Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.613
Filtrar
1.
Bioelectrochemistry ; 158: 108723, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38733720

RESUMO

Bidirectional electron transfer is about that exoelectrogens produce bioelectricity via extracellular electron transfer at anode and drive cytoplasmic biochemical reactions via extracellular electron uptake at cathode. The key factor to determine above bioelectrochemical performances is the electron transfer efficiency under biocompatible abiotic/biotic interface. Here, a graphene/polyaniline (GO/PANI) nanocomposite electrode specially interfacing exoelectrogens (Shewanella loihica) and augmenting bidirectional electron transfer was conducted by in-situ electrochemical modification on carbon paper (CP). Impressively, the GO/PANI@CP electrode tremendously improved the performance of exoelectrogens at anode for wastewater treatment and bioelectricity generation (about 54 folds increase of power density compared to blank CP electrode). The bacteria on electrode surface not only showed fast electron release but also exhibited high electricity density of extracellular electron uptake through the proposed direct electron transfer pathway. Thus, the cathode applications of microbial electrosynthesis and bio-denitrification were developed via GO/PANI@CP electrode, which assisted the close contact between microbial outer-membrane cytochromes and nanocomposite electrode for efficient nitrate removal (0.333 mM/h). Overall, nanocomposite modified electrode with biocompatible interfaces has great potential to enhance bioelectrochemical reactions with exoelectrogens.


Assuntos
Fontes de Energia Bioelétrica , Eletrodos , Grafite , Grafite/química , Transporte de Elétrons , Fontes de Energia Bioelétrica/microbiologia , Compostos de Anilina/química , Compostos de Anilina/metabolismo , Materiais Biocompatíveis/química , Materiais Biocompatíveis/metabolismo , Shewanella/metabolismo , Nanocompostos/química , Técnicas Eletroquímicas/métodos
2.
ACS Appl Bio Mater ; 7(6): 4102-4115, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38758756

RESUMO

The diatom's frustule, characterized by its rugged and porous exterior, exhibits a remarkable biomimetic morphology attributable to its highly ordered pores, extensive surface area, and unique architecture. Despite these advantages, the toxicity and nonbiodegradable nature of silica-based organisms pose a significant challenge when attempting to utilize these organisms as nanotopographically functionalized microparticles in the realm of biomedicine. In this study, we addressed this limitation by modulating the chemical composition of diatom microparticles by modulating the active silica metabolic uptake mechanism while maintaining their intricate three-dimensional architecture through calcium incorporation into living diatoms. Here, the diatom Thalassiosira weissflogii was chemically modified to replace its silica composition with a biodegradable calcium template, while simultaneously preserving the unique three-dimensional (3D) frustule structure with hierarchical patterns of pores and nanoscale architectural features, which was evident by the deposition of calcium as calcium carbonate. Calcium hydroxide is incorporated into the exoskeleton through the active mechanism of calcium uptake via a carbon-concentrating mechanism, without altering the microstructure. Our findings suggest that calcium-modified diatoms hold potential as a nature-inspired delivery system for immunotherapy through antibody-specific binding.


Assuntos
Materiais Biocompatíveis , Cálcio , Diatomáceas , Teste de Materiais , Tamanho da Partícula , Diatomáceas/metabolismo , Diatomáceas/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/metabolismo , Cálcio/metabolismo , Cálcio/química , Sistemas de Liberação de Medicamentos , Propriedades de Superfície , Dióxido de Silício/química , Porosidade
3.
ACS Appl Bio Mater ; 7(5): 3358-3374, 2024 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-38717870

