Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.829
Filtrar
1.
Molecules ; 29(12)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38930905

RESUMO

BACKGROUND: Achyranthes bidentata (AR) is a traditional Chinese herb used for the treatment of hypertension and cerebral ischemia, but its pharmacological effects are not known. AIM OF STUDY: We aimed to detect and accurately identify the components and metabolites of AR in the plasma and brain tissue of Sprague Dawley rats. METHODS: We employed ultrahigh performance liquid chromatography-high-resolution mass spectrometry (UHPLC-HR-MS) to detect AR components in the plasma and brain tissue of rats. The absorption and metabolites in the plasma and brain tissue of normal control rats and rats that underwent middle cerebral artery occlusion (MCAO) were characterized and compared. RESULTS: A total of 281 compounds, including alkaloids, flavonoids, terpenoids, phenylpropanes, sugars and glycosides, steroids, triterpenes, amino acids, and peptides, was identified in samples of Achyranthes bidentata (TCM-AR). Four types of absorbable prototype components and 48 kinds of metabolites were identified in rats in the normal control plasma group which were given AR (AR plasma group), and five kinds of metabolites were identified in rats of the normal control brain tissue group which were given AR (AR brain group). Three absorbed prototype components and 13 metabolites were identified in the plasma of rats which underwent MCAO and were given AR (MCAO + AR plasma group). Six absorbed prototype components and two metabolites were identified in the brain tissue of rats who underwent MCAO and were administered AR (MCAO + AR brain group). These results showed that, after the oral administration of AR, the number of identified components in plasma was more than that in brain tissue. The number of prototype components in the AR plasma group was higher than that in the MCAO + AR plasma group, which may indicate that metabolite absorption in rats undergoing MCAO was worse. The number of prototype components in the MCAO + AR brain group was higher than that in the AR brain group, indicating that the blood-brain barrier was destroyed after MCAO, resulting in more compounds entering brain tissue. CONCLUSIONS: UHPLC-HR-MS was used to rapidly analyze the components and metabolites of AR in the blood and brain of rats under normal and pathologic conditions, and to comprehensively characterize the components of TCM-AR. We also analyzed and compared the absorbable components and metabolites of normal rats under cerebral ischemia-reperfusion injury to explore the potential mechanism of action. This method could be applied to various Chinese herbs and disease models, which could promote TCM modernization.


Assuntos
Achyranthes , Encéfalo , Ratos Sprague-Dawley , Animais , Achyranthes/química , Cromatografia Líquida de Alta Pressão/métodos , Ratos , Encéfalo/metabolismo , Masculino , Espectrometria de Massas/métodos , Medicamentos de Ervas Chinesas/farmacocinética , Medicamentos de Ervas Chinesas/química , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/sangue , Flavonoides/sangue , Flavonoides/farmacocinética , Flavonoides/metabolismo , Alcaloides/sangue , Alcaloides/farmacocinética , Alcaloides/química , Alcaloides/metabolismo
2.
Artigo em Inglês | MEDLINE | ID: mdl-38865851

RESUMO

The Zingiberis Rhizoma - Jujubae Fructus herb pair (ZJHP) is a classic herb pair in traditional Chinese medicine. The herb pair shows the effect of dispelling cold, harmonizing the middle and improving gastrointestinal function, and is widely used for patients with stomach cold syndrome (SCS), stomachache and anemofrigid cold. The gingerols, shogaols, flavonoids and triterpenic acids are the important bioactive ingredients of ZJHP. However, few pharmacokinetic studies have been investigated in vivo for the above compounds. To comprehend the kinetics of active components and promote their curative application, a fast and sensitive ultra-high performance liquid chromatography coupled with mass spectrometry (UHPLC-MS/MS) method was established for simultaneous determination of 12 analytes in normal and SCS rats in this study. The results showed that the pharmacokinetic parameters (Cmax, Tmax, t1/2z, MRT0-t, AUC0-t and AUC0-∞) in SCS model were significantly different from those in normal rats. In addition, the pharmacokinetics of rats given ZJHP were also varied from single herb oral administration, especially in model condition. These results indicated that the in vivo processes of the above analytes changed under pathological conditions and the compatibility of the herb pair could significantly influence the absorption of active components, which might provide an insight and further supports for the clinical application of ZJHP.


Assuntos
Medicamentos de Ervas Chinesas , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem , Animais , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas em Tandem/métodos , Ratos , Medicamentos de Ervas Chinesas/farmacocinética , Medicamentos de Ervas Chinesas/administração & dosagem , Medicamentos de Ervas Chinesas/química , Masculino , Reprodutibilidade dos Testes , Administração Oral , Modelos Lineares , Limite de Detecção , Zingiber officinale/química , Gastropatias/tratamento farmacológico , Gastropatias/veterinária
3.
Biomed Chromatogr ; 38(8): e5930, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38881164

RESUMO

Chuanwang Xiaoyan (CWXY) capsule is primarily used to treat a variety of acute and chronic inflammations, including acute and chronic pharyngitis and tonsillitis. However, a systematic study of its chemical constituents is still not available. This study evaluated the chemical constituents in vitro and metabolite profiles in vivo of CWXY using ultra-high-performance liquid chromatography (UHPLC) coupled with Q-Exactive Orbitrap mass spectrometry, and the pharmacokinetic behaviors of the nine main components in rats were detected using ultra-high-performance liquid chromatography-triple quadrupole-mass spectrometry (UPLC-QQQ-MS/MS). A total of 92 chemical constituents in CWXY were preliminarily identified in vitro. After oral administration to rats, 56 prototype components and 128 metabolites of CWXY were detected in the biological samples of rat plasma, urine, bile, and feces. Of these prototype components and metabolites, seven new compounds, namely M15, M16, M25, M30, M31, M71, and M128, were detected for the first time. The quantitation method of nine components in rat plasma was developed using a pharmacokinetic study. To the best of our knowledge, this study was the first to investigate the pharmacokinetic behavior of triumbelletin.


