Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.354
Filtrar
1.
PLoS One ; 19(8): e0308872, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39141625

RESUMO

Oxaliplatin (OXA) as the platinum-based agent induces the cumulative neuropathy including functional impairment and neuropathic pain. OXA treatment triggered oxidative stress and inflammatory reaction in the spinal cord. Puerarin as a natural product has the neuroprotective effect on neuropathic pain. Hence, the roles and mechanisms of Pue on OXA induced neuropathic pain were studied. In this study, OXA-induced neuropathic pain mouse model was constructed by oxaliplatin injection for 5 consecutive days and two cycles. Pue (10 mg/kg) was administered intraperitoneally for seven consecutive days. The changes of behavior, morphology and levels of related proteins were detected. As a result, OXA-induced mice exhibited as the increased pain hypersensitivity, the impaired motor coordination, the activated NLRP3 inflammasome mediated inflammation and the suppressed nuclear factor erythroid 2-related factor 2 (Nrf2) mediated antioxidative reaction in the spinal cord (P<0.05 vs Control). After Pue administration, the mechanical pain threshold, thermal pain latency, spontaneous pain number and motor latency were improved (P<0.05 vs OXA). In the spinal cord, Pue administration reduced the levels of inflammatory elements, increased the levels of antioxidative elements and decreased the levels of oxidative factors (P<0.05 vs OXA). Furthermore, Pue also bind with Nrf2 and increased the association of Nrf2 to glutathione peroxidase 4 (GPX4). In summary, Pue alleviates oxaliplatin induced neuropathic pain by enhancing Nrf2/GPX4-mediated antioxidant response and suppressing inflammatory reaction in the spinal cord.


Assuntos
Antioxidantes , Isoflavonas , Fator 2 Relacionado a NF-E2 , Neuralgia , Oxaliplatina , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Animais , Oxaliplatina/efeitos adversos , Neuralgia/tratamento farmacológico , Neuralgia/induzido quimicamente , Neuralgia/metabolismo , Camundongos , Masculino , Fator 2 Relacionado a NF-E2/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Isoflavonas/farmacologia , Isoflavonas/uso terapêutico , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Medula Espinal/metabolismo , Medula Espinal/efeitos dos fármacos , Medula Espinal/patologia , Estresse Oxidativo/efeitos dos fármacos , Glutationa Peroxidase/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
2.
Sci Rep ; 14(1): 17823, 2024 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-39090252

RESUMO

So far, only a small number of medications are effective in progressive multiple sclerosis (MS). The sphingosine-1-phosphate-receptor (S1PR)-1,5 modulator siponimod, licensed for progressive MS, is acting both on peripheral immune cells and in the central nervous system (CNS). So far it remains elusive, whether those effects are related to the neurotrophin brain derived neurotrophic factor (BDNF). We hypothesized that BDNF in immune cells might be a prerequisite to reduce disease activity in experimental autoimmune encephalomyelitis (EAE) and prevent neurotoxicity. MOG35-55 immunized wild type (WT) and BDNF knock-out (BDNFko) mice were treated with siponimod or vehicle and scored daily in a blinded manner. Immune cell phenotyping was performed via flow cytometry. Immune cell infiltration and demyelination of spinal cord were assessed using immunohistochemistry. In vitro, effects on neurotoxicity and mRNA regulation were investigated using dorsal root ganglion cells incubated with EAE splenocyte supernatant. Siponimod led to a dose-dependent reduction of EAE scores in chronic WT EAE. Using a suboptimal dosage of 0.45 µg/day, siponimod reduced clinical signs of EAE independent of BDNF-expression in immune cells in accordance with reduced infiltration and demyelination. Th and Tc cells in secondary lymphoid organs were dose-dependently reduced, paralleled with an increase of regulatory T cells. In vitro, neuronal viability trended towards a deterioration after incubation with EAE supernatant; siponimod showed a slight rescue effect following treatment of WT splenocytes. Neuronal gene expression for CCL2 and CX3CL1 was elevated after incubation with EAE supernatant, which was reversed after siponimod treatment for WT, but not for BNDFko. Apoptosis markers and alternative death pathways were not affected. Siponimod exerts both anti-inflammatory and neuroprotective effects, partially related to BDNF-expression. This might in part explain effectiveness during progression in MS and could be a target for therapy.


Assuntos
Azetidinas , Compostos de Benzil , Fator Neurotrófico Derivado do Encéfalo , Encefalomielite Autoimune Experimental , Esclerose Múltipla , Animais , Feminino , Camundongos , Azetidinas/farmacologia , Azetidinas/uso terapêutico , Compostos de Benzil/farmacologia , Compostos de Benzil/uso terapêutico , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/metabolismo , Moduladores do Receptor de Esfingosina 1 Fosfato/farmacologia , Moduladores do Receptor de Esfingosina 1 Fosfato/uso terapêutico , Medula Espinal/metabolismo , Medula Espinal/efeitos dos fármacos , Medula Espinal/patologia
3.
J Biochem Mol Toxicol ; 38(8): e23808, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39132830

