Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.675
Filtrar
1.
Photosynth Res ; 162(1): 75-92, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39256265

RESUMO

In the next 10-20 years, several observatories will aim to detect the signatures of oxygenic photosynthesis on exoplanets, though targets must be carefully selected. Most known potentially habitable exo-planets orbit cool M-dwarf stars, which have limited emission in the photosynthetically active region of the spectrum (PAR, 400 < λ < 700 nm) used by Earth's oxygenic photoautotrophs. Still, recent experiments have shown that model cyanobacteria, algae, and non-vascular plants grow comfortably under simulated M-dwarf light, though vascular plants struggle. Here, we hypothesize that this is partly due to the different ways they harvest light, reflecting some general rule that determines how photosynthetic antenna structures may evolve under different stars. We construct a simple thermodynamic model of an oxygenic antenna-reaction centre supercomplex and determine the optimum structure, size and absorption spectrum under light from several star types. For the hotter G (e.g. the Sun) and K-stars, a small modular antenna is optimal and qualitatively resembles the PSII-LHCII supercomplex of higher plants. For the cooler M-dwarfs, a very large antenna with a steep 'energy funnel' is required, resembling the cyanobacterial phycobilisome. For the coolest M-dwarfs an upper limit is reached, where increasing antenna size further is subject to steep diminishing returns in photosynthetic output. We conclude that G- and K-stars could support a range of niches for oxygenic photo-autotrophs, including high-light adapted canopy vegetation that may generate detectable bio-signatures. M-dwarfs may only be able to support low light-adapted organisms that have to invest considerable resources in maintaining a large antenna. This may negatively impact global coverage and therefore detectability.


Assuntos
Fotossíntese , Fotossíntese/fisiologia , Complexos de Proteínas Captadores de Luz/metabolismo , Luz , Complexo de Proteína do Fotossistema II/metabolismo , Cianobactérias/metabolismo , Cianobactérias/fisiologia , Cianobactérias/efeitos da radiação , Modelos Biológicos , Meio Ambiente Extraterreno
2.
Phys Chem Chem Phys ; 26(36): 23654-23662, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39224052

RESUMO

Ketoaldehydes are key intermediates in biochemical processes including carbohydrate, lipid, and amino acid metabolism. Despite their crucial role in the interstellar synthesis of essential biomolecules necessary for the Origins of Life, their formation mechanisms have largely remained elusive. Here, we report the first bottom-up formation of methylglyoxal (CH3C(O)CHO)-the simplest ketoaldehyde-through the barrierless recombination of the formyl (HCO) radical with the acetyl (CH3CO) radical in low-temperature interstellar ice analogs upon exposure to energetic irradiation as proxies of galactic cosmic rays. Utilizing vacuum ultraviolet photoionization reflectron time-of-flight mass spectrometry and isotopic substitution studies, methylglyoxal and its enol tautomer 2-hydroxypropenone (CH3C(OH)CO) were identified in the gas phase during the temperature-programmed desorption of irradiated carbon monoxide-acetaldehyde (CO-CH3CHO) ices, suggesting their potential as promising candidates for future astronomical searches. Once synthesized in cold molecular clouds, methylglyoxal can serve as a key precursor to sugars, sugar acids, and amino acids. Furthermore, this work provides the first experimental evidence for tautomerization of a ketoaldehyde in interstellar ice analogs, advancing our fundamental knowledge of how ketoaldehydes and their enol tautomers can be synthesized in deep space.


Assuntos
Aldeído Pirúvico , Aldeído Pirúvico/química , Gelo , Meio Ambiente Extraterreno/química , Acetaldeído/química , Acetaldeído/análogos & derivados
3.
Aerosp Med Hum Perform ; 95(9): 720-721, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39169488

RESUMO

INTRODUCTION: Human colonization of Mars has captured the imagination of many. However, the challenges posed are immense. In microgravity, changes in human physiology, immune dysregulation, alterations of our microbiome, and enhanced virulence of various microbes are some of the barriers that stand in the way of a successful endeavor. Countermeasures can be brought to bear, but it remains unclear if success of such a mission in the foreseeable future is realistic or fanciful.Mermel L. Human evolution, microgravity, and challenges colonizing Mars. Aerosp Med Hum Perform. 2024; 95(9):720-721.