RESUMO

Exosomes are promising nanocarriers for drug delivery. Yet, it is challenging to apply exosomes in clinical use due to the limited understanding of their physiological functions. While cellular uptake of exosomes is generally known through endocytosis and/or membrane fusion, the mechanisms of origin-dependent cellular uptake and subsequent cargo release of exosomes into recipient cells are still unclear. Herein, we investigated the intricate mechanisms of exosome entry into recipient cells and intracellular cargo release. In this study, we utilized chiral graphene quantum dots (GQDs) as representatives of exosomal cargo, taking advantage of the superior permeability of chiral GQDs into lipid membranes as well as their excellent optical properties for tracking analysis. We observed that the preferential cellular uptake of exosomes derived from the same cell-of-origin (intraspecies exosomes) is higher than that of exosomes derived from different cell-of-origin (cross-species exosomes). This uptake enhancement was attributed to receptor-ligand interaction-mediated endocytosis, as we identified the expression of specific ligands on exosomes that favorably interact with their parental cells and confirmed the higher lysosomal entrapment of intraspecies exosomes (intraspecies endocytic uptake). On the other hand, we found that the uptake of cross-species exosomes primarily occurred through membrane fusion, followed by direct cargo release into the cytosol (cross-species direct fusion uptake). We revealed the underlying mechanisms involved in the cellular uptake and subsequent cargo release of exosomes depending on their cell-of-origin and recipient cell types. Overall, this study envisions valuable insights into further advancements in effective drug delivery using exosomes, as well as a comprehensive understanding of cellular communication, including disease pathogenesis.


Assuntos
Exossomos , Pontos Quânticos , Pontos Quânticos/química , Exossomos/metabolismo , Exossomos/química , Humanos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/metabolismo , Materiais Biocompatíveis/farmacologia , Corantes Fluorescentes/química , Tamanho da Partícula , Teste de Materiais , Endocitose , Grafite/química
4.
J Mater Chem B ; 12(19): 4736-4747, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38660955

RESUMO

Rapid removal of toxic substances is crucial to restore the normal functions of our body and ensure survival. Due to their high substrate specificity and catalytic efficiency, enzymes are unique candidates to deplete toxic compounds. While enzymes display several limitations including low stability and high immunogenicity, these can be overcome by entrapping them in a diverse range of carriers. The resulting micro/nanoreactors shield the enzymes from their surroundings, preventing their misfolding or denaturation thus allowing them to conduct their function. The micro/nanoreactors must circulate in the blood stream for extended periods of time to ensure complete depletion of the toxic agents. Surprisingly, while it is widely acknowledged that non-spherical carriers exhibit longer residence time in the bloodstream than their spherical counterparts, so far, all the reported micro/nanoreactors have been assembled with a spherical architecture. Herein, we address this important issue by pioneering the first shape-specific microreactors. We use UV-assisted punching to create rod-like microgel shapes with dimensions of 8 µm × 1 µm × 2 µm and demonstrate their biocompatibility by conducting hemolysis and cell viability assays with a macrophage and an endothelial cell line. Upon encapsulation of the model enzyme ß-lactamase, the successful fabrication of rod-shaped microreactors is demonstrated by their ability to convert the yellow nitrocefin substrate into its hydrolyzed product.


Assuntos
Microgéis , Humanos , Microgéis/química , Sobrevivência Celular/efeitos dos fármacos , Animais , Camundongos , Hemólise , Materiais Biocompatíveis/química , Materiais Biocompatíveis/metabolismo , Materiais Biocompatíveis/farmacologia , Tamanho da Partícula , Propriedades de Superfície
5.
J Biomater Appl ; 39(1): 24-39, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38616137

RESUMO

The reparative properties of amniotic membrane allografts are well-suited for a broad spectrum of specialties. Further enhancement of their utility can be achieved by designing to the needs of each application through the development of novel processing techniques and tissue configurations. As such, this study evaluated the material characteristics and biological properties of two PURION® processed amniotic membrane products, a lyophilized human amnion, intermediate layer, and chorion membrane (LHACM) and a dehydrated human amnion, chorion membrane (DHACM). LHACM is thicker; therefore, its handling properties are ideal for deep, soft tissue deficits; whereas DHACM is more similar to a film-like overlay and may be used for shallow defects or surgical on-lays. Characterization of the similarities and differences between LHACM and DHACM was conducted through a series of in vitro and in vivo studies relevant to the healing cascade. Compositional analysis was performed through histological staining along with assessment of barrier membrane properties through equilibrium dialysis. In vitro cellular response was assessed in fibroblasts and endothelial cells using cell proliferation, migration, and metabolic assays. The in vivo cellular response was assessed in an athymic nude mouse subcutaneous implantation model. The results indicated the PURION® process preserved the native membrane structure, nonviable cells and collagen distributed in the individual layers of both products. Although, LHACM is thicker than DHACM, a similar composition of growth factors, cytokines, chemokines and proteases is retained and consequently elicit comparable in vitro and in vivo cellular responses. In culture, both treatments behaved as potent mitogens, chemoattractants and stimulants, which translated to the promotion of cellular infiltration, neocollagen deposition and angiogenesis in a murine model. PURION® processed LHACM and DHACM differ in physical properties but possess similar in vitro and in vivo activities highlighting the impact of processing method on the versatility of clinical use of amniotic membrane allografts.


