Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
ACS Appl Bio Mater ; 7(7): 4747-4759, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39005189

RESUMO

Current engineered synthetic scaffolds fail to functionally repair and regenerate ruptured native tendon tissues, partly because they cannot satisfy both the unique biological and biomechanical properties of these tissues. Ideal scaffolds for tendon repair and regeneration need to provide porous topographic structures and biological cues necessary for the efficient infiltration and tenogenic differentiation of embedded stem cells. To obtain crimped and porous scaffolds, highly aligned poly(l-lactide) fibers were prepared by electrospinning followed by postprocessing. Through a mild and controlled hydrogen gas foaming technique, we successfully transformed the crimped fibrous mats into three-dimensional porous scaffolds without sacrificing the crimped microstructure. Porcine derived decellularized tendon matrix was then grafted onto this porous scaffold through fiber surface modification and carbodiimide chemistry. These biofunctionalized, crimped, and porous scaffolds supported the proliferation, migration, and tenogenic induction of tendon derived stem/progenitor cells, while enabling adhesion to native tendons. Together, our data suggest that these biofunctionalized scaffolds can be exploited as promising engineered scaffolds for the treatment of acute tendon rupture.


Assuntos
Materiais Biocompatíveis , Teste de Materiais , Regeneração , Tendões , Alicerces Teciduais , Alicerces Teciduais/química , Tendões/citologia , Animais , Suínos , Porosidade , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Engenharia Tecidual , Proliferação de Células/efeitos dos fármacos , Tamanho da Partícula , Matriz Extracelular Descelularizada/química , Matriz Extracelular Descelularizada/farmacologia , Poliésteres/química
2.
Biomed Mater ; 19(4)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38857607

RESUMO

Hypothyroidism is caused by insufficient stimulation or disruption of the thyroid. However, the drawbacks of thyroid transplantation have led to the search for new treatments. Decellularization allows tissue transplants to maintain their biomimetic structures while preserving cell adhesion, proliferation, and differentiation. This study aimed to decellularize human thyroid tissues using a structure-preserving optimization strategy and present preliminary data on recellularization. Nine methods were used for physical and chemical decellularization. Quantitative and immunohistochemical analyses were performed to investigate the DNA and extracellular matrix components of the tissues. Biomechanical properties were determined by compression test, and cell viability was examined after seeding MDA-T32 papillary thyroid cancer (PTC) cells onto the decellularized tissues. Decellularized tissues exhibited a notable decrease (<50 ng mg-1DNA, except for Groups 2 and 7) compared to the native thyroid tissue. Nonetheless, collagen and glycosaminoglycans were shown to be conserved in all decellularized tissues. Laminin and fibronectin were preserved at comparatively higher levels, and Young's modulus was elevated when decellularization included SDS. It was observed that the strain value in Group 1 (1.63 ± 0.14 MPa) was significantly greater than that in the decellularized tissues between Groups 2-9, ranging from 0.13 ± 0.03-0.72 ± 0.29 MPa. Finally, viability assessment demonstrated that PTC cells within the recellularized tissue groups successfully attached to the 3D scaffolds and sustained metabolic activity throughout the incubation period. We successfully established a decellularization optimization for human thyroid tissues, which has potential applications in tissue engineering and transplantation research. Our next goal is to conduct recellularization using the methods utilized in Group 1 and transplant the primary thyroid follicular cell-seeded tissues into anin vivoanimal model, particularly due to their remarkable 3D structural preservation and cell adhesion-promoting properties.


Assuntos
Sobrevivência Celular , Matriz Extracelular , Glândula Tireoide , Engenharia Tecidual , Alicerces Teciduais , Engenharia Tecidual/métodos , Humanos , Glândula Tireoide/citologia , Matriz Extracelular/metabolismo , Matriz Extracelular/química , Alicerces Teciduais/química , Colágeno/química , Adesão Celular , Glicosaminoglicanos/metabolismo , Glicosaminoglicanos/química , Linhagem Celular Tumoral , DNA , Módulo de Elasticidade , Proliferação de Células , Neoplasias da Glândula Tireoide/patologia , Matriz Extracelular Descelularizada/química , Laminina/química , Fenômenos Biomecânicos , Diferenciação Celular , Câncer Papilífero da Tireoide/patologia , Fibronectinas/química , Fibronectinas/metabolismo
3.
Acta Biomater ; 183: 74-88, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38838910