Assuntos
Evolução Biológica , Marte , Voo Espacial , Ausência de Peso , Humanos , Medicina Aeroespacial , Microbiota/fisiologia , Meio Ambiente Extraterreno
4.
Astrobiology ; 24(8): 824-838, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39159439

RESUMO

The study of extremophilic microorganisms has sparked interest in understanding extraterrestrial microbial life. Such organisms are fundamental for investigating life forms on Saturn's icy moons, such as Enceladus, which is characterized by potentially habitable saline and alkaline niches. Our study focused on the salt-alkaline soil of the Al Wahbah crater in Saudi Arabia, where we identified microorganisms that could be used as biological models to understand potential life on Enceladus. The search involved isolating 48 bacterial strains, sequencing the genomes of two thermo-haloalkaliphilic strains, and characterizing them for astrobiological application. A deeper understanding of the genetic composition and functional capabilities of the two novel strains of Halalkalibacterium halodurans provided valuable insights into their survival strategies and the presence of coding genes and pathways related to adaptations to environmental stressors. We also used mass spectrometry with a molecular network approach, highlighting various classes of molecules, such as phospholipids and nonproteinogenic amino acids, as potential biosignatures. These are essential features for understanding life's adaptability under extreme conditions and could be used as targets for biosignatures in upcoming missions exploring Enceladus' orbit. Furthermore, our study reinforces the need to look at new extreme environments on Earth that might contribute to the astrobiology field.


Assuntos
Exobiologia , Meio Ambiente Extraterreno , Arábia Saudita , Exobiologia/métodos , Genoma Bacteriano/genética , Marte , Bactérias/genética , Bactérias/isolamento & purificação , Filogenia
5.
Astrobiology ; 24(8): 839-844, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39159442

RESUMO

The 2023-2032 Planetary Science and Astrobiology Decadal Survey prioritized the Uranus Orbiter and Probe (UOP) mission concept as the next priority flagship mission. The UOP concept includes scientific studies of the Uranian moon system. Although the Uranian moons differ greatly from the ocean worlds in the Jovian and Saturnian systems, the emerging hypothesis is that some of them could at least sustain thin, potentially concentrated, oceans. Herein, we make a case that these moons are important and interesting targets of astrobiological research. Studying these worlds would provide critical astrobiological data related to their habitability, including origin, evolution, and potential death, as well as the formation and evolution of ocean worlds more broadly. There is a strong need for research that connects astrobiology to modeling and experimentation to better characterize the possible conditions of these worlds, and this will be critical in formulating and maximizing the potential science that could be done by a Uranus flagship mission.


Assuntos
Exobiologia , Meio Ambiente Extraterreno , Lua , Exobiologia/métodos , Oceanos e Mares
6.
Astrobiology ; 24(8): 795-812, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39159437

RESUMO

The abundance of potentially habitable hypersaline environments in our solar system compels us to understand the impacts of high-salt matrices and brine dynamics on biosignature detection efforts. We identified and quantified organic compounds in brines from South Bay Salt Works (SBSW), where evapoconcentration of ocean water enables exploration of the impact of NaCl- and MgCl2-dominated brines on the detection of potential biosignature molecules. In SBSW, organic biosignature abundance and distribution are likely influenced by evapoconcentration, osmolyte accumulation, and preservation effects. Bioluminescence assays show that adenosine triphosphate (ATP) concentrations are higher in NaCl-rich, low water activity (aw) samples (<0.85) from SBSW. This is consistent with the accumulation and preservation of ATP at low aw as described in past laboratory studies. The water-soluble small organic molecule inventory was determined by using microchip capillary electrophoresis paired with high-resolution mass spectrometry (µCE-HRMS). We analyzed the relative distribution of proteinogenic amino acids with a recently developed quantitative method using CE-separation and laser-induced fluorescence (LIF) detection of amino acids in hypersaline brines. Salinity trends for dissolved free amino acids were consistent with amino acid residue abundance determined from the proteome of the microbial community predicted from metagenomic data. This highlights a tangible connection up and down the "-omics" ladder across changing geochemical conditions. The detection of water-soluble organic compounds, specifically proteinogenic amino acids at high abundance (>7 mM) in concentrated brines, demonstrates that potential organic biomarkers accumulate at hypersaline sites and suggests the possibility of long-term preservation. The detection of such molecules in high abundance when using diverse analytical tools appropriate for spacecraft suggests that life detection within hypersaline environments, such as evaporates on Mars and the surface or subsurface brines of ocean world Europa, is plausible and argues such environments should be a high priority for future exploration. Key Words: Salts-Analytical chemistry-Amino acids-Biosignatures-Capillary electrophoresis-Preservation. Astrobiology 24, 795-812.