Assuntos
Aloenxertos , Âmnio , Córion , Camundongos Nus , Córion/citologia , Âmnio/química , Animais , Humanos , Camundongos , Cicatrização , Proliferação de Células , Materiais Biocompatíveis/química , Materiais Biocompatíveis/metabolismo , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Teste de Materiais , Movimento Celular
6.
Microb Biotechnol ; 17(4): e14449, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38593329

RESUMO

Bacillus coagulans, recently renamed Weizmannia coagulans, is a spore-forming bacterium that has garnered significant interest across various research fields, ranging from health to industrial applications. The probiotic properties of W. coagulans enhance intestinal digestion, by releasing prebiotic molecules including enzymes that facilitate the breakdown of not-digestible carbohydrates. Notably, some enzymes from W. coagulans extend beyond digestive functions, serving as valuable biotechnological tools and contributing to more sustainable and efficient manufacturing processes. Furthermore, the homofermentative thermophilic nature of W. coagulans renders it an exceptional candidate for fermenting foods and lignocellulosic residues into L-(+)-lactic acid. In this review, we provide an overview of the dual nature of W. coagulans, in functional foods and for the development of bio-based materials.


Assuntos
Bacillus coagulans , Alimento Funcional , Materiais Biocompatíveis/metabolismo , Bacillus coagulans/metabolismo , Fermentação , Biotecnologia
7.
J Biomater Sci Polym Ed ; 35(10): 1523-1536, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38574261

RESUMO

The interaction between the integrin and collagen is important in cell adhesion and signaling. Collagen, as the main component of extracellular matrix, is a base material for tissue engineering constructs. In tissue engineering, the collagen structure and molecule state may be altered to varying degrees in the process of processing and utilizing, thereby affecting its biological properties. In this work, the impact of changes in collagen structure and molecular state on the binding properties of collagen to integrin α2ß1 and integrin specific cell adhesion were explored. The results showed that the molecular structure of collagen is destroyed under the influence of heating, freeze-grinding and irradiation, the triple helix integrity is reduced and molecular breaking degree is increased. The binding ability of collagen to integrin α2ß1 is increased with the increase of triple helix integrity and decays exponentially with the increase of molecular breaking degree. The collagen molecular state can also influences the binding ability of collagen to cellular receptor. The collagen fibrils binding to integrin α2ß1 and HT1080 cells is stronger than to collagen monomolecule. Meanwhile, the hybrid fibril exhibits a different cellular receptor binding performance from corresponding single species collagen fibril. These findings provide ideas for the design and development of new collagen-based biomaterials and tissue engineering research.


Assuntos
Adesão Celular , Colágeno , Integrina alfa2beta1 , Ligação Proteica , Integrina alfa2beta1/metabolismo , Integrina alfa2beta1/química , Humanos , Colágeno/química , Colágeno/metabolismo , Materiais Biocompatíveis/química , Materiais Biocompatíveis/metabolismo , Animais , Engenharia Tecidual/métodos , Linhagem Celular Tumoral
8.
ACS Appl Mater Interfaces ; 16(13): 15761-15772, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38513048

RESUMO

Utilizing tissue-specific extracellular matrices (ECMs) is vital for replicating the composition of native tissues and developing biologically relevant biomaterials. Human- or animal-derived donor tissues and organs are the current gold standard for the source of these ECMs. To overcome the several limitations related to these ECM sources, including the highly limited availability of donor tissues, cell-derived ECM offers an alternative approach for engineering tissue-specific biomaterials, such as bioinks for three-dimensional (3D) bioprinting. 3D bioprinting is a state-of-the-art biofabrication technology that addresses the global need for donor tissues and organs. In fact, there is a vast global demand for human donor corneas that are used for treating corneal blindness, often resulting from damage in the corneal stromal microstructure. Human adipose tissue is one of the most abundant tissues and easy to access, and adipose tissue-derived stem cells (hASCs) are a highly advantageous cell type for tissue engineering. Furthermore, hASCs have already been studied in clinical trials for treating corneal stromal pathologies. In this study, a corneal stroma-specific ECM was engineered without the need for donor corneas by differentiating hASCs toward corneal stromal keratocytes (hASC-CSKs). Furthermore, this ECM was utilized as a component for corneal stroma-specific bioink where hASC-CSKs were printed to produce corneal stroma structures. This cost-effective approach combined with a clinically relevant cell type provides valuable information on developing more sustainable tissue-specific solutions and advances the field of corneal tissue engineering.