RESUMO

The diverse biomolecular landscape of tissue-specific decellularized extracellular matrix (dECM) biomaterials provides a multiplicity of bioinstructive cues to target cells, rendering them highly valuable for various biomedical applications. However, the isolation of dECM biomaterials entails cumbersome xenogeneic enzymatic digestions and also additional inactivation procedures. Such, increases processing time, increments costs and introduces residues of non-naturally present proteins in dECM formulations that remain present even after inactivation. To overcome these limitations, herein we report an innovative conjugation of light and ultrasound-mediated dECM biomaterial processing for fabricating dECM biomaterials. Such approach gathers on ultrasound waves to facilitate dECM-in-liquid processing and visible light photocrosslinking of tyrosine residues naturally present in dECM biomaterials. This dual step methodology unlocked the in-air production of cell laden dECM hydrogels or programmable dECM hydrogel spherical-like beads by using superhydrophobic surfaces. These in-air produced units do not require any additional solvents and successfully supported both fibroblasts and breast cancer cells viability upon encapsulation or surface seeding. In addition, the optimized photoacoustic methodology also enabled a rapid formulation of dECM biomaterial inks with suitable features for biofabricating volumetrically defined living constructs through embedded 3D bioprinting. The biofabricated dECM hydrogel constructs supported cell adhesion, spreading and viability for 7 days. Overall, the implemented photoacoustic processing methodology of dECM biomaterials offers a rapid and universal strategy for upgrading their processing from virtually any tissue. STATEMENT OF SIGNIFICANCE: Leveraging decellularized extracellular matrix (dECM) as cell instructive biomaterials has potential to open new avenues for tissue engineering and in vitro disease modelling. The processing of dECM remains however, lengthy, costly and introduces non-naturally present proteins in the final biomaterials formulations. In this regard, here we report an innovative light and ultrasound two-step methodology that enables rapid dECM-in-liquid processing and downstream photocrosslinking of dECM hydrogel beads and 3D bioprinted constructs. Such photoacoustic based processing constitutes a universally applicable method for processing any type of tissue-derived dECM biomaterials.


Assuntos
Matriz Extracelular Descelularizada , Técnicas Fotoacústicas , Humanos , Matriz Extracelular Descelularizada/química , Animais , Hidrogéis/química , Engenharia Tecidual/métodos , Materiais Biocompatíveis/química , Alicerces Teciduais/química , Camundongos , Sobrevivência Celular , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo
4.
Cryo Letters ; 45(3): 177-184, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38709189

RESUMO

BACKGROUND: Ovarian tissue cryopreservation for fertility preservation carries a risk of malignant cell re-seeding. Artificial ovary is a promising method to solve such a problem. However, ovary decellularization protocols are limited. Hence, further studies are necessary to get better ovarian decellularization techniques for the construction of artificial ovary scaffolds. OBJECTIVE: To establish an innovative decellularization technique for whole porcine ovaries by integrating liquid nitrogen with chemical agents to reduce the contact time between the scaffolds and chemical reagents. MATERIALS AND METHODS: Porcine ovaries were randomly assigned to three groups: novel decellularized group, conventional decellularized group and fresh group. The ovaries in the novel decellularized group underwent three cycles of freezing by liquid nitrogen and thawing at temperatures around 37 degree C before decellularization. The efficiency of the decellularization procedure was assessed through histological staining and DNA content analysis. The maintenance of ovarian decellularized extracellular matrix(ODECM) constituents was determined by analyzing the content of matrix proteins. Additionally, we evaluated the biocompatibility of the decellularized extracellular matrix(dECM) by observing the growth of granulosa cells on the ODECM scaffold in vitro. RESULTS: Hematoxylin and eosin staining, DAPI staining and DNA quantification techniques collectively confirm the success of the novel decellularization methods in removing cellular and nuclear components from ovarian tissue. Moreover, quantitative assessments of ODECM contents revealed that the novel decellularization technique preserved more collagen and glycosaminoglycan compared to the conventional decellularized group (P<0.05). Additionally, the novel decellularized scaffold exhibited a significantly higher number of granulosa cells than the conventional scaffold during in vitro co-culture (P<0.05). CONCLUSION: The novel decellularized method demonstrated high efficacy in eliminating DNA and cellular structures while effectively preserving the extracellular matrix. As a result, the novel decellularized method holds significant promise as a viable technique for ovarian decellularization in forthcoming studies. Doi.org/10.54680/fr24310110212.


Assuntos
Criopreservação , Matriz Extracelular Descelularizada , Nitrogênio , Ovário , Alicerces Teciduais , Animais , Feminino , Nitrogênio/química , Suínos , Ovário/citologia , Alicerces Teciduais/química , Criopreservação/métodos , Matriz Extracelular Descelularizada/química , Engenharia Tecidual/métodos , Células da Granulosa/citologia , Preservação da Fertilidade/métodos , Matriz Extracelular/química , DNA/análise , DNA/química
5.
J Biomed Mater Res B Appl Biomater ; 112(5): e35414, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38733611

RESUMO

Utilizing natural scaffold production derived from extracellular matrix components presents a promising strategy for advancing in vitro spermatogenesis. In this study, we employed decellularized human placental tissue as a scaffold, upon which neonatal mouse spermatogonial cells (SCs) were cultured three-dimensional (3D) configuration. To assess cellular proliferation, we examined the expression of key markers (Id4 and Gfrα1) at both 1 and 14 days into the culture. Our quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analysis revealed a notable increase in Gfrα1 gene expression, with the 3D culture group exhibiting the highest levels. Furthermore, the relative frequency of Gfrα1-positive cells significantly rose from 38.1% in isolated SCs to 46.13% and 76.93% in the two-dimensional (2D) and 3D culture systems, respectively. Moving forward to days 14 and 35 of the culture period, we evaluated the expression of differentiating markers (Sycp3, acrosin, and Protamine 1). Sycp3 and Prm1 gene expression levels were upregulated in both 2D and 3D cultures, with the 3D group displaying the highest expression. Additionally, acrosin gene expression increased notably within the 3D culture. Notably, at the 35-day mark, the percentage of Prm1-positive cells in the 3D group (36.4%) significantly surpassed that in the 2D group (10.96%). This study suggests that the utilization of placental scaffolds holds significant promise as a bio-scaffold for enhancing mouse in vitro spermatogenesis.