Assuntos
Medicamentos de Ervas Chinesas , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem , Animais , Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas/farmacocinética , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/administração & dosagem , Espectrometria de Massas em Tandem/métodos , Ratos , Masculino , Reprodutibilidade dos Testes , Modelos Lineares , Limite de Detecção
4.
J Ethnopharmacol ; 333: 118503, 2024 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-38942157

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Citri Reticulatae Pericarpium (CRP), known as Chen Pi in China, is the most commonly used medicine for regulating qi. As a traditional medicine, CRP has been extensively used in the clinical treatment of nausea, vomiting, cough and phlegm for thousands of years. It is mainly distributed in Guangdong, Sichuan, Fujian and Zhejiang in China. Due to its high frequency of use, many scholars have conducted a lot of research on it and the related chemical constituents it contains. In this review, the research progress on phytochemistry, pharmacology, pharmacokinetics and toxicology of CRP are summarized. AIM OF THE REVIEW: The review aims to sort out the methods of extraction and purification, pharmacological activities and mechanisms of action, pharmacokinetics and toxicology of the chemical constituents in CRP, in order to elaborate the future research directions and challenges for the study of CRP and related chemical constituents. MATERIALS AND METHODS: Valid and comprehensive relevant information was collected from China National Knowledge Infrastructure, Web of Science, PubMed and so on. RESULTS: CRP contains a variety of compounds, of which terpenes, flavonoids and alkaloids are the main components, and they are also the primary bioactive components that play a pharmacological role. Flavonoids and terpenes are extracted and purified by aqueous and alcoholic extraction methods, assisted by ultrasonic and microwave extraction, in order to achieve higher yields with less resources. Pharmacological studies have shown that CRP possesses a variety of highly active chemical components and a wide range of pharmacological activities, including anti-tumor, anti-inflammatory, immunomodulatory, hepatoprotective, therapeutic for cardiovascular-related disorders, antioxidant, antibacterial, and neuroprotective effects. CONCLUSIONS: There is a diversity in the chemical compositions of CRP, which have multiple biological activities and promising applications. However, the pharmacological activities of CRP are mainly dependent on the action of its chemical components, but the relationship between the structure of chemical components and the biological effects has not been thoroughly investigated, and therefore, the structure-activity relationship is an issue that needs to be elucidated urgently. In addition, the pharmacokinetic studies of the relevant components can be further deepened and the correlation studies between pharmacological effects and syndromes of TCM can be expanded to ensure the effectiveness and rationality of CRP for human use.


Assuntos
Compostos Fitoquímicos , Humanos , Animais , Compostos Fitoquímicos/farmacocinética , Compostos Fitoquímicos/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/farmacocinética , Medicamentos de Ervas Chinesas/química , Medicina Tradicional Chinesa/métodos , Citrus/química
5.
J Ethnopharmacol ; 331: 118299, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38729539

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: In traditional Chinese medicine (TCM), Yigong San (YGS) is mainly used to treat dyspepsia caused by deficiency of spleen and stomach qi. Although the chemical composition and bioactivity of YGS has been well studied, the main in vivo compounds and their distribution in tissues still need to be made clearer. AIM OF THE STUDY: To elucidate the pharmacokinetic profiles and tissue distribution of eight main compounds of YGS in rats, and provide a reference for clinical application and new drug development. MATERIALS AND METHODS: UPLC-Q-Exactive-Orbitrap-MS was used to qualitatively characterize the parent compounds and their metabolites in the plasma of rats after oral administration of YGS. A sensitive, reliable, and accurate ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method using UPLC-AB Sciex QTRAP 5500 MS was established to quantitatively determine eight main compounds of YGS in rat plasma and tissues, including liquiritin, isoliquiritin, hesperidin, ginsenosides Rb1, Re and Rg1, atractylenolides I and II. RESULTS: The mean area under the concentration-time curve (AUC) values of ginsenoside Rb1, hesperidin, and liquiritin at low, medium, and high doses were greater than 150 ng h/mL. The elimination half-life (t1/2) values of ginsenoside Rb1, atractylenolides I and II (low and medium doses) were longer than 10 h. Peak time (Tmax) values of all compounds were shorter than 10 h. Except for atractylenolides, the maximum concentration (Cmax) values of the compounds were greater than 10 ng/mL. The eight compounds were detected in the heart, brain, liver, spleen and kidney at 0.25 h after oral administration. Liquiritin and isoliquiritin had higher exposure in the liver and heart. Hesperidin and ginsenosides Rb1, Re, and Rg1 are mainly distributed in the spleen and kidney. Atractylenolides I and II are mainly distributed in spleen, liver and kidney. CONCLUSIONS: All main compounds of YGS, i.e., liquiritin, isoliquiritin, hesperidin, ginsenosides Rb1, Re, and Rg1, and atractylenolides I and II are absorbed into plasma and widely distributed in various tissues. Among them, hesperidin, ginsenoside Rb1, and atractylenolide I are main in vivo compounds. They are mainly distributed in spleen, liver and kidney. The results of this study provide a basis for further in-depth development and application of YGS.


Assuntos
Medicamentos de Ervas Chinesas , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem , Animais , Medicamentos de Ervas Chinesas/farmacocinética , Medicamentos de Ervas Chinesas/administração & dosagem , Masculino , Distribuição Tecidual , Espectrometria de Massas em Tandem/métodos , Ratos , Cromatografia Líquida de Alta Pressão/métodos , Administração Oral , Área Sob a Curva
6.
Artigo em Inglês | MEDLINE | ID: mdl-38744158

RESUMO

Farfarae Flos is a traditional herb widely employed for treating coughs, bronchitis, and asthmatic disorders. In the current study, we utilized SWATH and IDA data acquisition modes in combination with multiple data processing techniques to identify Farfarae Flos metabolites in mice serum. A total of 56 compounds were characterized, including 31 phenolic acids, 13 flavonoids, 11 sesquiterpenoids and 1 alkaloid. Further quantitative analysis was conducted on 12 absorbed metabolites, utilizing a newly developed and rigorously validated analytical method. Our approach demonstrated an acceptable level of specificity, accuracy, precision, and stability. When applied to compare the serum of mice treated with FF, all 12 metabolites showed the highest concentration at 0.5 h. Overall, this study presented a novel strategy for unraveling the active compounds of FF via serum pharmacochemistry analysis, which made a foundation for exploring the pharmacodynamic material basis of FF.