Assuntos
Exobiologia , Meio Ambiente Extraterreno , Sais , Exobiologia/métodos , Meio Ambiente Extraterreno/química , Sais/análise , Sais/química , Trifosfato de Adenosina/análise , Trifosfato de Adenosina/metabolismo , Aminoácidos/análise , Salinidade , Compostos Orgânicos/análise , Voo Espacial , Água do Mar/química , Água do Mar/microbiologia , Água do Mar/análise
7.
Astrobiology ; 24(7): 698-709, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39023275

RESUMO

Europa and Enceladus are key targets to search for evidence of life in our solar system. However, the surface and shallow subsurface of both airless icy moons are constantly bombarded by ionizing radiation that could degrade chemical biosignatures. Therefore, sampling of icy surfaces in future life detection missions to Europa and Enceladus requires a clear understanding of the necessary ice depth where unaltered organic biomolecules might be present. We conducted radiolysis experiments by exposing individual amino acids in ices and amino acids from dead microorganisms in ices to gamma radiation to simulate conditions on these icy worlds. In the pure amino acid samples, glycine did not show a detectable decrease in abundance, whereas the abundance of isovaline decreased by 40% after 4 MGy of exposure. Amino acids in dead Escherichia coli (E. coli) organic matter exhibited a gradual decline in abundances with the increase of exposure dosage, although at much slower rates than individual amino acids. The majority of amino acids in dead A. woodii samples demonstrated a step function decline as opposed to a gradual decline. After the initial drop in abundance with 1 MGy of exposure, those amino acids did not display further decreases in abundance after exposure up to 4 MGy. New radiolysis constants for isolated amino acids and amino acids in dead E. coli material for Europa/Enceladus-like conditions have been derived. Slow rates of amino acid destruction in biological samples under Europa and Enceladus-like surface conditions bolster the case for future life detection measurements by Europa and Enceladus lander missions. Based on our measurements, the "safe" sampling depth on Europa is ∼20 cm at high latitudes of the trailing hemisphere in the area of little impact gardening. Subsurface sampling is not required for the detection of amino acids on Enceladus-these molecules will survive radiolysis at any location on the Enceladus surface. If the stability of amino acids observed in A. woodii organic materials is confirmed in other microorganisms, then the survival of amino acids from a potential biosphere in Europa ice would be significantly increased.


Assuntos
Aminoácidos , Escherichia coli , Exobiologia , Meio Ambiente Extraterreno , Raios gama , Gelo , Aminoácidos/análise , Meio Ambiente Extraterreno/química , Escherichia coli/efeitos da radiação , Exobiologia/métodos , Gelo/análise , Júpiter
8.
Life Sci Space Res (Amst) ; 42: 27-36, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39067987