Assuntos
Diferenciação Celular , Proliferação de Células , Placenta , Animais , Feminino , Camundongos , Masculino , Humanos , Placenta/citologia , Placenta/metabolismo , Gravidez , Espermatogônias/citologia , Espermatogônias/metabolismo , Alicerces Teciduais/química , Matriz Extracelular Descelularizada/química , Matriz Extracelular Descelularizada/metabolismo , Células-Tronco/metabolismo , Células-Tronco/citologia
6.
Acta Biomater ; 181: 202-221, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38692468

RESUMO

Dental pulp is the only soft tissue in the tooth which plays a crucial role in maintaining intrinsic multi-functional behaviors of the dentin-pulp complex. Nevertheless, the restoration of fully functional pulps after pulpitis or pulp necrosis, termed endodontic regeneration, remained a major challenge for decades. Therefore, a bioactive and in-situ injectable biomaterial is highly desired for tissue-engineered pulp regeneration. Herein, a decellularized matrix hydrogel derived from porcine dental pulps (pDDPM-G) was prepared and characterized through systematic comparison against the porcine decellularized nerve matrix hydrogel (pDNM-G). The pDDPM-G not only exhibited superior capabilities in facilitating multi-directional differentiation of dental pulp stem cells (DPSCs) during 3D culture, but also promoted regeneration of pulp-like tissues after DPSCs encapsulation and transplantation. Further comparative proteomic and transcriptome analyses revealed the differential compositions and potential mechanisms that endow the pDDPM-G with highly tissue-specific properties. Finally, it was realized that the abundant tenascin C (TNC) in pDDPM served as key factor responsible for the activation of Notch signaling cascades and promoted DPSCs odontoblastic differentiation. Overall, it is believed that pDDPM-G is a sort of multi-functional and tissue-specific hydrogel-based material that holds great promise in endodontic regeneration and clinical translation. STATEMENT OF SIGNIFICANCE: Functional hydrogel-based biomaterials are highly desirable for endodontic regeneration treatments. Decellularized extracellular matrix (dECM) preserves most extracellular matrix components of its native tissue, exhibiting unique advantages in promoting tissue regeneration and functional restoration. In this study, we prepared a porcine dental pulp-derived dECM hydrogel (pDDPM-G), which exhibited superior performance in promoting odontogenesis, angiogenesis, and neurogenesis of the regenerating pulp-like tissue, further showed its tissue-specificity compared to the peripheral nerve-derived dECM hydrogel. In-depth proteomic and transcriptomic analyses revealed that the activation of tenascin C-Notch axis played an important role in facilitating odontogenic regeneration. This biomaterial-based study validated the great potential of the dental pulp-specific pDDPM-G for clinical applications, and provides a springboard for research strategies in ECM-related regenerative medicine.


Assuntos
Polpa Dentária , Hidrogéis , Regeneração , Células-Tronco , Polpa Dentária/citologia , Animais , Hidrogéis/química , Suínos , Regeneração/efeitos dos fármacos , Células-Tronco/citologia , Células-Tronco/metabolismo , Matriz Extracelular Descelularizada/química , Matriz Extracelular Descelularizada/farmacologia , Diferenciação Celular/efeitos dos fármacos , Endodontia Regenerativa/métodos , Humanos , Engenharia Tecidual/métodos
7.
Asian Cardiovasc Thorac Ann ; 32(4): 194-199, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38767039

RESUMO

BACKGROUND: Valvular heart diseases (VHDs) have become prevalent in populations due to aging. Application of different biomaterials for cardiac valve regeneration and repair holds a great promise for treatment of VHD. Aortic valve replacement using tissue-engineered xenografts is a considered approach, and the pericardium of different species such as porcine and bovine has been studied over the last few years. It has been suggested that the animal origin can affect the outcomes of replacement. METHODS: So, herein, we at first decellularized and characterized the camel pericardium (dCP), then characterized dCP with H&E staining, in vitro and in vivo biocompatibility and mechanical tests and compared it with decellularized bovine pericardium (dBP), to describe the potency of dCP as a new xenograft and bio scaffold. RESULTS: The histological assays indicated less decluttering and extracellular matrix damage in dCP after decellularization compared to the dBP also dCP had higher Young Modulus (105.11), and yield stress (1.57 ± 0.45). We observed more blood vessels and also less inflammatory cells in the dCP sections after implantation. CONCLUSIONS: In conclusion, the results of this study showed that the dCP has good capabilities not only for use in VHD treatment but also for other applications in tissue engineering and regenerative medicine.