Assuntos
Medicamentos de Ervas Chinesas , Animais , Cromatografia Líquida de Alta Pressão/métodos , Camundongos , Reprodutibilidade dos Testes , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacocinética , Masculino , Modelos Lineares , Espectrometria de Massas/métodos , Flavonoides/sangue , Flavonoides/farmacocinética , Flavonoides/química , Limite de Detecção , Flores/química , Hidroxibenzoatos/sangue , Hidroxibenzoatos/química , Alcaloides/sangue , Alcaloides/química , Alcaloides/farmacocinética
7.
J Pharm Biomed Anal ; 247: 116251, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38820836

RESUMO

The proprietary Chinese medicine Jinkui Shenqi Pill (PCM-JKSQP) is a classic compound used for the effective clinical treatment of kidney yang deficiency syndrome (KYDS), a metabolic disease accompanied by kidney injury. However, its active ingredients and therapeutic mechanisms are not clear. This study employed serum pharmacochemistry, network pharmacology, and pharmacokinetics (PK) to identify the bioactive components of PCM-JKSQP and preliminarily clarify its mechanism in treating KYDS. One hundred and forty chemical components of PCM-JKSQP, 47 (20 parent compouds and 27 metabolites) of which were absorbed into the blood, were identified by ultra-high-performance liquid chromatography-quadrupole-orbitrap high-resolution mass spectrometry (UHPLC-Q-Orbitrap HRMS). The topological parameters of network pharmacology and high concentrations in blood found six parent components as PK markers (cinnamic acid, paeonol, loganin, morroniside, apigenin, and poricoic acid A). PK analysis further identified these six compounds as active ingredients. Protein-protein interaction (PPI) analysis and molecular docking simulation predicted and verified eight core targets (TP53, ESR1, CTNNB1, EP300, EGFR, AKT1, ERBB2, and TNF). Most were concentrated in the MAPK, HIF-1, and PI3K-AKT signaling pathways, indicating that these six active ingredients may mainly exert therapeutic effects through these three pathways via their core targets. The PK results also showed these six components were absorbed quickly, although cinnamic acid and paeonol were rapidly metabolized, with a short half-life and retention time. Loganin and morroniside did not have high peak concentrations, and apigenin and poricoic acid A had long retention times. This study provides a new overall perspective for exploring the bioactive components and mechanisms underlying the effects of PCM-JKSQP in treating KYDS.


Assuntos
Medicamentos de Ervas Chinesas , Simulação de Acoplamento Molecular , Farmacologia em Rede , Deficiência da Energia Yang , Medicamentos de Ervas Chinesas/farmacocinética , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/uso terapêutico , Deficiência da Energia Yang/tratamento farmacológico , Farmacologia em Rede/métodos , Animais , Cromatografia Líquida de Alta Pressão/métodos , Masculino , Medicina Tradicional Chinesa/métodos , Rim/metabolismo , Rim/efeitos dos fármacos , Ratos , Mapas de Interação de Proteínas/efeitos dos fármacos , Nefropatias/tratamento farmacológico , Nefropatias/metabolismo , Ratos Sprague-Dawley , Humanos
8.
Zhongguo Zhong Yao Za Zhi ; 49(9): 2501-2511, 2024 May.
Artigo em Chinês | MEDLINE | ID: mdl-38812154

RESUMO

This study established a convenient, rapid, and sensitive ultra-performance liquid chromatography tandem mass spectrometry(UPLC-MS/MS) method for simultaneous determination of magnoflorine,(R)-coclaurine, vicenin Ⅱ, isospinosin, spinosin, swertisin, N-nornuciferine, 6-feruloylspinosin, and jujuboside B in beagle dog plasma after oral administration of fried Ziziphi Spinosae Semen(FZSS) extract. The Waters HSS-T3 C_(18) column(2.1 mm×100 mm, 1.8 µm) was used. The methanol-aqueous solution(containing 0.01% formic acid) was adopted as the mobile phase for gradient elution. The nine components and two internal standards were completely separated within 8 min. The mass spectrometry detection was performed in multiple reaction monitoring(MRM) mode by positive and negative ion switching of electrospray ionization. The analytical method was validated in terms of specificity, selectivity, linear range, accuracy, precision, recovery, matrix effect, and stability. It could meet the requirement of pharmacokinetic research after oral administration of FZSS extract to beagle dogs. The results showed that the time to reach the peak concentration(T_(max)) of magnoflorine,(R)-coclaurine, vicenin Ⅱ, isospinosin, spinosin, 6-feruloylspinosin, and jujuboside B was 2.40-3.20 h, and the elimination halflife(t_(1/2)) was 2.08-6.79 h after a single-dose oral administration of FZSS to beagle dogs. The exposure of magnoflorine and spinosin was high, with a peak concentration(C_(max)) of 76.7 and 31.5 ng·mL~(-1) and an area under the curve(AUC_(0-∞)) of 581 and 315 ng·h·mL~(-1), respectively. The exposure of the remaining five compounds was lower, with a C_(max) of 0.81-13.0 ng·mL~(-1) and an AUC_(0-∞) of 6.00-106 ng·h·mL~(-1). This study provides a reference for the follow-up research of FZSS.