RESUMO

Oxidative stress is a hallmark of secondary injury of spinal cord injuries. Controlling oxidative stress is crucial for mitigating secondary injury and promoting functional recovery after spinal cord injuries. Calycosin is an O-methylated isoflavone with antioxidant activity. To evaluate the effect of calycosin on spinal cord neurons under oxidative stress and clarify the molecular mechanism underlying the effect, we tested the neuroprotective activity of calycosin in a primary spinal cord neuron culture model. We found that calycosin protected neurons from H2O2-induced neuronal death in a dose-dependent manner. Further experiments revealed that calycosin decreased H2O2-induced mitochondrial fragmentation and mitochondrial membrane potential loss, and subsequently reduced H2O2-triggered release of mitochondrial cytochrome c into the cytoplasm. In addition, calycosin inhibited H2O2-induced reactive oxygen species generation and activation of NF-κB signaling in spinal cord neurons. Furthermore, the expression of several antioxidant enzymes such as HO-1, NQO1, GCLC, GCLM, TrxR1, and Trx1 was significantly promoted by calycosin. More importantly, we revealed that the Nrf2/Keap1 signal is crucial for the effect of calycosin, because calycosin increased the amount of nuclear Nrf2 while decreasing the amount of cytoplasmic Nrf2. Nrf2 knockdown with siRNA transfection abolished the neuroprotective effect of calycosin. Taken together, this study disclosed a novel mechanism by which calycosin combats oxidative stress. Our study thus sheds light on the potential clinical application of calycosin in SCI treatment.


Assuntos
Peróxido de Hidrogênio , Isoflavonas , Proteína 1 Associada a ECH Semelhante a Kelch , Mitocôndrias , Fator 2 Relacionado a NF-E2 , Neurônios , Transdução de Sinais , Medula Espinal , Isoflavonas/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Animais , Peróxido de Hidrogênio/farmacologia , Peróxido de Hidrogênio/toxicidade , Medula Espinal/metabolismo , Medula Espinal/efeitos dos fármacos , Medula Espinal/patologia , Transdução de Sinais/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Ratos , Fármacos Neuroprotetores/farmacologia
4.
CNS Neurosci Ther ; 30(7): e14829, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38961264

RESUMO

AIMS: Paclitaxel (PTX) is extensively utilized in the management of diverse solid tumors, frequently resulting in paclitaxel-induced peripheral neuropathy (PIPN). The present study aimed to investigate sex differences in the behavioral manifestations and underlying pathogenesis of PIPN and search for clinically efficacious interventions. METHODS: Male and female C57BL/6 mice (5-6 weeks and 12 months, weighing 18-30 g) were intraperitoneally (i.p.) administered paclitaxel diluted in saline (NaCl 0.9%) at a dose of 2 mg/kg every other day for a total of 4 injections. Von Frey and hot plate tests were performed before and after administration to confirm the successful establishment of the PIPN model and also to evaluate the pain of PIPN and the analgesic effect of PD-L1. On day 14 after PTX administration, PD-L1 protein (10 ng/pc) was injected into the PIPN via the intrathecal (i.t.) route. To knock down TRPV1 in the spinal cord, adeno-associated virus 9 (AAV9)-Trpv1-RNAi (5 µL, 1 × 1013 vg/mL) was slowly injected via the i.t. route. Four weeks after AAV9 delivery, the downregulation of TRPV1 expression was verified by immunofluorescence staining and Western blotting. The levels of PD-L1, TRPV1 and CGRP were measured via Western blotting, RT-PCR, and immunofluorescence staining. The levels of TNF-α and IL-1ß were measured via RT-PCR. RESULTS: TRPV1 and CGRP protein and mRNA levels were higher in the spinal cords of control female mice than in those of control male mice. PTX-induced nociceptive behaviors in female PIPN mice were greater than those in male PIPN mice, as indicated by increased expression of TRPV1 and CGRP. The analgesic effects of PD-L1 on mechanical hyperalgesia and thermal sensitivity were significantly greater in female mice than in male mice, with calculated relative therapeutic levels increasing by approximately 2.717-fold and 2.303-fold, respectively. PD-L1 and CGRP were partly co-localized with TRPV1 in the dorsal horn of the mouse spinal cord. The analgesic effect of PD-L1 in PIPN mice was observed to be mediated through the downregulation of TRPV1 and CGRP expression following AAV9-mediated spinal cord specific decreased TRPV1 expression. CONCLUSIONS: PTX-induced nociceptive behaviors and the analgesic effect of PD-L1 in PIPN mice were sexually dimorphic, highlighting the significance of incorporating sex as a crucial biological factor in forthcoming mechanistic studies of PIPN and providing insights for potential sex-specific therapeutic approaches.


Assuntos
Antígeno B7-H1 , Peptídeo Relacionado com Gene de Calcitonina , Camundongos Endogâmicos C57BL , Paclitaxel , Doenças do Sistema Nervoso Periférico , Caracteres Sexuais , Canais de Cátion TRPV , Animais , Paclitaxel/toxicidade , Masculino , Feminino , Camundongos , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Canais de Cátion TRPV/metabolismo , Canais de Cátion TRPV/antagonistas & inibidores , Antígeno B7-H1/metabolismo , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Antineoplásicos Fitogênicos/toxicidade , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Hiperalgesia/induzido quimicamente , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismo
6.
Epigenetics ; 19(1): 2380930, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39066680

RESUMO

In mammals, the molecular mechanisms underlying transgenerational inheritance of phenotypic traits in serial generations of progeny after ancestral environmental exposures, without variation in DNA sequence, remain elusive. We've recently described transmission of a beneficial trait in rats and mice, in which F0 supplementation of methyl donors, including folic acid, generates enhanced axon regeneration after sharp spinal cord injury in untreated F1 to F3 progeny linked to differential DNA methylation levels in spinal cord tissue. To test whether the transgenerational effect of folic acid is transmitted via the germline, we performed whole-genome methylation sequencing on sperm DNA from F0 mice treated with either folic acid or vehicle control, and their F1, F2, and F3 untreated progeny. Transgenerational differentially methylated regions (DMRs) are observed in each consecutive generation and distinguish folic acid from untreated lineages, predominate outside of CpG islands and in regions of the genome that regulate gene expression, including promoters, and overlap at both the differentially methylated position (DMP) and gene levels. These findings indicate that molecular changes between generations are caused by ancestral folate supplementation. In addition, 29,719 DMPs exhibit serial increases or decreases in DNA methylation levels in successive generations of untreated offspring, correlating with a serial increase in the phenotype across generations, consistent with a 'wash-in' effect. Sibship-specific DMPs annotate to genes that participate in axon- and synapse-related pathways.