Assuntos
Bioprótese , Camelus , Próteses Valvulares Cardíacas , Pericárdio , Medicina Regenerativa , Engenharia Tecidual , Alicerces Teciduais , Animais , Pericárdio/transplante , Medicina Regenerativa/métodos , Bovinos , Implante de Prótese de Valva Cardíaca/instrumentação , Implante de Prótese de Valva Cardíaca/efeitos adversos , Teste de Materiais , Valva Aórtica/cirurgia , Valva Aórtica/fisiopatologia , Valva Aórtica/patologia , Desenho de Prótese , Matriz Extracelular Descelularizada/química , Xenoenxertos , Doenças das Valvas Cardíacas/cirurgia , Doenças das Valvas Cardíacas/fisiopatologia , Doenças das Valvas Cardíacas/patologia , Regeneração
8.
Biologicals ; 86: 101767, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38704951

RESUMO

Decellularization is a novel technique employed for scaffold manufacturing, as a strategy for skeletal muscle (SM) tissue engineering applications. However, poor decellularization efficacy is still a problem for the use of decellularized scaffolds as truly biocompatible biomaterials. For recellularization, adipose-derived stem cells (ASCs) are a good option, due to their immunomodulatory and pro-regenerative capacity, but few studies have described their combination with muscle-decellularized matrices (mDMs). This work aimed to evaluate the efficiency of four multi-step decellularization protocols to produce mDMs and to investigate in vitro biocompatibility with ASCs. Here, we described the different efficacies of muscle decellularization methods, suggesting the need for stricter standardization of the method, considering the large range of applications in SM tissue engineering, which is also a promising platform for preclinical studies with rat disease models using autologous cells.


Assuntos
Tecido Adiposo , Músculo Esquelético , Engenharia Tecidual , Alicerces Teciduais , Engenharia Tecidual/métodos , Animais , Músculo Esquelético/citologia , Tecido Adiposo/citologia , Alicerces Teciduais/química , Ratos , Células-Tronco/citologia , Células-Tronco/metabolismo , Matriz Extracelular Descelularizada/química , Humanos , Células Cultivadas
9.
Iran Biomed J ; 28(2&3): 90-101, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38770915

RESUMO

Background: Synthetic and natural polymer scaffolds can be used to design wound dressing for repairing the damaged skin tissue. This study investigated acute wound healing process using a decellularized skin scaffold and mouse embryo fibroblast (MEF). Methods: Mouse skin fragments were decellularized and evaluated by DNA content, toxicity, H&E staining, Raman confocal microscopy, Masson's trichrome staining, SEM, and biodegradation assays. The fragments were recellularized by the MEFs, and cell attachment and penetration were studied. De- and decellularized scaffolds were used wound dressings in mouse acute wound models as two experimental groups. Using morphological and immunohistochemical assessments, wound healing was evaluated and compared among the experimental and control groups. Results: DNA content of the decellularized tissue significantly reduced compared to the native control group (7% vs. 100%; p < 0.05). extracellular matrix components, e.g. collagen types I, III, and IV, elastin, and glycosaminoglycan, were well preserved in the decellularized group. The porosity and fiber arrangement in the stroma had a structure similar to normal skin tissue. A significant reduction in healing time was observed in the group treated with a decellularized scaffold. A thicker epidermis layer was observed in the recovered tissue in both experimental groups compared to the control group. Immunostaining showed a positive reaction for CD31 as an endothelial marker in both experimental groups, confirming new vascularization in these groups. Conclusion: Using MEFs with decellularized skin as a wound dressing increases the rate of wound healing and also the formation of new capillaries. This system could be beneficial for clinical applications in the field of tissue engineering.


Assuntos
Fibroblastos , Neovascularização Fisiológica , Pele , Alicerces Teciduais , Cicatrização , Animais , Alicerces Teciduais/química , Camundongos , Embrião de Mamíferos , Matriz Extracelular Descelularizada/química , Angiogênese
10.
Cell Biochem Funct ; 42(4): e4038, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38736214

RESUMO

The generation of insulin-producing cells (IPCs) is an attractive approach for replacing damaged ß cells in diabetic patients. In the present work, we introduced a hybrid platform of decellularized amniotic membrane (dAM) and fibrin encapsulation for differentiating adipose tissue-derived stem cells (ASCs) into IPCs. ASCs were isolated from healthy donors and characterized. Human AM was decellularized, and its morphology, DNA, collagen, glycosaminoglycan (GAG) contents, and biocompatibility were evaluated. ASCs were subjected to four IPC differentiation methods, and the most efficient method was selected for the experiment. ASCs were seeded onto dAM, alone or encapsulated in fibrin gel with various thrombin concentrations, and differentiated into IPCs according to a method applying serum-free media containing 2-mercaptoethanol, nicotinamide, and exendin-4. PDX-1, GLUT-2 and insulin expression were evaluated in differentiated cells using real-time PCR. Structural integrity and collagen and GAG contents of AM were preserved after decellularization, while DNA content was minimized. Cultivating ASCs on dAM augmented their attachment, proliferation, and viability and enhanced the expression of PDX-1, GLUT-2, and insulin in differentiated cells. Encapsulating ASCs in fibrin gel containing 2 mg/ml fibrinogen and 10 units/ml thrombin increased their differentiation into IPCs. dAM and fibrin gel synergistically enhanced the differentiation of ASCs into IPCs, which could be considered an appropriate strategy for replacing damaged ß cells.