Assuntos
Medicamentos de Ervas Chinesas , Espectrometria de Massas em Tandem , Ziziphus , Animais , Cães , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas/farmacocinética , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/administração & dosagem , Ziziphus/química , Masculino , Espectrometria de Massa com Cromatografia Líquida
9.
Zhongguo Zhong Yao Za Zhi ; 49(10): 2783-2797, 2024 May.
Artigo em Chinês | MEDLINE | ID: mdl-38812179

RESUMO

Dihuang Baoyuan Granules is a prescription endorsed by HU Tianbao, a renowned and elderly Chinese medicine practitioner from Beijing, and has demonstrated definite clinical efficacy. The composition of this prescription is intricate as it includes 7 distinct herbal medicines. This study aims to analyze the chemical composition of Dihuang Baoyuan Granules, evaluate its efficacy in the treatment of diabetes and analyze the distribution of the drug components in the plasma, liver, and kidney after administration. The findings will serve as a reference for future research on pharmacodynamic substances of this prescription. UHPLC-LTQ-Orbitrap MS was employed to analyze the main chemical components of Dihuang Baoyuan Granules. A Waters ACQUITY Premier HSS T3 column(2.1 mm×100 mm, 1.8 µm) was used for chromatographic separation with 0.1% formic acid(A)-acetonitrile(B) as the mobile phases in a gradient elution at a flow rate of 0.3 mL·min~(-1). Electrospray ionization(ESI) source was used to acquire data in positive and negative ion modes. Furthermore, a rat model of diabetes mellitus was established by feeding with a high-sugar high-fat diet, and injection with streptozocin at a dose of 35 mg·kg~(-1), and the modeled rats were then administrated with Dihuang Baoyuan Granules. The fasting blood glucose, hemoglobin A1c, and other relevant indicators were measured, and the substances present in the plasma, liver, and kidney were identified. By reference to quasi-molecular ions, MS/MS fragment ions, MS spectra of reference substances, and compound information in available reports, 191 components were identified in Dihuang Baoyuan Granules, including 29 alkaloids, 24 flavonoids, 22 organic acids, 16 amino acids, 12 terpenes, 11 steroid saponins, 9 sugars, 8 phenylethanoid glycosides, 8 nucleosides, 2 phenylpropanoids, and 49 others compounds. Eighty-three chemical components were identified in rat plasma, 109 in the liver, and 98 in the kidney. Component identification and characterization of Dihuang Baoyuan Granules in vitro and in vivo provide efficacy information and guidance for the basic research on the pharmacodynamic substances and further clinical application of this prescription.


Assuntos
Medicamentos de Ervas Chinesas , Ratos Sprague-Dawley , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacocinética , Cromatografia Líquida de Alta Pressão/métodos , Animais , Ratos , Masculino , Humanos , Fígado/efeitos dos fármacos , Fígado/química , Fígado/metabolismo , Espectrometria de Massas/métodos , Rim/efeitos dos fármacos , Rim/química , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus/tratamento farmacológico
10.
Zhongguo Zhong Yao Za Zhi ; 49(8): 2158-2168, 2024 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-38812231

RESUMO

This study systematically explored the transdermal diffusion law of functional substances of Jingu Zhitong Gel(JGZTG). The transdermal diffusion research methods of JGZTG were investigated by single factor trial with the automated transdermal(dry-heat) sampling system. High performance liquid chromatography(HPLC) content determination method was established to determine the contents of ferulic acid, senkyunolide I, cinnamic acid, hydroxy-ε-xanthoxylin, hydroxy-α-xanthoxylin, and hydroxy-ß-xanthoxylin in the transdermal diffusion solution of JGZTG. The transdermal diffusion law of the components within 16 h was investigated. The results showed that the optimal transdermal diffusion method of JGZTG was as follows: Rat skin was used as the transdermal barrier; normal saline was used as the receiving medium; the dosage of JGZTG was 0.3 g, and the receiving solution was extracted by ethyl acetate. The results of transdermal diffusion showed that the release of ferulic acid, cinnamic acid, and senkyunolide I increased significantly at 0-8 h and slowed down at 8-16 h. The drug release was a synergic process of diffusion and dissolution, in which ferulic acid and cinnamic acid followed Higuchi and Ritger-Peppas equations, and liguolactone I followed Higuchi equation. The transdermal diffusion curves of hydroxy-ε-zanthoxylin, hydroxy-α-zanthoxylin, and hydroxy-ß-zanthoxylin showed continuous release within 16 h, and the drug release was skeleton dissolution. The diffusion law followed zero-order equation, first-order equation, and Ritger-Peppas equation. In clonclusion, it is a controlled release of ferulic acid, ligustrone I, cinnamic acid, hydroxy-ε-pyrroxylin, hydroxy-α-pyrroxylin, and hydroxy-ß-pyrroxylin in JGZTG, which can maintain stable blood drug concentration with 16 h, and the cumulative transmittance of each component with 12 h can reach 80% of cumulative transmittance with 24 h, which is in line with the clinical drug use law of bis in die.


Assuntos
Medicamentos de Ervas Chinesas , Absorção Cutânea , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacocinética , Medicamentos de Ervas Chinesas/administração & dosagem , Ratos , Animais , Difusão , Administração Cutânea , Pele/metabolismo , Pele/química , Géis/química , Masculino , Ratos Sprague-Dawley , Cromatografia Líquida de Alta Pressão , Cinamatos/farmacocinética , Cinamatos/análise , Cinamatos/química , Ácidos Cumáricos/farmacocinética , Ácidos Cumáricos/análise
11.
J Chromatogr A ; 1723: 464716, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38640881

