin system. CASE PRESENTATION: We presented a unique case report of a 29-year-old woman developed sudden irritability, blurred consciousness, and vomiting 8 h after oocyte retrieval. Blood examinations showed hyponatremia and cranial computed tomography showed swelling of the brain parenchyma. After therapeutic use of hypertonic saline and mannitol infusion, the patient's consciousness recovered and her neurological state improved. CONCLUSIONS: Brain edema is a rare and serious complication of ART. Quick infusion of hypertonic salt solution and mannitol is a key treatment. A good prognosis can be achieved after prompt treatment.


Assuntos
Edema Encefálico , Feminino , Humanos , Edema Encefálico/diagnóstico por imagem , Edema Encefálico/etiologia , Edema Encefálico/tratamento farmacológico , Fator A de Crescimento do Endotélio Vascular , Solução Salina Hipertônica/uso terapêutico , Solução Salina Hipertônica/farmacologia , Manitol/uso terapêutico , Manitol/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...