Assuntos
Bioimpressão , Engenharia Tecidual , Animais , Humanos , Engenharia Tecidual/métodos , Substância Própria/metabolismo , Córnea , Matriz Extracelular/química , Materiais Biocompatíveis/metabolismo , Tecido Adiposo , Células-Tronco , Alicerces Teciduais , Bioimpressão/métodos
9.
Science ; 383(6690): 1492-1498, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38547269

RESUMO

Transient implantable piezoelectric materials are desirable for biosensing, drug delivery, tissue regeneration, and antimicrobial and tumor therapy. For use in the human body, they must show flexibility, biocompatibility, and biodegradability. These requirements are challenging for conventional inorganic piezoelectric oxides and piezoelectric polymers. We discovered high piezoelectricity in a molecular crystal HOCH2(CF2)3CH2OH [2,2,3,3,4,4-hexafluoropentane-1,5-diol (HFPD)] with a large piezoelectric coefficient d33 of ~138 picocoulombs per newton and piezoelectric voltage constant g33 of ~2450 × 10-3 volt-meters per newton under no poling conditions, which also exhibits good biocompatibility toward biological cells and desirable biodegradation and biosafety in physiological environments. HFPD can be composite with polyvinyl alcohol to form flexible piezoelectric films with a d33 of 34.3 picocoulombs per newton. Our material demonstrates the ability for molecular crystals to have attractive piezoelectric properties and should be of interest for applications in transient implantable electromechanical devices.


Assuntos
Materiais Biocompatíveis , Compostos Férricos , Polímeros , Biodegradação Ambiental , Polímeros/química , Polímeros/metabolismo , Álcool de Polivinil/química , Álcool de Polivinil/metabolismo , Materiais Biocompatíveis/química , Materiais Biocompatíveis/metabolismo , Eletricidade , Animais , Ratos , Ratos Sprague-Dawley , Compostos Férricos/química , Compostos Férricos/metabolismo
10.
Biomacromolecules ; 25(4): 2286-2301, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38502906

RESUMO

Bone defects show a slow rate of osteoconduction and imperfect reconstruction, and the current treatment strategies to treat bone defects suffer from limitations like immunogenicity, lack of cell adhesion, and the absence of osteogenic activity. In this context, bioactive supramolecular peptides and peptide gels offer unique opportunities to develop biomaterials that can play a dominant role in the biomineralization of bone tissues and promote bone formation. In this article, we have demonstrated the potential of six tetrapeptides for specific binding to hydroxyapatite (HAp), a major inorganic component of the bone, and their effect on the growth and osteogenic differentiation of mesenchymal stem cells (MSCs). We adopted a simplistic approach of rationally designing amphiphilic peptides by incorporating amino acids, Ser, pSer, Pro, Hyp, Asp, and Glu, which are present in either collagenous or noncollagenous proteins and render properties like antioxidant, calcification, and mineralization. A total of six tetrapeptides, Trp-Trp-His-Ser (WWHS), Trp-Trp-His-pSer (WWHJ), Trp-Trp-His-Pro (WWHP), Trp-Trp-His-Hyp (WWHO), Trp-Trp-His-Asp (WWHD), and Trp-Trp-His-Glu (WWHE), were synthesized. Four peptides were found to self-assemble into nanofibrillar gels resembling the extracellular matrix (ECM), and the remaining two peptides (WWHJ, WWHP) self-assembled into nanorods. The peptides showed excellent cell adhesion, encapsulation, proliferation, and migration and induced the differentiation of mesenchymal stem cells (MSCs), as evident from the enhanced mineralization, resulting from the upregulation of osteogenic markers, RUNX 2, COL I, OPN, and OCN, alkaline phosphatase (ALP) production, and calcium deposition. The peptides also induced the downregulation of inflammatory markers, TNF-α and iNOS, and the upregulation of the anti-inflammatory marker, IL-10, resulting in M2 macrophage polarization. RANKL and TRAP genes were downregulated in a coculture system of MC3T3-E1 and RAW 264.7 cells, implying that peptides promote osteogenesis and inhibit osteoclastogenesis. The peptide-based biomaterials developed in this work can enhance bone regeneration capacity and show strong potential as scaffolds for bone tissue engineering.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Aminoácidos/metabolismo , Regeneração Óssea , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/metabolismo , Diferenciação Celular , Durapatita/química , Peptídeos/farmacologia , Peptídeos/metabolismo , Géis/farmacologia , Células Cultivadas
11.
Int J Biol Macromol ; 264(Pt 2): 130764, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38462100