RESUMO

Saposhnikoviae Radix (SR) may enhance the pharmacodynamics of Huangqi Chifeng Tang (HQCFT) in the treatment of cerebral infarction according to our previous research, but the underlying mechanism is unknown. Herein, an in vivo pharmacokinetic assay in rats and in vitro MDCK-MDR1 cell assays were used to investigate the possible mechanism of SR, its main components, and its interactions with Astragali Radix (AR) and Paeoniae Radix (PR). An ultrahigh-performance liquid chromatography-tandem mass spectrometry (UPLC‒MS/MS)-based analytical method for quantifying astragaloside IV (ASIV) and paeoniflorin (PAE) in microdialysis and transport samples was developed. The pharmacokinetic parameters of SR were determined using noncompartmental analyses CCK-8 assays were used to detect the cytotoxicity of ASIV, PAE, cimifugin (CIM), prim-o-glucosylcimifugin (POG) and their combinations. Moreover, drug transport was studied using MDCK-MDR1 cells. Western blotting was performed to measure the protein expression levels of P-GP and MRP1. Claudin-5, ZO-1, and F-actin expression was determined via immunohistochemical staining of MDCK-MDR1 cells. harmacokinetic studies revealed that, compared with those of Huangqi Chifeng Tang-Saposhnikoviae Radix (HQCFT-SR), the Tmax of ASIV increased by 11.11 %, and the MRT0-t and Tmax of PAE increased by 11.19 % and 20 %, respectively, in the HQCFT group. Transport studies revealed that when ASIV was coincubated with 28 µM CIM or POG, the apparent permeability coefficient (Papp) increased by 71.52 % and 50.33 %, respectively. Coincubation of PAE with 120 µM CIM or POG increased the Papp by 87.62 % and 60.95 %, respectively. Moreover, CIM and POG significantly downregulated P-gp and MRP1 (P < 0.05), inhibited the expression of Claudin-5, ZO-1, and F-actin (P < 0.05), and affected intercellular tight junctions (TJs). In conclusion, our study successfully established a selective, sensitive and reproducible UPLC‒MS/MS analytical method to detect drug‒drug interactions between SR, AR and PR in vivo and in vitro, which is beneficial for enhancing the therapeutic efficacies of AR and PR. Moreover, this study provides a theoretical basis for further research on the use of SR as a drug carrier.


Assuntos
Medicamentos de Ervas Chinesas , Glucosídeos , Monoterpenos , Ratos Sprague-Dawley , Saponinas , Espectrometria de Massas em Tandem , Triterpenos , Animais , Glucosídeos/farmacocinética , Glucosídeos/análise , Glucosídeos/química , Glucosídeos/farmacologia , Saponinas/farmacocinética , Saponinas/farmacologia , Saponinas/química , Saponinas/análise , Monoterpenos/análise , Triterpenos/farmacologia , Triterpenos/farmacocinética , Triterpenos/química , Triterpenos/análise , Cães , Ratos , Células Madin Darby de Rim Canino , Espectrometria de Massas em Tandem/métodos , Masculino , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/farmacocinética , Cromatografia Líquida de Alta Pressão/métodos , Apiaceae/química , Interações Ervas-Drogas , Interações Medicamentosas , Reprodutibilidade dos Testes
12.
J Pharm Biomed Anal ; 245: 116156, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38636190

RESUMO

Persicaria capitata (Buch.-Ham. ex D. Don) H. Gross, a traditional Chinese medicinal plant, is often used to treat various urologic disorders in China. P. capitata extracts (PCE) have been used in combination with levofloxacin (LVFX) to treat urinary tract infections (UTIs) for a long time. However, little is known about the absorption of LVFX and transporter expression in the intestine after combined treatment with PCE, restricting the development and utilization of PCE. In view of this, a UPLC-MS/MS method was established for the determination of LVFX in intestinal sac fluid samples and in situ intestinal circulation perfusate samples to explore the effect of PCE on the intestinal absorption characteristics of LVFX ex vivo and in vivo. To further evaluate the interaction between LVFX and PCE, western blotting, immunohistochemistry, and RT-qPCR were utilized to determine the expression levels of drug transporters (OATP1A2, P-gp, BCRP, and MRP2) involved in the intestinal absorption of LVFX after combined treatment with PCE. Using the everted intestinal sac model, the absorption rate constant (Ka) and cumulative drug absorption (Q) of LVFX in each intestinal segment were significantly lower in groups treated with PCE than in the control group. Ka at 2 h decreased most in the colon segment (from 0.088 to 0.016 µg/h·cm2), and Q at 2 h decreased most in the duodenum (from 213.29 to 33.92 µg). Using the intestinal circulation perfusion model, the Ka value and percentage absorption rate (A) of LVFX in the small intestine decreased significantly when PCE and LVFX were used in combination. These results showed that PCE had a strong inhibitory effect on the absorption of LVFX in the rat small intestine (ex vivo and in vivo intestinal segments). In addition, PCE increased the protein and mRNA expression levels of efflux transporters (P-gp, BCRP, and MRP2) and decreased the expression of the uptake transporter OATP1A2 significantly. The effects increased as the PCE concentration increased. These findings indicated that PCE changed the absorption characteristics of levofloxacin, possibly by affecting the expression of transporters in the small intestine. In addition to revealing a herb-drug interaction (HDI) between PCE and LVFX, these results provide a basis for further studies of their clinical efficacy and mechanism of action.