Assuntos
Tecido Adiposo , Diferenciação Celular , Fibrina , Insulina , Células-Tronco , Humanos , Diferenciação Celular/efeitos dos fármacos , Fibrina/química , Fibrina/metabolismo , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Células-Tronco/metabolismo , Células-Tronco/citologia , Insulina/metabolismo , Células Cultivadas , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/citologia , Matriz Extracelular Descelularizada/química , Matriz Extracelular Descelularizada/metabolismo , Matriz Extracelular Descelularizada/farmacologia , Âmnio/citologia , Âmnio/metabolismo , Âmnio/química
11.
J Mater Chem B ; 12(22): 5513-5524, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38745541

RESUMO

BACKGROUND: In the domain of plastic surgery, nasal cartilage regeneration is of significant importance. The extracellular matrix (ECM) from porcine nasal septum cartilage has shown potential for promoting human cartilage regeneration. Nonetheless, the specific biological inductive factors and their pathways in cartilage tissue engineering remain undefined. METHODS: The decellularized matrix derived from porcine nasal septum cartilage (PN-DCM) was prepared using a grinding method. Human umbilical cord mesenchymal stem cells (HuMSCs) were cultured on these PN-DCM scaffolds for 4 weeks without exogenous growth factors to evaluate their chondroinductive potential. Subsequently, proteomic analysis was employed to identify potential biological inductive factors within the PN-DCM scaffolds. RESULTS: Compared to the TGF-ß3-cultured pellet model serving as a positive control, the PN-DCM scaffolds promoted significant deposition of a Safranin-O positive matrix and Type II collagen by HuMSCs. Gene expression profiling revealed upregulation of ACAN, COL2A1, and SOX9. Proteomic analysis identified potential chondroinductive factors in the PN-DCM scaffolds, including CYTL1, CTGF, MGP, ITGB1, BMP7, and GDF5, which influence HuMSC differentiation. CONCLUSION: Our findings have demonstrated that the PN-DCM scaffolds promoted HuMSC differentiation towards a nasal chondrocyte phenotype without the supplementation of exogenous growth factors. This outcome is associated with the chondroinductive factors present within the PN-DCM scaffolds.


Assuntos
Diferenciação Celular , Condrogênese , Células-Tronco Mesenquimais , Septo Nasal , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Septo Nasal/citologia , Septo Nasal/química , Animais , Suínos , Células Cultivadas , Alicerces Teciduais/química , Matriz Extracelular Descelularizada/química , Matriz Extracelular Descelularizada/farmacologia , Matriz Extracelular/metabolismo , Matriz Extracelular/química , Engenharia Tecidual , Cordão Umbilical/citologia
12.
Biomater Adv ; 161: 213883, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38762928

RESUMO

Maintaining the viability of damaged pulp is critical in clinical dentistry. Pulp capping, by placing dental material over the exposed pulp, is a main approach to promote pulp-dentin healing and mineralized tissue formation. The dental materials are desired to impact on intricate physiological mechanisms in the healing process, including early regulation of inflammation, immunity, and cellular events. In this study, we developed an injectable dental pulp-derived decellularized matrix (DPM) hydrogel to modulate macrophage responses and promote dentin repair. The DPM derived from porcine dental pulp has high collagen retention and low DNA content. The DPM was solubilized by pepsin digestion (named p-DPM) and subsequently injected through a 25G needle to form hydrogel facilely at 37 °C. In vitro results demonstrated that the p-DPM induced the M2-polarization of macrophages and the migration, proliferation, and dentin differentiation of human dental pulp stem cells from deciduous teeth (SHEDs). In a mouse subcutaneous injection test, the p-DPM hydrogel was found to facilitate cell recruitment and M2 polarization during the early phase of implantation. Additionally, the acute pulp restoration in rat models proved that injectable p-DPM hydrogel as a pulp-capping agent had excellent efficacy in dentin regeneration. This study demonstrates that the DPM promotes dentin repair by modulating macrophage responses, and has a potential for pulp-capping applications in dental practice.