RESUMO

Vascular disease is the leading health problem worldwide. Vascular microenvironment encompasses diverse cell types, including those within the vascular wall, blood cells, stromal cells, and immune cells. Initiation of the inflammatory state of the vascular microenvironment and changes in its mechanics can profoundly affect vascular homeostasis. Biomedical materials play a crucial role in modern medicine, hydrogels, characterized by their high-water content, have been increasingly utilized as a three-dimensional interaction network. In recent times, the remarkable progress in utilizing hydrogels and understanding vascular microenvironment have enabled the treatment of vascular diseases. In this review, we give an emphasis on the utilization of hydrogels and their advantages in the various vascular diseases including atherosclerosis, aneurysm, vascular ulcers of the lower limbs and myocardial infarction. Further, we highlight the importance and advantages of hydrogels as artificial microenvironments.


Assuntos
Hidrogéis , Doenças Vasculares , Humanos , Hidrogéis/metabolismo , Materiais Biocompatíveis/metabolismo
12.
Int J Mol Sci ; 25(6)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38542453

RESUMO

Promoting the efficiency of bone regeneration in bone loss diseases is a significant clinical challenge. Traditional therapies often fail to achieve better therapeutic outcomes and shorter treatment times. However, in recent years, extracellular vesicles (EVs) have gained significant attention due to their exceptional osteogenic function in bone regeneration and superior therapeutic effects compared to traditional cell therapy. EVs have emerged as a promising therapy for tissue defect regeneration due to their various physiological functions, such as regulating the immune response and promoting tissue repair and regeneration. Moreover, EVs have good biocompatibility, low immunogenicity, and long-term stability, and can be improved through pretreatment and other methods. Studies investigating the mechanisms by which extracellular vesicles promote bone regeneration and applying EVs from different sources using various methods to animal models of bone defects have increased. Therefore, this paper reviews the types of EVs used for bone regeneration, their sources, roles, delivery pathways, scaffold biomaterials, and applications.


Assuntos
Doenças Ósseas , Vesículas Extracelulares , Animais , Regeneração Óssea/fisiologia , Osteogênese , Vesículas Extracelulares/metabolismo , Materiais Biocompatíveis/metabolismo , Terapia Baseada em Transplante de Células e Tecidos , Doenças Ósseas/terapia , Doenças Ósseas/metabolismo
13.
Int J Pharm ; 653: 123904, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38355074

RESUMO

An amine derivative of hyaluronic acid (HA) was crosslinked to obtain a 3D dried sponge. The sponge was subsequently rehydrated using secretome from human mesenchymal stromal cells (MSCs), resulting in the formation of a hydrogel. The release kinetics analysis demonstrated that the hydrogel effectively sustained secretome release, with 70% of the initially loaded wound-healing-associated cytokines being released over a 12-day period. Tuning the hydrogel properties through heparin crosslinking resulted in a biomaterial with a distinct mechanism of action. Specifically, the presence of heparin enhanced water uptake capacity of the hydrogel and increased its sensitivity to enzymatic degradation. Notably, the heparin crosslinking also led to a significant retention of cytokines within the hydrogel matrix. Overall, the secretome-rehydrated HA hydrogel holds promise as a versatile device for regenerative medicine applications: the non-heparinized hydrogel may function as a biomaterial with low reabsorption rates, sustaining the release of bioactive molecules contained in MSC secretome. In contrast, the heparinized hydrogel may serve as a depot of bioactive molecules with faster reabsorption rates. Given its patch-like characteristic, the HA-based hydrogel appears suitable as topical treatment for external organs, such as the skin.