Assuntos
Interações Ervas-Drogas , Absorção Intestinal , Mucosa Intestinal , Levofloxacino , Ratos Sprague-Dawley , Animais , Levofloxacino/farmacologia , Levofloxacino/farmacocinética , Absorção Intestinal/efeitos dos fármacos , Ratos , Masculino , Mucosa Intestinal/metabolismo , Medicamentos de Ervas Chinesas/administração & dosagem , Medicamentos de Ervas Chinesas/farmacocinética , Medicamentos de Ervas Chinesas/farmacologia , Espectrometria de Massas em Tandem/métodos , Extratos Vegetais/farmacologia , Proteínas de Membrana Transportadoras/metabolismo , Antibacterianos/farmacocinética
13.
J Pharm Biomed Anal ; 245: 116157, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38636192

RESUMO

Penthorum chinense Pursh (PCP), as a traditional medicine of Miao nationality in China, is often used for the treatment of various liver diseases. At present, information regarding the in vivo process of PCP is lacking. Herein, a sensitive and robust ultra-performance liquid chromatography tandem with mass spectrometry (UPLC-MS/MS) was developed and validated for the quantification of several components to study their pharmacokinetics, tissues distribution and excretion in normal and acute alcoholic liver injury (ALI) rats. Prepared samples were separated on a Thermo C18 column (4.6 mm × 50 mm, 2.4 µm) using water containing 0.1 % formic acid (A) and acetonitrile (B) as the mobile phase for gradient elution. Negative electrospray ionization was performed using multiple reaction monitoring (MRM) mode for each component. The validated UPLC-MS/MS assay gave good linearity, accuracy, precision, recovery rate, matrix effect and stability. This method was successfully applied to the pharmacokinetics, tissue distribution and excretion in normal and acute ALI rats. There were differences in pharmacokinetic process, tissue distribution and excretion characteristics, indicating that ALI had a significant influence on the in vivo process of PCP in rats. The research provided an experimental basis for the study of PCP quality control and further application in the clinic.


Assuntos
Medicamentos de Ervas Chinesas , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem , Animais , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida de Alta Pressão/métodos , Ratos , Masculino , Medicamentos de Ervas Chinesas/farmacocinética , Distribuição Tecidual , Reprodutibilidade dos Testes , Hepatopatias Alcoólicas/metabolismo , Espectrometria de Massa com Cromatografia Líquida
14.
Phytomedicine ; 129: 155645, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38643714

RESUMO

BACKGROUND: Qing-Yi Recipe, a classic traditional Chinese medicine (TCM), is widely used for treating acute diseases of the abdomen, especially pancreatitis, the efficacy of which has been demonstrated in more than thirty clinical trials. However, the in-vivo pharmacodynamic material basis for this formula remains unclear. METHODS: A sensitive and accurate method for quantifying twenty-two potential bioactive constituents of Qing-Yi Recipe in biological samples was developed using liquid chromatography-tandem mass spectrometry (LC-MS/MS), and this method was fully validated. Then, the integrated pharmacokinetic properties of Qing-Yi Recipe and its major metabolites in rats were investigated using the post-listed granules at both dosages. Subsequently, tissue distributions of those constituents in nine organs (especially the pancreas) were determined, and the overall parameters between the two formulations were compared. RESULTS: Though the chemical profiles of the formulas varied across formulations, the overall exposure level was very similar, and baicalin, wogonoside, geniposide, rhein, costunolide, and paeoniflorin were the top six bioactive compounds in the circulation. All twenty-two natural products reached their first peak within 2 h, and several of them exhibited bimodal or multimodal patterns under the complicated transformation of metabolic enzymes, and the parameters of these products markedly changed compared with those of monomers. Diverse metabolites of emodin and baicalin/baicalein were detected in circulation and tissues, augmenting the in vivo forms of these compounds. Finally, the enrichment of tetrahydropalmatine and corydaline in the pancreas were observed and most compounds remained in the gastrointestinal system, providing a foundation basis for their potential regulatory effects on the gut microbiota as well as the intestinal functions. CONCLUSION: Herein, the pharmacokinetic properties and tissue distribution of multiple potential active constituents in Qing-Yi Recipe were investigated at two dosages, providing a pharmacodynamic material basis of Qing-Yi Recipe for the first time. This investigation is expected to provide a new perspective and reference for future studies on the physiological disposition and potential pharmacodynamic basis of traditional Chinese medicine to treat acute abdomen diseases.


Assuntos
Medicamentos de Ervas Chinesas , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem , Animais , Medicamentos de Ervas Chinesas/farmacocinética , Medicamentos de Ervas Chinesas/química , Masculino , Espectrometria de Massas em Tandem/métodos , Distribuição Tecidual , Ratos , Cromatografia Líquida/métodos , Medicina Tradicional Chinesa
15.
Anal Bioanal Chem ; 416(14): 3415-3432, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38649516

RESUMO

Epimedium-Rhizoma drynariae (EP-RD) was a well-known herb commonly used to treat bone diseases in traditional Chinese medicine. Nevertheless, there was incomplete pharmacokinetic behavior, metabolic conversion and chemical characterization of EP-RD in vivo. Therefore, this study aimed to establish metabolic profiles combined with multicomponent pharmacokinetics to reveal the in vivo behavior of EP-RD. Firstly, the diagnostic product ions (DPIs) and neutral losses (NLs) filtering strategy combined with UHPLC-Q-Orbitrap HRMS for the in vitro chemical composition of EP-RD and metabolic profiles of plasma, urine, and feces after oral administration of EP-RD to rats were proposed to comprehensively characterize the 47 chemical compounds and the 97 exogenous in vivo (35 prototypes and 62 metabolites), and possible biotransformation pathways of EP-RD were proposed, which included phase I reactions such as hydrolysis, hydrogenation, dehydrogenation, hydroxylation, dehydroxylation, isomerization, and demethylation and phase II reactions such as glucuronidation, acetylation, methylation, and sulfation. Moreover, a UHPLC-MS/MS quantitative approach was established for the pharmacokinetic analysis of seven active components: magnoflorine, epimedin A, epimedin B, epimedin C, icariin, baohuoside II, and icariin II. Results indicated that the established method was reliably used for the quantitative study of plasma active ingredients after oral administration of EP-RD in rats. Compared to oral EP alone, the increase in area under curves and maximum plasma drug concentration (P < 0.05). This study increased the understanding of the material basis and biotransformation profiles of EP-RD in vivo, which was of great significance in exploring the pharmacological effects of EP-RD.


Assuntos
Medicamentos de Ervas Chinesas , Epimedium , Fezes , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem , Animais , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas em Tandem/métodos , Ratos , Fezes/química , Epimedium/química , Medicamentos de Ervas Chinesas/farmacocinética , Medicamentos de Ervas Chinesas/administração & dosagem , Medicamentos de Ervas Chinesas/metabolismo , Medicamentos de Ervas Chinesas/química , Masculino , Administração Oral
16.
J Ethnopharmacol ; 330: 118212, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-38636577

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The combination of Aconitum carmichaelii Debx (Chuanwu, CW) and Pinellia ternata (Thunb.) Breit (Banxia, BX) forms an herbal pair within the eighteen incompatible medicaments (EIM), indicating that BX and CW are incompatible. However, the scientific understanding of this incompatibility mechanism, especially the corresponding drug-drug interaction (DDI), remains complex and unclear. AIM OF THE STUDY: This study aims to explain the DDI and potential incompatibility mechanism between CW and BX based on pharmacokinetics and cocktail approach. MATERIALS AND METHODS: Ultraperformance liquid chromatography-tandem mass spectrometry methods were established for pharmacokinetics and cocktail studies. To explore the DDI between BX and CW, in the pharmacokinetics study, 10 compounds were determined in rat plasma after administering CW and BX-CW herbal pair extracts. In the cocktail assay, the pharmacokinetic parameters of five probe substrates were utilized to assess the influence of BX on cytochrome P450 (CYP) isoenzyme (dapsone for CYP3A4, phenacetin for CYP1A2, dextromethorphan for CYP2D6, tolbutamide for CYP2C9, and omeprazole for CYP2C19). Finally, the DDI and incompatibility mechanism of CW and BX were integrated to explain the rationality of EIM theory. RESULTS: BX not only enhances the absorption of aconitine and benzoylaconine but also accelerates the metabolism of mesaconitine, benzoylmesaconine, songorine, and fuziline. Moreover, BX affects the activity of CYP enzymes, which regulate the metabolism of toxic compounds. CONCLUSIONS: BX altered the activity of CYP enzymes, consequently affecting the metabolism of toxic compounds from CW. This incompatibility mechanism may be related to the increased absorption of these toxic compounds in vivo.


Assuntos
Aconitum , Interações Ervas-Drogas , Pinellia , Ratos Sprague-Dawley , Aconitum/química , Pinellia/química , Animais , Masculino , Ratos , Sistema Enzimático do Citocromo P-450/metabolismo , Espectrometria de Massas em Tandem , Extratos Vegetais/farmacocinética , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Medicamentos de Ervas Chinesas/farmacocinética , Medicamentos de Ervas Chinesas/química , Interações Medicamentosas
17.
J Ethnopharmacol ; 330: 118229, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-38670403

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Thymus quinquecostatus Celak., a member of thymus genus in Lamiaceae family, has been used as a folk medicine for relieving exterior syndrome and alleviating pain in China. The polyphenol-rich fraction (PRF) derived from Thymus quinquecostatus Celak. had been validated that it can protect cerebral ischemia-reperfusion injury (CIRI) by activating Keap1/Nrf2/HO-1 signaling pathway. AIM OF THIS STUDY: To explore effective components and their pharmacokinetic and pharmacodynamic characteristics as well as possible mechanisms of PRF in treating CIRI. MATERIALS AND METHODS: Normal treated group (NTG) and tMCAO model treated group (MTG) rats were administrated PRF intragastrically. The prototype components and metabolites of PRF in plasma and brain were analyzed by the UPLC-Q-Exactive Orbitrap MSn method. Subsequently, the pharmacokinetics properties of indicative components were performed based on HPLC-QQQ-MS/MS. SOD and LDH activities were determined to study the pharmacodynamic (PD) properties of PRF. The PK-PD relationship of PRF was constructed. In addition, the effect of PRF on endogenous metabolites in plasma and brain was investigated using metabolomic method. RESULTS: Salvianic acid A, caffeic acid, rosmarinic acid, scutellarin, and apigenin-7-O-glucuronide were selected as indicative components based on metabolic analysis. The non-compartmental parameters were calculated for indicative components in plasma and brain of NTG and MTG rats. Furthermore, single-component and multi-component PK-PD modeling involved Emax, Imax PD models for effect indexes were fitted as well as ANN models were established, which indicated that these components can work together to regulate SOD and LDH activities in plasma and SOD activity in brain tissue to improve CIRI. Additionally, PRF may ameliorate CIRI by regulating the disorder of endogenous metabolites in lipid metabolism, amino acid metabolism, and purine metabolism pathways in vivo, among which lipid metabolism and purine metabolism are closely related to oxidative stress. CONCLUSION: The PK-PD properties of effect substances and mechanisms of PRF anti-CIRI were further elaborated. The findings provide a convincing foundation for the application of T. quinquecostatus Celak. in the maintenance of human health disorders.


Assuntos
Metabolômica , Polifenóis , Ratos Sprague-Dawley , Traumatismo por Reperfusão , Thymus (Planta) , Animais , Masculino , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Thymus (Planta)/química , Polifenóis/farmacologia , Polifenóis/farmacocinética , Ratos , Infarto da Artéria Cerebral Média/tratamento farmacológico , Extratos Vegetais/farmacologia , Extratos Vegetais/farmacocinética , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Modelos Animais de Doenças , Isquemia Encefálica/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/farmacocinética , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/farmacocinética
18.
J Ethnopharmacol ; 329: 118151, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38588988