RESUMO

In recent years, extensive research has been dedicated to Mars exploration and the potential for sustainable interplanetary human colonization. One of the significant challenges in ensuring the survival of life on Mars lies in the production of food as the Martian environment is highly inhospitable to agriculture, rendering it impractical to transport food from Earth. To improve the well-being and quality of life for future space travelers on Mars, it is crucial to develop innovative horticultural techniques and food processing technologies. The unique challenges posed by the Martian environment, such as the lack of oxygen, nutrient-deficient soil, thin atmosphere, low gravity, and cold, dry climate, necessitate the development of advanced farming strategies. This study explores existing knowledge and various technological innovations that can help overcome the constraints associated with food production and water extraction on Mars. The key lies in utilizing resources available on Mars through in-situ resource utilization. Water can be extracted from beneath the ice and from the Martian soil. Furthermore, hydroponics in controlled environment chambers, equipped with nutrient delivery systems and waste recovery mechanisms, have been investigated as a means of cultivating crops on Mars. The inefficiency of livestock production, which requires substantial amounts of water and land, highlights the need for alternative protein sources such as microbial protein, insects, and in-vitro meat. Moreover, the fields of synthetic biology and 3-D food printing hold immense potential in revolutionizing food production and making significant contributions to the sustainability of human life on Mars.


Assuntos
Meio Ambiente Extraterreno , Marte , Voo Espacial , Humanos , Animais , Abastecimento de Alimentos , Água
9.
Life Sci Space Res (Amst) ; 42: 72-73, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39067993

RESUMO

Lunar exploration offers an exciting opportunity for humanity to advance scientific knowledge and future potential economic growth and possibly allow humans to become a multi-planetary species. On April 2, 2024 the US Office of Science and Technology Policy released a memorandum outlining the current Biden-Harris Administration's policy on the need to establish time standards at celestial bodies other than Earth. This memorandum also introduced the need for Coordinated Lunar Time (CLT), the concept of having a reference time for the moon. The establishment of CLT would provide a multitude of benefits for astronaut health, from expedition planning, to maintaining a sense of order in an austere environment. International agreements and collaboration will be required prior to the recognition of CLT.


Assuntos
Astronautas , Lua , Voo Espacial , Humanos , Medicina Aeroespacial , Estados Unidos , Meio Ambiente Extraterreno
10.
Life Sci Space Res (Amst) ; 42: 84-90, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39067996

RESUMO

In this study, we conducted polymerase chain reaction (PCR) experiments using Escherichia coli (E. coli) and a Mars sand simulant (Mars Global Simulant MGS-1, Exolith Lab) to detect and analyze potential extraterrestrial life. The targeted DNA sequence is common among the bacterial kingdom on Earth. PCR experiments conducted after alkaline heat extraction, wherein samples with varying amounts of Mars sand simulant were compared, revealed that the simulant interfered with DNA detection. We then conducted PCR experiments following treatment with a sand DNA extraction kit on samples with various E. coli densities. DNA bands for a minimum E. coli density of 900 cells/(g sand) were confirmed, while no DNA bands were visible in the 90 cells/(g sand) sample with and without the Mars sand simulant. The total DNA mass contained in 900 cells was calculated to be 15.3 pg (i.e., 1.53 pg in 0.1 g sand sample we evaluated). We tested and compared the influence of the eluate of Mars sand simulant and DNA adsorption onto Mars sand simulant based on optical absorbance measurements. Our findings suggest that the mechanism by which the Mars sand simulant prevents PCR is through the adsorption of DNA onto the Mars sand simulant.


Assuntos
DNA Bacteriano , Escherichia coli , Exobiologia , Meio Ambiente Extraterreno , Marte , Reação em Cadeia da Polimerase , Areia , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Reação em Cadeia da Polimerase/métodos , Exobiologia/métodos , DNA Bacteriano/análise , DNA Bacteriano/genética
11.
Sci Rep ; 14(1): 17083, 2024 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-39048621

RESUMO

Recent renewed interest in the possibility of life in the acidic clouds of Venus has led to new studies on organic chemistry in concentrated sulfuric acid. We have previously found that the majority of amino acids are stable in the range of Venus' cloud sulfuric acid concentrations (81% and 98% w/w, the rest being water). The natural next question is whether dipeptides, as precursors to larger peptides and proteins, could be stable in this environment. We investigated the reactivity of the peptide bond using 20 homodipeptides and find that the majority of them undergo solvolysis within a few weeks, at both sulfuric acid concentrations. Notably, a few exceptions exist. HH and GG dipeptides are stable in 98% w/w sulfuric acid for at least 4 months, while II, LL, VV, PP, RR and KK resist hydrolysis in 81% w/w sulfuric acid for at least 5 weeks. Moreover, the breakdown process of the dipeptides studied in 98% w/w concentrated sulfuric acid is different from the standard acid-catalyzed hydrolysis that releases monomeric amino acids. Despite a few exceptions at a single concentration, no homodipeptides have demonstrated stability across both acid concentrations studied. This indicates that any hypothetical life on Venus would likely require a functional substitute for the peptide bond that can maintain stability throughout the range of sulfuric acid concentrations present.


Assuntos
Dipeptídeos , Ácidos Sulfúricos , Dipeptídeos/química , Dipeptídeos/metabolismo , Ácidos Sulfúricos/química , Hidrólise , Meio Ambiente Extraterreno/química , Estabilidade Proteica
12.
Biosystems ; 243: 105262, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38969235

RESUMO

We attempt in this article to formulate a conceptual and testable framework weaving Cosmos, Mind and Matter into a whole. We build on three recent discoveries, each requiring more evidence: i. The particles of the Standard Model, SU(3) x SU(2) x U(1), are formally capable of collective autocatalysis. This leads us to ask what roles such autocatalysis may have played in Cosmogenesis, and in trying to answer, Why our Laws? Why our Constants? A capacity of the particles of SU(3) x SU(2) x U(1) for collective autocatalysis may be open to experimental test, stunning if confirmed. ii. Reasonable evidence now suggests that matter can expand spacetime. The first issue is to establish this claim at or beyond 5 sigma if that can be done. If true, this process may elucidate Dark Matter, Dark Energy and Inflation and require alteration of Einstein's Field Equations. Cosmology would be transformed. iii. Evidence at 6.49 Sigma suggests that mind can alter the outcome of the two-slit experiment. If widely and independently verified, the foundations of quantum mechanics must be altered. Mind plays a role in the universe. That role may include Cosmic Mind. OUR CONSIDERATIONS CONCERN: 1. Ontologically Real Potentia and the Unmanifest; 2. Nonlocality as Fundamental; 3. Res potentia, Res extensa, and Actualization; 4. Mind and Qualia, Mind is not in Spacetime; 5. Quantum Vacuum = Potentia not in Spacetime = Mind not in Spacetime; 6. Mind can Actualize Potentia; 7. The emergence of the classical world; 8. Co-evolution of evermore complex matter; 9. Why "My Mind"?; 10. Each embodied mind is coupled bilaterally to the Quantum Vacuum that is Cosmic Mind; 11. Responsible Free Will.


Assuntos
Meio Ambiente Extraterreno , Humanos , Exobiologia
13.
Astrobiology ; 24(7): 684-697, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38979614

RESUMO

The key building blocks for life on Mars could be preserved within potentially habitable paleo-depositional settings with their detection possible by utilizing mid-infrared spectroscopy; however, a definite identification and confirmation of organic or even biological origin will require the samples to be returned to Earth. In the present study, Fourier-transform infrared (FTIR) spectroscopic techniques were used to characterize both mineralogical and organic materials within Mars dust simulant JSC Mars-1 and ancient Antarctic cyanobacterial microbial mats from 1901 to 1904 Discovery Expedition. When FTIR spectroscopy is applied to cyanobacterial microbial mat communities, the resulting spectra will reflect the average biochemical composition of the mats rather than taxa-specific spectral patterns of the individual organisms and can thus be considered as a total chemical analysis of the mat colony. This study also highlights the potential difficulties in the detection of these communities on Mars and which spectral biosignatures will be most detectable within geological substrates. Through the creation and analysis of a suite of dried microbial mat material and Martian dust simulant mixtures, the spectral signatures and wavenumber positions of CHx aliphatic hydrocarbons and the C-O and O-H bands of polysaccharides remained detectable and may be detectable within sample mixtures obtained through Mars Sample Return activities.


Assuntos
Cianobactérias , Poeira , Exobiologia , Meio Ambiente Extraterreno , Marte , Poeira/análise , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Exobiologia/métodos , Cianobactérias/isolamento & purificação , Museus
14.
Astrobiology ; 24(7): 669-683, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38979620

RESUMO

Mars has been exposed to ionizing radiation for several billion years, and as part of the search for life on the Red Planet, it is crucial to understand the impact of radiation on biosignature preservation. Several NASA and ESA missions are looking for evidence of ancient life in samples collected at depths shallow enough that they have been impacted by galactic cosmic rays (GCRs). In this study, we exposed a diverse set of Mars analog samples to 0.9 Megagray (MGy) of gamma radiation to mimic 15 million years of exposure on the Martian surface. We measured no significant impact of GCRs on the total organic carbon (TOC) and bulk stable C isotopes in samples with initial TOC concentration > 0.1 wt. %; however, diagnostic molecular biosignatures presented a wide range of degradation that didn't correlate to factors like mineralogy, TOC, water content, and surface area. Exposure dating suggests that the surface of Gale crater has been irradiated at more than five times our dose, yet using this relatively low dose and "best-case scenario" geologically recalcitrant biomarkers, large and variable losses were nevertheless evident. Our results empasize the importance of selecting sampling sites at depth or recently exposed at the Martian surface.


Assuntos
Biomarcadores , Argila , Radiação Cósmica , Meio Ambiente Extraterreno , Marte , Argila/química , Biomarcadores/análise , Meio Ambiente Extraterreno/química , Carbonatos/química , Carbonatos/análise , Exobiologia/métodos , Silicatos de Alumínio/química , Isótopos de Carbono/análise
16.
Nat Rev Chem ; 8(9): 652-664, 2024 09.
Artigo em Inglês | MEDLINE | ID: mdl-39025922

RESUMO

Compartmentalization is crucial for the evolution of life. Present-day phospholipid membranes exhibit a high level of complexity and species-dependent homochirality, the so-called lipid divide. It is possible that less stable, yet more dynamic systems, promoting out-of-equilibrium environments, facilitated the evolution of life at its early stages. The composition of the preceding primitive membranes and the evolutionary route towards complexity and homochirality remain unexplained. Organics-rich carbonaceous chondrites are evidence of the ample diversity of interstellar chemistry, which may have enriched the prebiotic milieu on early Earth. This Review evaluates the detections of simple amphiphiles - likely ancestors of membrane phospholipids - in extraterrestrial samples and analogues, along with potential pathways to form primitive compartments on primeval Earth. The chiroptical properties of the chiral backbones of phospholipids provide a guide for future investigations into the origins of phospholipid membrane homochirality. We highlight a plausible common pathway towards homochirality of lipids, amino acids, and sugars starting from enantioenriched monomers. Finally, given their high recalcitrance and resistance to degradation, lipids are among the best candidate biomarkers in exobiology.


Assuntos
Fosfolipídeos , Fosfolipídeos/química , Evolução Química , Meio Ambiente Extraterreno/química , Estereoisomerismo , Planeta Terra , Origem da Vida , Exobiologia
19.
Funct Plant Biol ; 512024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38902906

RESUMO

This study reveals a new acclimation mechanism of the eukaryotic unicellular green alga Chlorella vulgaris in terms of the effect of varying atmospheric pressures on the structure and function of its photosynthetic apparatus using fluorescence induction measurements (JIP-test). The results indicate that low (400mbar) and extreme low (2 atmosphere (simulating the Mars atmosphere), reveals that the impact of extremely low atmospheric pressure on PQ mobility within the photosynthetic membrane, coupled with the low density of an almost 100% CO2 Mars-like atmosphere, results to a similar photosynthetic efficiency to that on Earth. These findings pave the way for the identification of novel functional acclimation mechanisms of microalgae to extreme environments that are vastly distinct from those found on Earth.


Assuntos
Aclimatação , Pressão Atmosférica , Chlorella vulgaris , Marte , Microalgas , Fotossíntese , Microalgas/fisiologia , Chlorella vulgaris/fisiologia , Exobiologia , Atmosfera/química , Meio Ambiente Extraterreno
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...