Assuntos
Hidrogéis , Células-Tronco Mesenquimais , Humanos , Hidrogéis/farmacologia , Ácido Hialurônico/farmacologia , Secretoma , Células-Tronco Mesenquimais/metabolismo , Heparina , Materiais Biocompatíveis/metabolismo , Citocinas/metabolismo
14.
Int J Biol Macromol ; 264(Pt 1): 130454, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38417758

RESUMO

The demand for the functionalization of additive materials based on bacterial cellulose (BC) is currently high due to their potential applications across various sectors. The preparation of BC-based additive materials typically involves two approaches: in situ and ex situ. In situ modifications entail the incorporation of additive materials, such as soluble and dispersed substances, which are non-toxic and not essential for bacterial cell growth during the production process. However, these materials can impact the yield and self-assembly of BC. In contrast, ex situ modification occurs subsequent to the formation of BC, where the additive materials are not only adsorbed on the surface but also impregnated into the BC pellicle, while the BC slurry was homogenized with other additive materials and gelling agents to create composite films using the casting method. This review will primarily focus on the in situ and ex situ functionalization of BC then sheds light on the pivotal role of functionalized BC in advancing biomedical technologies, wound healing, tissue engineering, drug delivery, bone regeneration, and biosensors.


Assuntos
Celulose , Engenharia Tecidual , Celulose/metabolismo , Bactérias/metabolismo , Materiais Biocompatíveis/metabolismo
15.
ACS Appl Mater Interfaces ; 16(8): 9925-9943, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38362893

RESUMO

Implantation of a phenotypically stable cartilage graft could represent a viable approach for repairing osteoarthritic (OA) cartilage lesions. In the present study, we investigated the effects of modulating the bone morphogenetic protein (BMP), transforming growth factor beta (TGFß), and interleukin-1 (IL-1) signaling cascades in human bone marrow stromal cell (hBMSC)-encapsulated silk fibroin gelatin (SF-G) bioink. The selected small molecules LDN193189, TGFß3, and IL1 receptor antagonist (IL1Ra) are covalently conjugated to SF-G biomaterial to ensure sustained release, increased bioavailability, and printability, confirmed by ATR-FTIR, release kinetics, and rheological analyses. The 3D bioprinted constructs with chondrogenically differentiated hBMSCs were incubated in an OA-inducing medium for 14 days and assessed through a detailed qPCR, immunofluorescence, and biochemical analyses. Despite substantial heterogeneity in the observations among the donors, the IL1Ra molecule illustrated the maximum efficiency in enhancing the expression of articular cartilage components, reducing the expression of hypertrophic markers (re-validated by the GeneMANIA tool), as well as reducing the production of inflammatory molecules by the hBMSCs. Therefore, this study demonstrated a novel strategy to develop a chemically decorated, printable and biomimetic SF-G bioink to produce hyaline cartilage grafts resistant to acquiring OA traits that can be used for the treatment of degenerated cartilage lesions.


Assuntos
Bioimpressão , Cartilagem Articular , Fibroínas , Humanos , Fibroínas/química , Cartilagem Articular/metabolismo , Materiais Biocompatíveis/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Diferenciação Celular , Gelatina/farmacologia , Gelatina/química , Alicerces Teciduais/química , Engenharia Tecidual , Impressão Tridimensional
16.
Mar Drugs ; 22(2)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38393026

RESUMO

Chondrosia reniformis is a collagen-rich marine sponge that is considered a sustainable and viable option for producing an alternative to mammalian-origin collagens. However, there is a lack of knowledge regarding the properties of collagen isolated from different sponge parts, namely the outer region, or cortex, (ectosome) and the inner region (choanosome), and how it affects the development of biomaterials. In this study, a brief histological analysis focusing on C. reniformis collagen spatial distribution and a comprehensive comparative analysis between collagen isolated from ectosome and choanosome are presented. The isolated collagen characterization was based on isolation yield, Fourier-transformed infrared spectroscopy (FTIR), circular dichroism (CD), SDS-PAGE, dot blot, and amino acid composition, as well as their cytocompatibility envisaging the development of future biomedical applications. An isolation yield of approximately 20% was similar for both sponge parts, as well as the FTIR, CD, and SDS-PAGE profiles, which demonstrated that both isolated collagens presented a high purity degree and preserved their triple helix and fibrillar conformation. Ectosome collagen had a higher OHpro content and possessed collagen type I and IV, while the choanosome was predominately constituted by collagen type IV. In vitro cytotoxicity assays using the L929 fibroblast cell line displayed a significant cytotoxic effect of choanosome collagen at 2 mg/mL, while ectosome collagen enhanced cell metabolism and proliferation, thus indicating the latter as being more suitable for the development of biomaterials. This research represents a unique comparative study of C. reniformis body parts, serving as a support for further establishing this marine sponge as a promising alternative collagen source for the future development of biomedical applications.