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: As a representative local medicinal herb produced in China, Vladimiriae Radix (VR) has been proven to exert hepatoprotective and choleretic effects, with particular therapeutic efficacy in cholestatic liver injury (CLI), as demonstrated by the VR extract (VRE). However, the quality markers (Q-markers) of VRE for the treatment of CLI remain unclear. AIM OF THE STUDY: A new strategy based on the core element of "efficacy" was proposed, using a combination of spectrum-effect relationship, pharmacokinetics, and molecular docking methods to select and confirm Q-markers of VRE. MATERIAL AND METHODS: First, the HPLC fingerprinting of 10 batches of VRE was studied, and the in vivo pharmacological index of anti-CLI in rats was determined. The spectrum-effect relationship was utilized as a screening method to identify the Q-markers of VRE. Secondly, Q-markers were used as VRE pharmacokinetic markers to measure their concentrations in normal and CLI rat plasma, and to analyze their disposition. Finally, molecular docking was utilized to predict the potential interaction between the identified Q-markers and crucial targets of CLI. RESULTS: The fingerprints of 10 batches of VRE was established. The in vivo pharmacological evaluation of rats showed that VRE had a significant therapeutic effect on CLI. The spectrum-effect correlation analysis showed that costunolide (COS) and dehydrocostus lactone (DEH) were the Q-markers of VRE anti-CLI. The pharmacokinetic results showed that AUC(0-t), Cmax, CLZ/F, and VZ/F of COS and DEH in CLI rats had significant differences (P < 0.01). They were effectively absorbed into the blood plasma of CLI rats, ensuring ideal bioavailability, and confirming their role as Q-markers. Molecular docking results showed that COS, DEH had good affinity with key targets (FXR, CAR, PXR, MAPK, TGR5, NRF2) for CLI treatment (Binding energy < -4.52 kcal mol-1), further verifying the correctness of Q-marker selection. CONCLUSIONS: In this study, through the combination of experimental and theoretical approaches from the aspects of pharmacodynamic expression, in vivo process rules, and interaction force prediction, the therapeutic effect of VRE and Q-markers (COS、DEH) were elucidated. Furthermore, a new idea based on the principle of "efficacy" was successfully proposed for screening and evaluating Q-markers.


Assuntos
Simulação de Acoplamento Molecular , Ratos Sprague-Dawley , Animais , Masculino , Ratos , Colestase/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacocinética , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Extratos Vegetais/farmacocinética , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Raízes de Plantas/química , Biomarcadores/sangue
19.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1369-1377, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-38621985

RESUMO

A total of 11 active ingredients including psoralen, isopsoralen, bakuchiol, bavachalcone, bavachinin, corylin, coryfolin, isobavachalcone, neobavaisoflavone, bakuchalcone, and corylifol A from Psoraleae Fructus in the plasma samples of diabetic and normal rats were simultaneously determined by UHPLC-MS/MS. The pharmacokinetic parameters were calculated to elucidate the pharmacokinetic profiles of coumarins, flavonoids, and monoterpene phenols in normal and diabetic rats. The rat model of type 2 diabetes mellitus(T2DM) was induced by a high-sugar and high-fat diet combined with injection of 1% streptozotocin every two days. The plasma samples were collected at different time points after the rats were administrated with Psoraleae Fructus. The proteins in the plasma samples were precipitated by ethyl acetate, and the plasma concentrations of the 11 components of Psoraleae Fructus were determined by UHPLC-MS/MS. The pharmacokinetic parameters were calculated by DAS 3.0. The results showed that the pharmacokinetic beha-viors of 8 components including psoralen, isopsoralen, bakuchiol, and bavachinin from Psoraleae Fructus in both female and male mo-del rats were significantly different from those in normal rats. Among them, the coumarins including psoralen, isopsoralen, and corylin showed lowered levels in the blood of both female and male model rats. The flavonoids(bavachinin, corylifol A, and bakuchalcone) and the monoterpene phenol bakuchiol showed decreased levels in the female model rats but elevated levels in the male model rats. It is suggested that the dosage of Psoraleae Fructus should be reasonably adjusted for the patients of different genders at the time of clinical administration.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Medicamentos de Ervas Chinesas , Furocumarinas , Fenóis , Psoralea , Humanos , Ratos , Feminino , Masculino , Animais , Medicamentos de Ervas Chinesas/farmacocinética , Espectrometria de Massas em Tandem/métodos , Diabetes Mellitus Experimental/tratamento farmacológico , Flavonoides/farmacologia , Ficusina , Cumarínicos , Monoterpenos
20.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1378-1387, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-38621986

RESUMO

This paper aims to study the pharmacokinetic differences of twelve effective constituents(succinic acid, neochlorogenic acid, chlorogenic acid, cryptochlorogenic acid, protocatechuic aldehyde, caffeic acid, 5-O-ferulogeninic acid, p-coumaric acid, nuciferine, quercetin, oleanolic acid, and ursolic acid) in Qihe Fenqing Yin in normal and diabetic rats. The diabetic rat model was established by a high-fat diet combined with intraperitoneal injection of streptozocin. A UHPLC-QTRAP-MS/MS method was established for the simultaneous determination of 12 constituents in the plasma of normal rats and model rats after a single intragastric administration of Qihe Fenqing Yin. The results show that the established analytical method has a good linear relationship with the 12 components, and the specificity, accuracy, precision, and stability meet the requirements. The computational pharmacokinetic parameters are fitted by DAS 3.2.8 software, and the results show that the half-life time(t_(1/2)) of the other nine components in the model group was longer than that in the normal group except for caffeic acid, 5-O-ferulogeninic acid, and oleanolic acid. The area under curve(AUC_(0-t)) of cryptochlorogenic acid, p-coumaric acid, ursolic acid, and oleanolic acid increases compared with the normal group. Meanwhile, mean residence time(MRT) delays. The "double peaks" of quercetin and nuciferine in the normal group are not observed in the model group, suggesting that the pharmacokinetic parameters of the drugs in the disease state are significantly different.


Assuntos
Ácidos Cafeicos , Ácidos Cumáricos , Diabetes Mellitus Experimental , Medicamentos de Ervas Chinesas , Ácido Oleanólico , Ratos , Animais , Ratos Sprague-Dawley , Quercetina , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas em Tandem/métodos , Medicamentos de Ervas Chinesas/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...