Assuntos
Polpa Dentária , Dentina , Hidrogéis , Macrófagos , Polpa Dentária/citologia , Polpa Dentária/efeitos dos fármacos , Animais , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Humanos , Dentina/efeitos dos fármacos , Dentina/química , Hidrogéis/química , Camundongos , Ratos , Matriz Extracelular Descelularizada/química , Matriz Extracelular Descelularizada/farmacologia , Suínos , Diferenciação Celular/efeitos dos fármacos , Regeneração/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Células-Tronco/citologia , Cicatrização/efeitos dos fármacos
13.
Sci Rep ; 14(1): 11991, 2024 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-38796487

RESUMO

Physiochemical tissue inducers and mechanical stimulation are both efficient variables in cartilage tissue fabrication and regeneration. In the presence of biomolecules, decellularized extracellular matrix (ECM) may trigger and enhance stem cell proliferation and differentiation. Here, we investigated the controlled release of transforming growth factor beta (TGF-ß1) as an active mediator of mesenchymal stromal cells (MSCs) in a biocompatible scaffold and mechanical stimulation for cartilage tissue engineering. ECM-derived hydrogel with TGF-ß1-loaded alginate-based microspheres (MSs) was created to promote human MSC chondrogenic development. Ex vivo explants and a complicated multiaxial loading bioreactor replicated the physiological conditions. Hydrogels with/without MSs and TGF-ß1 were highly cytocompatible. MSCs in ECM-derived hydrogel containing TGF-ß1/MSs showed comparable chondrogenic gene expression levels as those hydrogels with TGF-ß1 added in culture media or those without TGF-ß1. However, constructs with TGF-ß1 directly added within the hydrogel had inferior properties under unloaded conditions. The ECM-derived hydrogel group including TGF-ß1/MSs under loading circumstances formed better cartilage matrix in an ex vivo osteochondral defect than control settings. This study demonstrates that controlled local delivery of TGF-ß1 using MSs and mechanical loading is essential for neocartilage formation by MSCs and that further optimization is needed to prevent MSC differentiation towards hypertrophy.


Assuntos
Alginatos , Reatores Biológicos , Condrogênese , Hidrogéis , Células-Tronco Mesenquimais , Microesferas , Engenharia Tecidual , Alginatos/química , Engenharia Tecidual/métodos , Humanos , Hidrogéis/química , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Animais , Cartilagem/metabolismo , Cartilagem/citologia , Alicerces Teciduais/química , Matriz Extracelular Descelularizada/química , Fator de Crescimento Transformador beta1/metabolismo , Diferenciação Celular , Células Cultivadas , Fator de Crescimento Transformador beta/metabolismo , Matriz Extracelular/metabolismo
14.
Cells ; 13(8)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38667303

RESUMO

Skeletal muscle degeneration is responsible for major mobility complications, and this muscle type has little regenerative capacity. Several biomaterials have been proposed to induce muscle regeneration and function restoration. Decellularized scaffolds present biological properties that allow efficient cell culture, providing a suitable microenvironment for artificial construct development and being an alternative for in vitro muscle culture. For translational purposes, biomaterials derived from large animals are an interesting and unexplored source for muscle scaffold production. Therefore, this study aimed to produce and characterize bovine muscle scaffolds to be applied to muscle cell 3D cultures. Bovine muscle fragments were immersed in decellularizing solutions for 7 days. Decellularization efficiency, structure, composition, and three-dimensionality were evaluated. Bovine fetal myoblasts were cultured on the scaffolds for 10 days to attest cytocompatibility. Decellularization was confirmed by DAPI staining and DNA quantification. Histological and immunohistochemical analysis attested to the preservation of main ECM components. SEM analysis demonstrated that the 3D structure was maintained. In addition, after 10 days, fetal myoblasts were able to adhere and proliferate on the scaffolds, attesting to their cytocompatibility. These data, even preliminary, infer that generated bovine muscular scaffolds were well structured, with preserved composition and allowed cell culture. This study demonstrated that biomaterials derived from bovine muscle could be used in tissue engineering.


Assuntos
Músculo Esquelético , Mioblastos , Engenharia Tecidual , Alicerces Teciduais , Animais , Bovinos , Alicerces Teciduais/química , Músculo Esquelético/citologia , Engenharia Tecidual/métodos , Mioblastos/citologia , Materiais Biocompatíveis/química , Matriz Extracelular Descelularizada/química , Matriz Extracelular Descelularizada/farmacologia , Células Cultivadas , Proliferação de Células , Matriz Extracelular/metabolismo
15.
Biomed Mater ; 19(4)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38653259

RESUMO

The decellularized matrix has a great potential for tissue remodeling and regeneration; however, decellularization could induce host immune rejection due to incomplete cell removal or detergent residues, thereby posing significant challenges for its clinical application. Therefore, the selection of an appropriate detergent concentration, further optimization of tissue decellularization technique, increased of biosafety in decellularized tissues, and reduction of tissue damage during the decellularization procedures are pivotal issues that need to be investigated. In this study, we tested several conditions and determined that 0.1% Sodium dodecyl sulfate and three decellularization cycles were the optimal conditions for decellularization of pulp tissue. Decellularization efficiency was calculated and the preparation protocol for dental pulp decellularization matrix (DPDM) was further optimized. To characterize the optimized DPDM, the microstructure, odontogenesis-related protein and fiber content were evaluated. Our results showed that the properties of optimized DPDM were superior to those of the non-optimized matrix. We also performed the 4D-Label-free quantitative proteomic analysis of DPDM and demonstrated the preservation of proteins from the natural pulp. This study provides a optimized protocol for the potential application of DPDM in pulp regeneration.