Assuntos
Micropartículas Derivadas de Células , Poríferos , Animais , Micropartículas Derivadas de Células/metabolismo , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/metabolismo , Poríferos/metabolismo , Colágeno/química , Colágeno Tipo I/metabolismo , Mamíferos/metabolismo
17.
Ann Anat ; 253: 152232, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38402996

RESUMO

Fish cartilage is known as a valuable source of natural biomaterials due to its unique composition and properties. It contains a variety of bioactive components that contribute to its potential applications in different domains such as tissue engineering. The present work aimed to consider the properties of backbone cartilage from fish with a cartilaginous skeleton, including elasmobranch (reticulate whipray: Himantura uarnak and milk shark: Rhizoprionodon acutus) and sturgeon (beluga: Huso huso). The histomorphometric findings showed that the number of chondrocytes was significantly higher in reticulate whipray and milk shark compared to beluga (p < 0.05). The highest GAGs content was recorded in reticulate whipray cartilage compared to the other two species (p < 0.05). The cartilage from reticulate whipray and beluga showed higher collagen content than milk shark cartilage (p < 0.05), and the immunohistochemical assay for type II collagen (Col II) showed higher amounts of this component in reticulate whipray compared to the other two species. Young's modulus of the cartilage from reticulate whipray was significantly higher than that of milk shark and beluga (p < 0.05), while no significant difference was recorded between Young's modulus of the cartilage from milk shark and beluga. The gene expression of ACAN, Col II, and Sox9 showed that the cartilage-ECM from three species was able to induce chondrocyte differentiation from human adipose tissue-derived stem cells (hASCs). From these results, it can be concluded that the cartilage from three species, especially reticulate whipray, enjoys the appropriate biological properties and provides a basis for promoting its applications in the field of cartilage tissue engineering.


Assuntos
Materiais Biocompatíveis , Engenharia Tecidual , Animais , Humanos , Engenharia Tecidual/métodos , Materiais Biocompatíveis/metabolismo , Cartilagem/metabolismo , Condrócitos , Colágeno/metabolismo , Células Cultivadas
18.
Acta Biomater ; 177: 107-117, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38382830

RESUMO

Designing proteins that fold and assemble over different length scales provides a way to tailor the mechanical properties and biological performance of hydrogels. In this study, we designed modular proteins that self-assemble into fibrillar networks and, as a result, form hydrogel materials with novel properties. We incorporated distinct functionalities by connecting separate self-assembling (A block) and cell-binding (B block) domains into single macromolecules. The number of self-assembling domains affects the rigidity of the fibers and the final storage modulus G' of the materials. The mechanical properties of the hydrogels could be tuned over a broad range (G' = 0.1 - 10 kPa), making them suitable for the cultivation and differentiation of multiple cell types, including cortical neurons and human mesenchymal stem cells. Moreover, we confirmed the bioavailability of cell attachment domains in the hydrogels that can be further tailored for specific cell types or other biological applications. Finally, we demonstrate the versatility of the designed proteins for application in biofabrication as 3D scaffolds that support cell growth and guide their function. STATEMENT OF SIGNIFICANCE: Designed proteins that enable the decoupling of biophysical and biochemical properties within the final material could enable modular biomaterial engineering. In this context, we present a designed modular protein platform that integrates self-assembling domains (A blocks) and cell-binding domains (B blocks) within a single biopolymer. The linking of assembly domains and cell-binding domains this way provided independent tuning of mechanical properties and inclusion of biofunctional domains. We demonstrate the use of this platform for biofabrication, including neural cell culture and 3D printing of scaffolds for mesenchymal stem cell culture and differentiation. Overall, this work highlights how informed design of biopolymer sequences can enable the modular design of protein-based hydrogels with independently tunable biophysical and biochemical properties.