Assuntos
Axônios , Metilação de DNA , Ácido Fólico , Espermatozoides , Ácido Fólico/farmacologia , Ácido Fólico/administração & dosagem , Animais , Masculino , Camundongos , Espermatozoides/efeitos dos fármacos , Espermatozoides/metabolismo , Axônios/metabolismo , Axônios/efeitos dos fármacos , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/metabolismo , Ilhas de CpG , Feminino , Regeneração Nervosa/efeitos dos fármacos , Epigênese Genética , Medula Espinal/metabolismo , Medula Espinal/efeitos dos fármacos , Medula Espinal/citologia
7.
Nat Commun ; 15(1): 6264, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39048565

RESUMO

Opioid withdrawal is a liability of chronic opioid use and misuse, impacting people who use prescription or illicit opioids. Hyperactive autonomic output underlies many of the aversive withdrawal symptoms that make it difficult to discontinue chronic opioid use. The locus coeruleus (LC) is an important autonomic centre within the brain with a poorly defined role in opioid withdrawal. We show here that pannexin-1 (Panx1) channels expressed on microglia critically modulate LC activity during opioid withdrawal. Within the LC, we found that spinally projecting tyrosine hydroxylase (TH)-positive neurons (LCspinal) are hyperexcitable during morphine withdrawal, elevating cerebrospinal fluid (CSF) levels of norepinephrine. Pharmacological and chemogenetic silencing of LCspinal neurons or genetic ablation of Panx1 in microglia blunted CSF NE release, reduced LC neuron hyperexcitability, and concomitantly decreased opioid withdrawal behaviours in mice. Using probenecid as an initial lead compound, we designed a compound (EG-2184) with greater potency in blocking Panx1. Treatment with EG-2184 significantly reduced both the physical signs and conditioned place aversion caused by opioid withdrawal in mice, as well as suppressed cue-induced reinstatement of opioid seeking in rats. Together, these findings demonstrate that microglial Panx1 channels modulate LC noradrenergic circuitry during opioid withdrawal and reinstatement. Blocking Panx1 to dampen LC hyperexcitability may therefore provide a therapeutic strategy for alleviating the physical and aversive components of opioid withdrawal.


Assuntos
Conexinas , Locus Cerúleo , Proteínas do Tecido Nervoso , Probenecid , Medula Espinal , Síndrome de Abstinência a Substâncias , Animais , Locus Cerúleo/metabolismo , Locus Cerúleo/efeitos dos fármacos , Conexinas/metabolismo , Conexinas/genética , Conexinas/antagonistas & inibidores , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Síndrome de Abstinência a Substâncias/metabolismo , Síndrome de Abstinência a Substâncias/tratamento farmacológico , Camundongos , Masculino , Ratos , Medula Espinal/metabolismo , Medula Espinal/efeitos dos fármacos , Probenecid/farmacologia , Morfina/farmacologia , Microglia/efeitos dos fármacos , Microglia/metabolismo , Analgésicos Opioides/farmacologia , Norepinefrina/metabolismo , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Ratos Sprague-Dawley , Tirosina 3-Mono-Oxigenase/metabolismo , Camundongos Knockout
8.
Int J Mol Sci ; 25(14)2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39063088

RESUMO

This study investigated the effects of cilostazol on motor dysfunction, spinal motor neuron abnormalities, and schwannopathy in rats with diabetes. Diabetes mellitus (DM) was induced in rats via femoral intravenous streptozotocin (STZ) injection (60 mg/kg). After successful DM induction, cilostazol was administered on day 15 via oral gavage (100 mg/kg/day) for 6 weeks until sacrifice. Behavioral assays, including motor function, were performed weekly. The sciatic nerve, L5 spinal cord, and spinal ventral root were collected to evaluate the expression of the glial fibrillary acidic protein (GFAP), myelin protein zero (P0), and choline acetyltransferase (ChAT) by immunofluorescence and Western blotting. DM rats displayed decreased running speeds, running distances, and toe spread but increased foot pressure. In addition, loss of non-myelinating Schwann cells and myelin sheaths was observed in the sciatic nerve and L5 spinal ventral root. Reduced numbers of motor neurons were also found in the L5 spinal ventral horn. Cilostazol administration significantly potentiated running speed and distance; increased hind paw toe spread; and decreased foot pressure. In the sciatic nerve and L5 spinal ventral root, cilostazol treatment significantly improved non-myelinated Schwann cells and increased myelin mass. ChAT expression in motor neurons in the spinal ventral horn was improved, but not significantly. Cilostazol administration may protect sensorimotor function in diabetic rats.


Assuntos
Cilostazol , Diabetes Mellitus Experimental , Células de Schwann , Nervo Isquiático , Animais , Cilostazol/farmacologia , Cilostazol/uso terapêutico , Células de Schwann/efeitos dos fármacos , Células de Schwann/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Ratos , Masculino , Nervo Isquiático/efeitos dos fármacos , Nervo Isquiático/metabolismo , Colina O-Acetiltransferase/metabolismo , Ratos Sprague-Dawley , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Proteína P0 da Mielina/metabolismo , Estreptozocina
9.
Int J Mol Sci ; 25(13)2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-39000569

RESUMO

Regulation of neuroinflammation is critical for maintaining central nervous system (CNS) homeostasis and holds therapeutic promise in autoimmune diseases such as multiple sclerosis (MS). Previous studies have highlighted the significance of selective innate signaling in triggering anti-inflammatory mechanisms, which play a protective role in an MS-like disease, experimental autoimmune encephalomyelitis (EAE). However, the individual intra-CNS administration of specific innate receptor ligands or agonists, such as for toll-like receptor 7 (TLR7) and nucleotide-binding oligomerization-domain-containing protein 2 (NOD2), failed to elicit the desired anti-inflammatory response in EAE. In this study, we investigated the potential synergistic effect of targeting both TLR7 and NOD2 simultaneously to prevent EAE progression. Our findings demonstrate that simultaneous intrathecal administration of NOD2- and TLR7-agonists led to synergistic induction of Type I IFN (IFN I) and effectively suppressed EAE in an IFN I-dependent manner. Suppression of EAE was correlated with a significant decrease in the infiltration of monocytes, granulocytes, and natural killer cells, reduced demyelination, and downregulation of IL-1ß, CCL2, and IFNγ gene expression in the spinal cord. These results underscore the therapeutic promise of concurrently targeting the TLR7 and NOD2 pathways in alleviating neuroinflammation associated with MS, paving the way for novel and more efficacious treatment strategies.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Proteína Adaptadora de Sinalização NOD2 , Receptor 7 Toll-Like , Animais , Receptor 7 Toll-Like/metabolismo , Receptor 7 Toll-Like/agonistas , Proteína Adaptadora de Sinalização NOD2/metabolismo , Proteína Adaptadora de Sinalização NOD2/genética , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/patologia , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Imunidade Inata/efeitos dos fármacos , Feminino , Medula Espinal/metabolismo , Medula Espinal/patologia , Medula Espinal/efeitos dos fármacos , Glicoproteínas de Membrana/metabolismo , Interferon Tipo I/metabolismo , Transdução de Sinais/efeitos dos fármacos
10.
Pharm Res ; 41(7): 1401-1411, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38981901

RESUMO

PURPOSE: Serotonin (5-HT3) receptor antagonists are promising agents for treatment of neuropathic pain. However, insufficient drug exposure at the central nervous system (CNS) might result in lack of efficacy. The goal of this study was to evaluate the impact of administration of a Pgp inhibitor (tariquidar) on ondansetron exposure in the brain, spinal cord, and cerebrospinal fluid in a wild-type rat model. METHODS: Ondansetron (10 mg/kg) and tariquidar (7.5 mg/kg) were administered intravenously, plasma and tissue samples were collected and analyzed by HPLC. A mathematical model with brain, spinal cord, cerebrospinal fluid and two systemic disposition compartments was developed to describe the data. RESULTS: The results demonstrate that tariquidar at 7.5 mg/kg resulted in a complete inhibition of Pgp efflux of ondansetron in the brain and spinal cord. The compartmental model successfully captured pharmacokinetics of ondansetron in wild type and Pgp knockout (KO) animals receiving the drug alone or in wild type animals receiving the ondansetron and tariquidar combination. CONCLUSIONS: The study provided important quantitative information on enhancement of CNS exposure to ondansetron using co-administration of Pgp Inhibitor in a rat model, which will be further utilized in conducting a clinical study. Tariquidar co-administration resulted in ondansetron CNS exposure comparable to observed in Pgp KO rats. Results also highlighted the effect of tariquidar on plasma disposition of ondansetron, which may not be dependent on Pgp inhibition, and should be evaluated in future studies.


Assuntos
Ondansetron , Quinolinas , Medula Espinal , Animais , Ondansetron/farmacocinética , Ratos , Masculino , Medula Espinal/metabolismo , Medula Espinal/efeitos dos fármacos , Quinolinas/farmacocinética , Quinolinas/administração & dosagem , Ratos Sprague-Dawley , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Modelos Biológicos , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/efeitos dos fármacos , Antagonistas do Receptor 5-HT3 de Serotonina/farmacocinética , Antagonistas do Receptor 5-HT3 de Serotonina/farmacologia
11.
J Ethnopharmacol ; 334: 118531, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38971343

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Ginseng (Panax ginseng C. A. Mey) is a common traditional Chinese medicine used for anti-inflammation, anti-apoptosis, anti-oxidative stress, and neuroprotection. Ginsenosides Rg1, the main active components isolated from ginseng, may be a feasible therapy for spinal cord injury (SCI). AIMS OF THE STUDY: SCI causes endothelial cell death and blood vessel rupture, ultimately resulting in long-term neurological impairment. As a result, encouraging spinal angiogenesis may be a feasible therapy for SCI. This investigation aimed to validate the capacity of ginsenoside Rg1 in stimulating angiogenesis within the spinal cord. MATERIALS AND METHODS: Rats with SCI were injected intraperitoneally with ginsenoside Rg1. The effectiveness of ginsenoside Rg1 was assessed using the motor function score and the motor-evoked potential (MEP). Immunofluorescence techniques were applied to identify the spinal cord's angiogenesis. Angiogenic factors were examined through Western Blot (WB) and Immunohistochemistry. Oxygen-glucose deprivation (OGD) was employed to establish the hypoxia-ischemia model in vitro, and astrocytes (As) were given ginsenoside Rg1 and co-cultured with spinal cord microvascular endothelial cells (SCMECs). Immunofluorescence, wound healing test, and tube formation assay were used to identify the co-cultured SCMECs' activity. Finally, network pharmacology analysis and siRNA transfection were applied to verify the mechanism of ginsenoside Rg1 promoting angiogenesis. RESULTS: The rats with SCI treated with ginsenoside Rg1 indicated more significant functional recovery, more pronounced angiogenesis, and higher levels of angiogenic factor expression. In vitro, the co-culture system with ginsenoside Rg1 intervention improved SCMECs' capacity for proliferating, migrating, and forming tubes, possibly by promoting the expression of vascular endothelial growth factor (VEGF) in As via the janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) signaling pathway. CONCLUSION: Ginsenoside Rg1 can regulate As to promote angiogenesis, which may help to understand the mechanism of promoting SCI recovery.


Assuntos
Astrócitos , Ginsenosídeos , Janus Quinase 2 , Neovascularização Fisiológica , Ratos Sprague-Dawley , Fator de Transcrição STAT3 , Transdução de Sinais , Traumatismos da Medula Espinal , Animais , Ginsenosídeos/farmacologia , Traumatismos da Medula Espinal/tratamento farmacológico , Fator de Transcrição STAT3/metabolismo , Janus Quinase 2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Masculino , Neovascularização Fisiológica/efeitos dos fármacos , Ratos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Células Cultivadas , Indutores da Angiogênese/farmacologia , Técnicas de Cocultura , Angiogênese
12.
AJNR Am J Neuroradiol ; 45(8): 1153-1161, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-38991773

RESUMO

BACKGROUND AND PURPOSE: After repeat administration of gadolinium-based contrast agents (GBCAs), the association between gadolinium retention in the central and peripheral nervous systems and the main manifestations of myelopathy and progressive neurologic symptoms remains unclear. We investigated the effects of the repeat administration of GBCAs on gadolinium retention in the central and peripheral nervous systems and the sensory, cognitive, and athletic implications. MATERIALS AND METHODS: Forty-eight male Wistar rats (6 weeks of age) were randomly divided into 4 experimental groups (12 rats in each group): the gadodiamide group (linear and nonionic GBCAs), the gadopentetate dimeglumine group (linear and ionic GBCAs), the gadoterate meglumine group (macrocyclic and ionic GBCAs), and the control group (0.9% saline solution). The brains of the rats were scanned using 9.4T MRI. Sensory behavioral tests were performed to assess the effect of GBCAs on pain sensitivity function. Gadolinium deposition in the brain, spinal cord, and peripheral nerves was determined by inductively coupled plasma mass-spectrometry. Transmission electron microscopy was used to observe the microscopic distribution of gadolinium after deposition in the spinal cord. The histopathologic features in the spinal cord were analyzed by H&E staining, Nissl staining, glial fibrillary acidic protein staining, and neuron-specific enolase staining after administration of GBCAs. RESULTS: All GBCAs resulted in gadolinium deposition in the central and peripheral nerve tissues, with the highest deposition in the sciatic nerve tissue (mean, 62.86 [SD, 12.56] nmol/g). Decreased muscle power, impairment of spatial cognitive function power, and pain hypersensitivity to thermal and mechanical stimuli were observed after exposure to gadodiamide. At the spinal cord, transmission electron microscopy found that the region of gadolinium depositions had a spheric structure similar to "sea urchins" and was mainly located near the vascular basement membrane. CONCLUSIONS: Multiple injections of GBCAs caused gadolinium deposition in the brain, spinal cord, and peripheral nerves, especially in the spinal cords of the gadodiamide group. Gadodiamide led to pain hypersensitivity and decreased muscle power and cognitive ability. For the patients who are hypersensitive to pain and need multiple MRI examinations, we recommend using macrocyclic GBCAs and the lowest dose possible.


Assuntos
Meios de Contraste , Gadolínio , Ratos Wistar , Animais , Meios de Contraste/farmacocinética , Masculino , Ratos , Gadolínio/farmacocinética , Imageamento por Ressonância Magnética/métodos , Cognição/efeitos dos fármacos , Gadolínio DTPA/farmacocinética , Gadolínio DTPA/administração & dosagem , Sistema Nervoso Periférico/efeitos dos fármacos , Sistema Nervoso Periférico/diagnóstico por imagem , Medula Espinal/diagnóstico por imagem , Medula Espinal/metabolismo , Medula Espinal/efeitos dos fármacos , Sistema Nervoso Central/diagnóstico por imagem , Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos
13.
Int Immunopharmacol ; 139: 112646, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39002520

RESUMO

Neuroinflammation and neurodegeneration are hallmarks of multiple sclerosis (MS). Bromodomain-containing protein 4 (BRD4), a bromodomain and extra-terminal domain (BET) protein family member, is indispensable for the transcription of pro-inflammatory genes. Therefore, inhibiting BRD4 may be a prospective therapeutic approach for modulating the inflammatory response and regulating the course of MS. dBET1, a newly synthesized proteolysis-targeting chimera (PROTAC), exhibits effectively degrades of BRD4. However, the precise effects of dBET1 on MS require further investigation. Therefore, we assessed the effect of dBET1 in experimental autoimmune encephalomyelitis (EAE), a typical MS experimental model. Our findings revealed that BRD4 is mainly expressed in astrocytes and neurons of the spinal cords, and is up-regulated in the spinal cords of EAE mice. The dBET1 attenuated lipopolysaccharide-induced expression of astrocytic pro-inflammatory mediators and inhibited deleterious molecular activity in astrocytes. Correspondingly, dBET1, used in preventive and therapeutic settings, alleviated the behavioral symptoms in EAE mice, as demonstrated by decreased demyelination, alleviated leukocyte infiltration, reduced microglial and astrocyte activation, and diminished inflammatory mediator levels. In addition, dBET1 corrected the imbalance in peripheral T cells and protected blood-brain barrier integrity in EAE mice. The underlying mechanism involved suppressing the phosphoinositide-3-kinase/protein kinase B, mitogen-activated protein kinase /extracellular signal-regulated kinase, and nuclear factor kappa B pathways. In summary, our data strongly suggests that dBET1 is a promising treatment option for MS.


Assuntos
Astrócitos , Encefalomielite Autoimune Experimental , Camundongos Endogâmicos C57BL , Medula Espinal , Fatores de Transcrição , Animais , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/imunologia , Camundongos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Medula Espinal/patologia , Medula Espinal/imunologia , Feminino , Esclerose Múltipla/tratamento farmacológico , Proteólise/efeitos dos fármacos , Humanos , Lipopolissacarídeos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Células Cultivadas , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Proteínas Nucleares/metabolismo , Proteínas que Contêm Bromodomínio
14.
Biomed Res ; 45(4): 151-161, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39010191

RESUMO

Linalool and linalyl acetate are major components of lavender essential oil. These substances possess many biological activities, such as anti-inflammatory activity, analgesic and anxiolytic effects, and anticonvulsant properties, and they also induce modulation of neuronal activity in the autonomic nervous system. However, there are no reports of the direct effects of linalool on respiratory activity. In the present study, we analyzed the effects of linalool and linalyl acetate on central respiratory activity in the brainstem-spinal cord preparation isolated from newborn rats. Linalool dose-dependently decreased the rate of respiratory activity. This effect was reversed by bicuculline, suggesting that linalool enhanced inhibitory synaptic connections via GABAA receptors. In addition, linalool reduced the coefficient of variation of inspiratory burst intervals and thus could work to stabilize the respiratory rhythm. Linalyl acetate did not cause inhibitory effects as observed in linalool treatment. Linalool depressed burst activity of pre-inspiratory neurons in the medullary respiratory networks and increased the amplitude of inspiratory inhibitory postsynaptic potentials of pre-inspiratory neurons. We concluded that linalool caused inhibitory effects on respiratory rhythm generation mainly through activation of presynaptic GABAA receptors of pre-inspiratory neurons.


Assuntos
Monoterpenos Acíclicos , Animais Recém-Nascidos , Tronco Encefálico , Monoterpenos , Neurônios , Medula Espinal , Animais , Monoterpenos Acíclicos/farmacologia , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Ratos , Monoterpenos/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Tronco Encefálico/efeitos dos fármacos , Tronco Encefálico/fisiologia , Receptores de GABA-A/metabolismo , Respiração/efeitos dos fármacos , Bicuculina/farmacologia
15.
Aging (Albany NY) ; 16(13): 11062-11071, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38975935

RESUMO

OBJECTIVE: To investigate the effect of sevoflurane on neuropathic pain induced by chronic constriction injury (CCI) of sciatic nerve in mice, and to elucidate its mechanism by animal experiments. METHODS AND RESULTS: Thirty-two C57BL/6 mice were randomly divided into four groups: Sham group, Model group, Control group and Sevoflurane group. First, a mouse model of neuropathic pain was established. Then, the mice in each group were killed on Day 14 after operation to harvest the enlarged lumbosacral spinal cord. In contrast with the Model group, the Sevoflurane group displayed a significantly increased paw withdrawal mechanical threshold (PWMT) and significantly prolonged paw withdrawal thermal latency (PWTL) from Day 5 after operation. The morphological changes of lumbosacral spinal cord were observed by hematoxylin-eosin (HE) staining and transmission electron microscopy. Pathological results showed that sevoflurane reduced nuclear pyknosis in lumbosacral spinal cord tissue, with a large number of mitochondrial crista disappearance and mitochondrial swelling. The results of Western blotting showed that sevoflurane significantly decreased the protein expressions of phosphorylated phospholipase Cγ (p-PLCγ), phosphorylated calcium/calmodulin-dependent protein kinase II (p-CaMKII) and phosphorylated inositol 1,4,5-triphosphate receptor (p-IP3R), and reduced the protein expressions of endoplasmic reticulum (ER) stress proteins glucose-regulated protein 78 (GRP78) and GRP94, oxidative stress-related proteins P22 and P47 and inflammatory factors nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3), interleukin-1 ß (IL-1ß), and tumor necrosis factor-α (TNF-α). CONCLUSIONS: Sevoflurane inhibits neuropathic pain by maintaining ER stress and oxidative stress homeostasis through inhibiting the activation of the PLCγ/CaMKII/IP3R signaling pathway.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático , Receptores de Inositol 1,4,5-Trifosfato , Camundongos Endogâmicos C57BL , Neuralgia , Estresse Oxidativo , Fosfolipase C gama , Sevoflurano , Transdução de Sinais , Animais , Sevoflurano/farmacologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Neuralgia/metabolismo , Neuralgia/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Camundongos , Fosfolipase C gama/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Masculino , Medula Espinal/metabolismo , Medula Espinal/efeitos dos fármacos , Medula Espinal/patologia , Homeostase/efeitos dos fármacos , Modelos Animais de Doenças , Nervo Isquiático/efeitos dos fármacos , Nervo Isquiático/metabolismo , Nervo Isquiático/lesões
16.
Eur J Pharmacol ; 979: 176861, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39068975

RESUMO

Bone cancer pain (BCP) is a complex clinical challenge, with current treatments often falling short of providing adequate relief. Remimazolam, a benzodiazepine receptor agonist recognized for its anxiolytic effects, has emerged as a potential agent in managing BCP. This study explores the analgesic properties of remimazolam and its interaction with the translocator protein (TSPO), previously known as the peripheral benzodiazepine receptor, in spinal astrocytes. In the context of BCP, previous research has indicated that TSPO expression in spinal astrocytes may serve a protective regulatory function in neuropathic pain models. Building on this, the BCP mice received various doses of remimazolam on the 15th day post-inoculation, and pain behavior was assessed over time. The results showed that BCP induced an upregulation of TSPO and astrocyte activation in the spinal dorsal horn, alongside increased extracellular signal-regulated kinase (ERK) signaling and inflammatory cytokine expression. Remimazolam administration resulted in a dose-dependent reduction of pain behaviors, which corresponded with a decrease in both ERK pathway activation and inflammatory factor expression. This suggests that remimazolam's analgesic effects are mediated through its action as a TSPO agonist, leading to the attenuation of neuroinflammation and pain signaling pathways. Importantly, the analgesic effects of remimazolam were reversed by the TSPO antagonist PK11195, underscoring the pivotal role of TSPO in the drug's mechanism of action. This reversal also reinstated the heightened levels of ERK activity and inflammatory mediators, further confirming the involvement of TSPO in the modulation of these pain-related processes. These findings open new avenues for the therapeutic management of bone cancer pain, positioning remimazolam as a promising candidate for further investigation and development.


Assuntos
Astrócitos , Neoplasias Ósseas , Dor do Câncer , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Camundongos , Dor do Câncer/tratamento farmacológico , Dor do Câncer/metabolismo , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/complicações , Neoplasias Ósseas/tratamento farmacológico , Benzodiazepinas/farmacologia , Benzodiazepinas/uso terapêutico , Feminino , Receptores de GABA/metabolismo , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos
17.
Phytomedicine ; 132: 155841, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38971025

RESUMO

BACKGROUND: Chemotherapy-induced peripheral neuropathy (CIPN) represents a prevailing and severe clinical concern, characterized by limited availability of clinically effective treatment strategies. Current evidence endorses matrine's potential as a neuroprotective and analgesic agent for CIPN. Nevertheless, the precise targets and mechanisms of action of matrine remain insufficiently explored, impeding comprehensive pharmacological investigation and clinical application. OBJECTIVE: This study endeavors to elucidate the analgesic and neuroprotective effects of matrine in mice with vincristine-induced neuropathic pain. A focal point is the identification of matrine's specific target and the underlying molecular mechanisms governing its analgesic and neuroprotective actions. METHODS: To discern matrine's analgesic effects in CIPN mice, we conducted behavioral experiments encompassing the Von Frey filament test and Hargreaves Test. Furthermore, we conducted electrophysiological and histopathological assessments involving HE staining, Nissl staining, and Fluoro-Jade B staining to evaluate matrine's effects on neuroprotection within dorsal root ganglia and the spinal cord of CIPN mice. Sequentially, thermal shift assay, GTP hydrolysis assay, and nucleotide exchange assay were executed to validate matrine's inhibitory effects on KRAS. Molecular docking and site-directed mutagenesis experiments were implemented to identify the precise binding pocket of matrine on KRAS. Lastly, matrine's inhibitory effects on downstream signaling pathways of KRAS were confirmed through experiments conducted at animal model. RESULTS: Matrine exhibited a notable increase in mechanical withdrawal threshold and thermal withdrawal latency in vincristine-treated mice. This compound substantially ameliorated the neurofunctional blockade associated with sensory and motor functions induced by vincristine. Moreover, matrine mitigated pathological damage within DRG and the L4-L5 spinal cord regions. The study's MST experiments indicated matrine's substantial elevation of KRAS's melting temperature. The GTP hydrolysis and nucleotide exchange assays revealed concentration-dependent inhibition of KRAS activity by matrine. Molecular docking provided insight into the binding mode of matrine with KRAS, while site-directed mutagenesis verified the specific binding site of matrine on KRAS. Lastly, matrine's inhibition of downstream Raf/Erk1/2 and PI3K/Akt/mTOR signaling pathways of KRAS was confirmed in VCR mice. CONCLUSION: Compared to previous studies, our research has identified matrine as a natural inhibitor of the elusive protein KRAS, often considered "undruggable." Furthermore, this study has revealed that matrine exerts its therapeutic effects on chemotherapy-induced peripheral neuropathy (CIPN) by inhibiting KRAS activation, subsequently suppressing downstream signaling pathways such as Raf/Erk1/2 and PI3K/Akt/mTOR. This investigation signifies the discovery of a novel target for matrine, thus expanding the potential scope of its involvement in KRAS-related biological functions and diseases. These findings hold the promise of providing a crucial experimental foundation for forthcoming drug development initiatives centered around matrine, thereby advancing the field of pharmaceutical research.


Assuntos
Alcaloides , Matrinas , Simulação de Acoplamento Molecular , Neuralgia , Fármacos Neuroprotetores , Quinolizinas , Vincristina , Animais , Alcaloides/farmacologia , Quinolizinas/farmacologia , Vincristina/farmacologia , Neuralgia/tratamento farmacológico , Neuralgia/induzido quimicamente , Camundongos , Masculino , Fármacos Neuroprotetores/farmacologia , Analgésicos/farmacologia , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Transdução de Sinais/efeitos dos fármacos , Modelos Animais de Doenças
18.
Neuropharmacology ; 258: 110067, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38992792

RESUMO

Chronic primary pain (CPP) occurs in the absence of tissue injury and includes temporomandibular disorders (TMD), fibromyalgia syndrome (FMS) and irritable bowel syndrome (IBS). CPP is commonly considered a stress-related chronic pain and often presents as wide-spread pain or comorbid pain conditions in different regions of the body. However, whether prolonged stress can directly result in the development of CPP comorbidity remains unclear. In the present study, we adapted a 21 day heterotypic stress paradigm in mice and examined whether chronic stress induced wide-spread hyperalgesia, modeling comorbid CPP in the clinic. We found that chronic stress induced anxiety- and depression-like behaviors, and resulted in long-lasting wide-spread hyperalgesia over several body regions such as the orofacial area, hindpaw, thigh, upper back and abdomen in female mice. We further found that the expression of cholecystokinin (CCK)1 receptors was significantly increased in the L4-L5 spinal dorsal horn of the female mice after 14 and 21 day heterotypic stress compared with the control animals. Intrathecal injection of the CCK1 receptor antagonist CR-1505 blocked pain hypersensitivity in the subcervical body including the upper back, thigh, hindpaw and abdomen. These findings suggest that the upregulation of spinal CCK1 receptors after chronic stress contributes to the central mechanisms underlying the development of wide-spread hyperalgesia, and may provide a potential and novel central target for clinical treatment of CPP.


Assuntos
Hiperalgesia , Receptores da Colecistocinina , Estresse Psicológico , Animais , Feminino , Camundongos , Ansiedade/metabolismo , Dor Crônica/metabolismo , Modelos Animais de Doenças , Hiperalgesia/metabolismo , Camundongos Endogâmicos C57BL , Receptores da Colecistocinina/metabolismo , Receptores da Colecistocinina/antagonistas & inibidores , Medula Espinal/metabolismo , Medula Espinal/efeitos dos fármacos , Estresse Psicológico/metabolismo
19.
Neuroscience ; 555: 125-133, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39038598

RESUMO

The role of adenosine receptors in fascial manipulation-induced analgesia has not yet been investigated. The purpose of this study was to evaluate the involvement of the adenosine A1 receptor (A1R) in the antihyperalgesic effect of plantar fascia manipulation (PFM), specifically in mice with peripheral inflammation. Mice injected with Complete Freund's Adjuvant (CFA) underwent behavioral, i.e. mechanical hyperalgesia and edema. The mice underwent PFM for either 3, 9 or 15 min. Response frequency to mechanical stimuli was then assessed at 24 and 96 h after plantar CFA injection. The adenosinergic receptors were assessed by systemic (intraperitoneal, i.p.), central (intrathecal, i.t.), and peripheral (intraplantar, i.pl.) administration of caffeine. The participation of the A1R was investigated using the 1,3-dipropyl-8-cyclopentylxanthine (DPCPX), a selective A1R subtype antagonist. PFM inhibited mechanical hyperalgesia induced by CFA injection and did not reduce paw edema. Furthermore, the antihyperalgesic effect of PFM was prevented by pretreatment of the animals with caffeine given by i.p., i.pl., and i.t. routes. In addition, i.pl. and i.t. administrations of DPCPX blocked the antihyperalgesia caused by PFM. These observations indicate that adenosine receptors mediate the antihyperalgesic effect of PFM. Caffeine's inhibition of PFM-induced antihyperalgesia suggests that a more precise understanding of how fascia-manipulation and caffeine interact is warranted.


Assuntos
Modelos Animais de Doenças , Adjuvante de Freund , Hiperalgesia , Inflamação , Receptor A1 de Adenosina , Xantinas , Animais , Receptor A1 de Adenosina/metabolismo , Receptor A1 de Adenosina/efeitos dos fármacos , Camundongos , Masculino , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismo , Inflamação/metabolismo , Inflamação/tratamento farmacológico , Xantinas/farmacologia , Fáscia/efeitos dos fármacos , Cafeína/farmacologia , Cafeína/administração & dosagem , Analgesia/métodos , Medula Espinal/metabolismo , Medula Espinal/efeitos dos fármacos , Antagonistas do Receptor A1 de Adenosina/farmacologia
20.
Biomed Pharmacother ; 178: 117157, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39042964

RESUMO

Although the potent anti-inflammatory effects of irisin have been documented in various inflammatory disorders, its efficacy against inflammatory pain remains unexplored. Herein, we examined the therapeutic effects of irisin in a mouse model of inflammatory pain induced by complete Freund's adjuvant (CFA). Mice were divided into three groups: normal control, CFA-injected (CFA), and CFA plus irisin-treated (CFA+Irisin). The irisin-treated group exhibited a gradual reduction in mechanical allodynia and thermal hyperalgesia when compared with the CFA group. Moreover, treatment with irisin significantly upregulated the expression of M2 macrophage markers (interleukin [IL]-4 and IL-10) and downregulated M1 macrophage markers (IL-1ß, IL-6, and tumor necrosis factor-α) in the local paw tissue, dorsal root ganglion, and spinal cord tissue. However, there was no significant difference in the total number of F4/80+ macrophages in the paw tissue and dorsal root ganglion, indicating phenotypic exchange. Treatment with irisin also downregulated the expression of the glial cell activation-related markers Iba-1 and GFAP in the spinal cord tissue. To elucidate the underlying mechanisms, we detected the expression of Toll-like receptor 4 (TLR4), MyD88, and interferon regulatory factor 5 (IRF5) in paw tissues, dorsal root ganglion, and spinal tissues, revealing that irisin could downregulate the expression of these proteins. Irisin alleviated inflammatory pain by modulating local tissue inflammation and peripheral and central neuroinflammation and reducing glial cell activation and M2 macrophage polarization by modulating the TLR4-MyD88-IRF5 signaling pathway. Accordingly, irisin is a promising candidate for treating inflammatory pain in various diseases.


Assuntos
Fibronectinas , Adjuvante de Freund , Inflamação , Macrófagos , Neuroglia , Medula Espinal , Animais , Fibronectinas/metabolismo , Masculino , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Inflamação/tratamento farmacológico , Inflamação/patologia , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Camundongos Endogâmicos C57BL , Dor/tratamento farmacológico , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismo , Ativação de Macrófagos/efeitos dos fármacos , Anti-Inflamatórios/farmacologia , Receptor 4 Toll-Like/metabolismo , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Modelos Animais de Doenças , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...