Assuntos
Matriz Extracelular Descelularizada , Polpa Dentária , Proteômica , Engenharia Tecidual , Alicerces Teciduais , Polpa Dentária/citologia , Proteômica/métodos , Animais , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Matriz Extracelular Descelularizada/química , Dodecilsulfato de Sódio/química , Humanos , Odontogênese , Matriz Extracelular/metabolismo , Matriz Extracelular/química
16.
Biofabrication ; 16(3)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38663394

RESUMO

Extracellular matrix (ECM) rich whole organ bio-scaffolds, preserving structural integrity and essential growth factors, has potential towards regeneration and reconstruction. Women with cervical anomalies or trauma can benefit from clinical cervicovaginal repair using constructs rich in site specific ECM. In this study, complete human cervix decellularization was achieved using a modified perfusion-based stir bench top decellularization method. This was followed by physico-chemical processes including perfusion of ionic agents, enzymatic treatment and washing using detergent solutions for a duration of 10-12 d. Histopathological analysis, as well as DNA quantification confirmed the efficacy of the decellularization process. Tissue ultrastructure integrity was preserved and the same was validated via scanning electron microscopy and transmission electron microscopy studies. Biochemical analysis and structural characterizations like Fourier transform infrared, Raman spectroscopy of decellularized tissues demonstrated preservation of important proteins, crucial growth factors, collagen, and glycosaminoglycans.In vitrostudies, using THP-1 and human umbilical vein endothelial cell (HUVEC) cells, demonstrated macrophage polarization from M1 to M2 and vascular functional genes enhancement, respectively, when treated with decellularized human cervical matrix (DHCp). Crosslinked DHC scaffolds were recellularized with site specific human cervical epithelial cells and HUVEC, showing non-cytotoxic cell viability and enhanced proliferation. Furthermore, DHC scaffolds showed immunomodulatory effectsin vivoon small rodent model via upregulation of M2 macrophage genes as compared to decellularized rat cervix matrix scaffolds (DRC). DHC scaffolds underwent neo-vascularization followed by ECM remodeling with enhanced tissue integration.


Assuntos
Colo do Útero , Matriz Extracelular Descelularizada , Células Endoteliais da Veia Umbilical Humana , Alicerces Teciduais , Humanos , Feminino , Colo do Útero/citologia , Animais , Matriz Extracelular Descelularizada/química , Matriz Extracelular Descelularizada/farmacologia , Alicerces Teciduais/química , Matriz Extracelular/metabolismo , Matriz Extracelular/química , Ratos , Engenharia Tecidual , Células THP-1 , Macrófagos/metabolismo , Macrófagos/citologia , Ratos Sprague-Dawley
17.
Methods Mol Biol ; 2803: 3-12, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38676881

RESUMO

The extracellular matrix (ECM) forms most of the tissue microenvironment and is in a constant and dynamic equilibrium with cells. The decellularization process employs physical or chemical methods, or a combination of them, to remove the cellular components of tissues and organs while preserving the architecture and composition of the ECM. Depending on the methodology used, the decellularized ECM (dECM) is then suitable for research or clinical applications. Here, we describe an optimized protocol for the efficient decellularization of the human myocardium to generate 3D scaffolds of well-preserved cardiac extracellular matrix that can be used for in vitro or in vivo studies.


Assuntos
Matriz Extracelular Descelularizada , Miocárdio , Engenharia Tecidual , Alicerces Teciduais , Humanos , Alicerces Teciduais/química , Miocárdio/citologia , Miocárdio/metabolismo , Engenharia Tecidual/métodos , Matriz Extracelular Descelularizada/química , Matriz Extracelular/metabolismo , Matriz Extracelular/química , Microambiente Celular
18.
Proc Natl Acad Sci U S A ; 121(19): e2322822121, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38687784

RESUMO

Hydrogels derived from decellularized extracellular matrices (ECM) of animal origin show immense potential for regenerative applications due to their excellent cytocompatibility and biomimetic properties. Despite these benefits, the impact of decellularization protocols on the properties and immunogenicity of these hydrogels remains relatively unexplored. In this study, porcine skeletal muscle ECM (smECM) underwent decellularization using mechanical disruption (MD) and two commonly employed decellularization detergents, sodium deoxycholate (SDC) or Triton X-100. To mitigate immunogenicity associated with animal-derived ECM, all decellularized tissues were enzymatically treated with α-galactosidase to cleave the primary xenoantigen-the α-Gal antigen. Subsequently, the impact of the different decellularization protocols on the resultant hydrogels was thoroughly investigated. All methods significantly reduced total DNA content in hydrogels. Moreover, α-galactosidase treatment was crucial for cleaving α-Gal antigens, suggesting that conventional decellularization methods alone are insufficient. MD preserved total protein, collagen, sulfated glycosaminoglycan, laminin, fibronectin, and growth factors more efficiently than other protocols. The decellularization method impacted hydrogel gelation kinetics and ultrastructure, as confirmed by turbidimetric and scanning electron microscopy analyses. MD hydrogels demonstrated high cytocompatibility, supporting satellite stem cell recruitment, growth, and differentiation into multinucleated myofibers. In contrast, the SDC and Triton X-100 protocols exhibited cytotoxicity. Comprehensive in vivo immunogenicity assessments in a subcutaneous xenotransplantation model revealed MD hydrogels' biocompatibility and low immunogenicity. These findings highlight the significant influence of the decellularization protocol on hydrogel properties. Our results suggest that combining MD with α-galactosidase treatment is an efficient method for preparing low-immunogenic smECM-derived hydrogels with enhanced properties for skeletal muscle regenerative engineering and clinical applications.


Assuntos
Matriz Extracelular , Hidrogéis , Músculo Esquelético , Animais , Hidrogéis/química , Suínos , Matriz Extracelular/metabolismo , Engenharia Tecidual/métodos , Matriz Extracelular Descelularizada/química , Camundongos , alfa-Galactosidase/imunologia , alfa-Galactosidase/metabolismo , Ácido Desoxicólico/química , Octoxinol/química
19.
J Microbiol Biotechnol ; 34(5): 1003-1016, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38563106

RESUMO

This study explores the potential of plant-based decellularization in regenerative medicine, a pivotal development in tissue engineering focusing on scaffold development, modification, and vascularization. Plant decellularization involves removing cellular components from plant structures, offering an eco-friendly and cost-effective alternative to traditional scaffold materials. The use of plant-derived polymers is critical, presenting both benefits and challenges, notably in mechanical properties. Integration of plant vascular networks represents a significant bioengineering breakthrough, aligning with natural design principles. The paper provides an in-depth analysis of development protocols, scaffold fabrication considerations, and illustrative case studies showcasing plant-based decellularization applications. This technique is transformative, offering sustainable scaffold design solutions with readily available plant materials capable of forming perfusable structures. Ongoing research aims to refine protocols, assess long-term implications, and adapt the process for clinical use, indicating a path toward widespread adoption. Plant-based decellularization holds promise for regenerative medicine, bridging biological sciences with engineering through eco-friendly approaches. Future perspectives include protocol optimization, understanding long-term impacts, clinical scalability, addressing mechanical limitations, fostering collaboration, exploring new research areas, and enhancing education. Collectively, these efforts envision a regenerative future where nature and scientific innovation converge to create sustainable solutions, offering hope for generations to come.


Assuntos
Medicina Regenerativa , Engenharia Tecidual , Alicerces Teciduais , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Medicina Regenerativa/métodos , Plantas , Matriz Extracelular Descelularizada/química , Perfusão/métodos , Humanos , Matriz Extracelular/química
20.
ACS Biomater Sci Eng ; 10(5): 3203-3217, 2024 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-38557027

RESUMO

The intricate electrophysiological functions and anatomical structures of spinal cord tissue render the establishment of in vitro models for spinal cord-related diseases highly challenging. Currently, both in vivo and in vitro models for spinal cord-related diseases are still underdeveloped, complicating the exploration and development of effective therapeutic drugs or strategies. Organoids cultured from human induced pluripotent stem cells (hiPSCs) hold promise as suitable in vitro models for spinal cord-related diseases. However, the cultivation of spinal cord organoids predominantly relies on Matrigel, a matrix derived from murine sarcoma tissue. Tissue-specific extracellular matrices are key drivers of complex organ development, thus underscoring the urgent need to research safer and more physiologically relevant organoid culture materials. Herein, we have prepared a rat decellularized brain extracellular matrix hydrogel (DBECMH), which supports the formation of hiPSC-derived spinal cord organoids. Compared with Matrigel, organoids cultured in DBECMH exhibited higher expression levels of markers from multiple compartments of the natural spinal cord, facilitating the development and maturation of spinal cord organoid tissues. Our study suggests that DBECMH holds potential to replace Matrigel as the standard culture medium for human spinal cord organoids, thereby advancing the development of spinal cord organoid culture protocols and their application in in vitro modeling of spinal cord-related diseases.


Assuntos
Encéfalo , Hidrogéis , Células-Tronco Pluripotentes Induzidas , Organoides , Medula Espinal , Organoides/efeitos dos fármacos , Organoides/citologia , Organoides/metabolismo , Humanos , Animais , Medula Espinal/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Hidrogéis/química , Hidrogéis/farmacologia , Encéfalo/metabolismo , Ratos , Matriz Extracelular Descelularizada/química , Matriz Extracelular Descelularizada/farmacologia , Matriz Extracelular/metabolismo , Matriz Extracelular/química , Laminina/farmacologia , Laminina/química , Proteoglicanas/química , Ratos Sprague-Dawley , Combinação de Medicamentos , Colágeno
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...