Assuntos
Hidrogéis , Células-Tronco Mesenquimais , Humanos , Hidrogéis/química , Proteínas/química , Materiais Biocompatíveis/metabolismo , Biopolímeros , Engenharia Tecidual
19.
Adv Healthc Mater ; 13(10): e2304207, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38175149

RESUMO

Myocardial infarction (MI) results in cardiomyocyte necrosis and conductive system damage, leading to sudden cardiac death and heart failure. Studies have shown that conductive biomaterials can restore cardiac conduction, but cannot facilitate tissue regeneration. This study aims to add regenerative capabilities to the conductive biomaterial by incorporating human endometrial mesenchymal stem cell (hEMSC)-derived exosomes (hEMSC-Exo) into poly-pyrrole-chitosan (PPY-CHI), to yield an injectable hydrogel that can effectively treat MI. In vitro, PPY-CHI/hEMSC-Exo, compared to untreated controls, PPY-CHI, or hEMSC-Exo alone, alleviates H2O2-induced apoptosis and promotes tubule formation, while in vivo, PPY-CHI/hEMSC-Exo improves post-MI cardiac functioning, along with counteracting against ventricular remodeling and fibrosis. All these activities are facilitated via increased epidermal growth factor (EGF)/phosphoinositide 3-kinase (PI3K)/AKT signaling. Furthermore, the conductive properties of PPY-CHI/hEMSC-Exo are able to resynchronize cardiac electrical transmission to alleviate arrythmia. Overall, PPY-CHI/hEMSC-Exo synergistically combines the cardiac regenerative capabilities of hEMSC-Exo with the conductive properties of PPY-CHI to improve cardiac functioning, via promoting angiogenesis and inhibiting apoptosis, as well as resynchronizing electrical conduction, to ultimately enable more effective MI treatment. Therefore, incorporating exosomes into a conductive hydrogel provides dual benefits in terms of maintaining conductivity, along with facilitating long-term exosome release and sustained application of their beneficial effects.


Assuntos
Quitosana , Exossomos , Células-Tronco Mesenquimais , Infarto do Miocárdio , Humanos , Polímeros/metabolismo , Hidrogéis/farmacologia , Hidrogéis/metabolismo , Pirróis , Exossomos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Preparações de Ação Retardada/farmacologia , Peróxido de Hidrogênio/metabolismo , Infarto do Miocárdio/terapia , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/metabolismo , Miócitos Cardíacos/metabolismo
20.
J Biomed Mater Res A ; 112(6): 866-880, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38189109

RESUMO

For cell therapies, the subcutaneous space is an attractive transplant site due to its large surface area and accessibility for implantation, monitoring, biopsy, and retrieval. However, its poor vascularization has catalyzed research to induce blood vessel formation within the site to enhance cell revascularization and survival. Most studies focus on the subcutaneous space of rodents, which does not recapitulate important anatomical features and vascularization responses of humans. Herein, we evaluate biomaterial-driven vascularization in the porcine subcutaneous space. Additionally, we report the first use of cost-effective fluorescent microspheres to quantify perfusion in the porcine subcutaneous space. We investigate the vascularization-inducing efficacy of vascular endothelial growth factor (VEGF)-delivering synthetic hydrogels based on 4-arm poly(ethylene) glycol macromers with terminal maleimides (PEG-4MAL). We compare three groups: a non-degradable hydrogel with a VEGF-releasing PEG-4MAL gel coating (Core+VEGF gel); an uncoated, non-degradable hydrogel (Core-only); and naïve tissue. After 2 weeks, Core+VEGF gel has significantly higher tissue perfusion, blood vessel area, blood vessel density, and number of vessels compared to both Core-only and naïve tissue. Furthermore, healthy vital signs during surgery and post-procedure metrics demonstrate the safety of hydrogel delivery. We demonstrate that VEGF-delivering synthetic hydrogels induce robust vascularization and perfusion in the porcine subcutaneous space.


Assuntos
Materiais Biocompatíveis , Fator A de Crescimento do Endotélio Vascular , Humanos , Suínos , Animais , Fator A de Crescimento do Endotélio Vascular/farmacologia , Materiais Biocompatíveis/metabolismo , Hidrogéis/farmacologia , Hidrogéis/metabolismo , Polietilenoglicóis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA