Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.851
Filtrar
1.
Mol Biol Rep ; 51(1): 1026, 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39340708

RESUMO

BACKGROUND: Angiogenesis, the biological mechanism by which new blood vessels are generated from existing ones, plays a vital role in growth and development. Effective preclinical screening is necessary for the development of medications that may enhance or inhibit angiogenesis in the setting of different disorders. Traditional in vitro and, in vivo models of angiogenesis are laborious and time-consuming, necessitating advanced infrastructure for embryo culture. MAIN BODY: A challenge encountered by researchers studying angiogenesis is the lack of appropriate techniques to evaluate the impact of regulators on the angiogenic response. An ideal test should possess reliability, technical simplicity, easy quantifiability, and, most importantly, physiological relevance. The CAM model, leveraging the extraembryonic membrane of the chicken embryo, offers a unique combination of accessibility, low cost, and rapid development, making it an attractive option for angiogenesis assays. This review evaluates the strengths and limitations of the CAM model in the context of its anatomical and physiological properties, and its relevance to human pathophysiological conditions. Its abundant capillary network makes it a common choice for studying angiogenesis. The CAM assay serves as a substitute for animal models and offers a natural setting for developing blood vessels and the many elements involved in the intricate interaction with the host. Despite its advantages, the CAM model's limitations are notable. These include species-specific responses that may not always extrapolate to humans and the ethical considerations of using avian embryos. We discuss methodological adaptations that can mitigate some of these limitations and propose future directions to enhance the translational relevance of this model. This review underscores the CAM model's valuable role in angiogenesis research and aims to guide researchers in optimizing its use for more predictive and robust preclinical studies. CONCLUSION: The highly vascularized chorioallantoic membrane (CAM) of fertilized chicken eggs is a cost-effective and easily available method for screening angiogenesis, in comparison to other animal models.


Assuntos
Membrana Corioalantoide , Neovascularização Fisiológica , Membrana Corioalantoide/irrigação sanguínea , Animais , Embrião de Galinha , Humanos , Neovascularização Patológica , Galinhas , Angiogênese
2.
Immunohorizons ; 8(8): 598-605, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39225630

RESUMO

The fertilized chicken egg chorioallantoic membrane (CAM), a highly vascularized membrane nourishing the developing embryo, also supports rapid growth of three-dimensional vascularized tumors from engrafted cells and tumor explants. Because murine xenograft models suffer limitations of time, cost, and scalability, we propose CAM tumors as a rapid, efficient screening tool for assessing anti-tumor efficacy of chimeric Ag receptor (CAR) T cells against solid tumors. We tested the efficacy of human epidermal growth factor receptor 2 (HER2)-specific CAR T cells against luminescent, HER2-expressing (FaDu, SCC-47) or HER2-negative (MDA-MB-468) CAM-engrafted tumors. Three days after tumor engraftment, HER2-specific CAR T cells were applied to tumors grown on the CAM. Four days post-CAR T cell treatment, HER2-expressing FaDu and SCC-47 tumors treated with CAR T showed reduced viable cancer cells as assessed by luciferase activity. This reduction in viable tumor cells was confirmed by histology, with lower Ki-67 staining observed in CAR T cell-treated tumors relative to T cell-treated controls. Persistence of CAR T in CAM and tumor tissue 4 days post-treatment was confirmed by CD3 staining. Altogether, our findings support further development of the chick CAM as an in vivo system for rapid, scalable screening of CAR T cell efficacy against human solid tumors.


Assuntos
Membrana Corioalantoide , Imunoterapia Adotiva , Receptor ErbB-2 , Receptores de Antígenos Quiméricos , Animais , Embrião de Galinha , Humanos , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Receptor ErbB-2/metabolismo , Imunoterapia Adotiva/métodos , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , Linfócitos T/imunologia , Linfócitos T/metabolismo , Camundongos , Neoplasias/terapia , Neoplasias/imunologia , Feminino
3.
Theriogenology ; 229: 75-82, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39167835

RESUMO

The proper function of the placenta is essential for the health and growth of the fetus and the mother. The placenta relies on dynamic gene expression for its correct and timely development and function. Although numerous studies have identified genes vital for placental functions, equine placental molecular research has primarily focused on single placental locations, in sharp contrast with the broader approach in human studies. Here, we hypothesized that the molecular differences across different regions of the equine placenta are negligible because of its diffuse placental type with a macroscopic homogenous distribution of villi across the placental surface. We compared the transcriptome and stereological findings of the body, pregnant horn, and non-pregnant horn within the equine chorioallantois. Our transcriptomic analysis indicates that the variation between regions of the placenta within individuals is less than the variation observed between individuals. A low number of differentially expressed genes (DEGs) (n = 8) was identified when comparing pregnant and non-pregnant horns within the same placenta, suggesting a remarkable molecular uniformity. A higher number of DEGs was identified when comparing each horn to the body (193 DEGs comparing pregnant horn with body and 207 DEGs comparing non-pregnant horn with body). Genes with a higher expression in the body were associated with processes such as extracellular matrix synthesis and remodeling, which is relevant for placental maturation and placenta-endometrial separation at term and implies asynchrony of these processes across locations. The stereological analysis showed no differences in microcotyledonary density, and width between the locations. However, we observed a greater chorioallantoic thickness in the body and pregnant horn compared to the non-pregnant horn. Overall, our findings reveal a uniform transcriptomic profile across the placental horns, alongside a more distinct gene expression pattern between the uterine body and horns. These regional differences in gene expression suggest a different pace in the placental maturation and detachment among the placental locations.


Assuntos
Placenta , Transcriptoma , Feminino , Animais , Cavalos/genética , Cavalos/fisiologia , Gravidez , Placenta/metabolismo , Membrana Corioalantoide/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/fisiologia
4.
J Comp Pathol ; 213: 59-72, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39116802

RESUMO

The chicken embryo chorioallantoic membrane (CAM) model has played a crucial role in various aspects of cancer research. The purpose of this study is to help researchers clarify the research direction and prospects of the CAM model. A bibliometric analysis was conducted on the top 100 most cited articles on use of the CAM model in tumour research, retrieved from the Web of Science Core Collection database. Tools such as Bibliometrix, VOSviewer, CiteSpace and Excel were utilized for the visualization network analysis. The 100 articles analysed were mainly from the USA, China and European countries such as Germany and France. Tumour research involving CAM model experiments demonstrated reliability and scientific rigor (average citation count = 156.2). The analysis of keywords, topics and subject areas revealed that the applications of this model ranged from the biological characteristics of tumours to molecular mechanisms and signaling pathways, to recent developments in nanotechnology and clinical applications. Additionally, nude mouse experiments have been more frequently performed in recent years. We conclude that the CAM model is efficient, simple and cost-effective, and has irreplaceable value in various aspects of cancer research. In the future, the CAM model can further contribute to nanotechnology research.


Assuntos
Bibliometria , Membrana Corioalantoide , Neoplasias , Animais , Embrião de Galinha , Pesquisa Biomédica , Modelos Animais de Doenças
5.
Poult Sci ; 103(10): 103937, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39106698

RESUMO

Egg turning in incubation is crucial to the development of embryos and hatching performance. We aimed to develop a high performance duck egg incubation technique by enlarging and changing egg turning angles. Increasing turning angle from 45 to 75° did not affect the embryo early mortality during the first 15 d of incubation, which ranged from 3.5 to 4.0%, but accelerated chorioallantoic membrane (CAM) development by 17 h, and significantly (P < 0.01) reduced the late mortality from 9.4 ± 0.98% to 5.31 ± 0.63%. As the result, fertile egg hatchability increased from 91.03 ± 0.97% to 94.64 ± 0.61% (P < 0.05), so was healthy duckling rate from 87.24 ± 1.17% to 92.08 ± 0.55% (P < 0.05), and duckling live weight from 60.74 ± 0.63 g to 63.15 ± 0.35 g (P < 0.05). Changing turning angle from 75°to 60°during incubation d 15 to 25 further reduced late embryo mortality to 3.88 ± 0.47 and increased hatchability to 96.58 ± 0.68%. This changing angle turning hatched ducklings exhibited the highest growth performance during rearing than those hatched by 45 and 75° egg turning. The enhanced growth rate was paralleled by upregulations of somatotropic axis genes mRNA expression levels of the hypothalamus GHRH, liver GHR and IGF-1 during embryo incubation and duckling rearing. In conclusion, a changing angle egg turning incubation technique, 75°in the first 15 d and 60°thereafter, can enhance CAM development, upregulate somatotropic axis genes expressions, and can maximally improve embryo livability, duckling hatchability and growth performance.


Assuntos
Patos , Óvulo , Animais , Patos/fisiologia , Óvulo/fisiologia , Feminino , Embrião não Mamífero/fisiologia , Desenvolvimento Embrionário , Criação de Animais Domésticos/métodos , Membrana Corioalantoide
6.
FASEB J ; 38(17): e70029, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39215630

RESUMO

Immunotherapies have significantly improved the prognosis of patients with advanced hepatocellular carcinoma (HCC), although more than 70% of patients still do not respond to this first-line treatment. Many new combination strategies are currently being explored, which drastically increases the need for preclinical models that would allow large-scale testing of new immunotherapies and their combinations. We developed several in ovo (in the egg) human liver cancer models, based on human tumor xenografts of different liver cancer cell lines on the chicken embryo's chorioallantoic membrane. We characterized the angiogenesis, as well as the collagen accumulation and tumor immune microenvironment, and tested atezolizumab (anti-PD-L1) plus bevacizumab (anti-VEGF) treatment. Our results show the involvement of chicken immune cells in tumor growth, reproducing a classical non-inflamed "cold" as well as inflamed "hot" tumor status, depending on the in ovo liver cancer model. The treatment by atezolizumab and bevacizumab was highly efficient in the "hot" tumor model PLC/PRF/5 in ovo with the reduction of tumor size by 76% (p ≤ .0001) compared with the control, whereas the efficacy was limited in the "cold" Hep3B in ovo tumor. The contribution of the anti-PD-L1 blockade to the anti-tumoral effect in the PLC/PRF/5 in ovo model was demonstrated by the efficacy of atezolizumab monotherapy (p = .0080, compared with the control). To conclude, our study provides a detailed characterization and rational arguments that could help to partially replace conventional laboratory animals with a more ethical model, suited to the current needs of preclinical research of new immunotherapies for liver cancer.


Assuntos
Anticorpos Monoclonais Humanizados , Bevacizumab , Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/imunologia , Embrião de Galinha , Bevacizumab/uso terapêutico , Bevacizumab/farmacologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Monoclonais Humanizados/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/imunologia , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , Microambiente Tumoral/efeitos dos fármacos , Imunoterapia/métodos , Membrana Corioalantoide/efeitos dos fármacos , Modelos Animais de Doenças
7.
J Med Chem ; 67(16): 14077-14094, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39115131

RESUMO

The radiohybrid (rh) concept to design targeted (and chemically identical) radiotracers for imaging or radionuclide therapy of tumors has gained momentum. For this strategy, a new bifunctional Silicon-based Fluoride Acceptor (SiFA) moiety (SiFA)SeFe was synthesized, endowed with improved hydrophilicity and high versatility of integration into rh-compounds. Preliminary radiolabeling and stability studies under different conditions were conducted using model bioconjugate peptides. Further, three somatostatin receptor 2 (sstR2)-targeted rh-compounds ((SiFA)SeFe-rhTATE1-3, TATE = (Tyr3)-octreotate) were developed. Compound (SiFA)SeFe-rhTATE3, enables labeling with 18F for PET imaging or chelation of 177Lu for therapy. The rh-compounds possess comparable receptor binding affinity and in vitro performance as good as the clinically proven gold standards. SstR2-specificity was further shown for (SiFA)SeFe-rhTATE2 using the chicken chorioallantoic membrane (CAM) model. The biodistribution of two compounds in mice showed high accumulation in tumors and excretion via the kidneys, demonstrating the clinical applicability of the (SiFA)SeFe moiety.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Receptores de Somatostatina , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Membrana Corioalantoide/metabolismo , Fluoretos/química , Radioisótopos de Flúor/química , Lutécio/química , Peptídeos/química , Tomografia por Emissão de Pósitrons , Radioisótopos/química , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/síntese química , Compostos Radiofarmacêuticos/farmacocinética , Receptores de Somatostatina/metabolismo , Silício/química , Distribuição Tecidual , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Compostos de Ferro/química
8.
J Breath Res ; 18(4)2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39163890

RESUMO

Malignant pleural mesothelioma (MPM) is an aggressive cancer associated with asbestos exposure. MPM is often diagnosed late, at a point where limited treatment options are available, but early intervention could improve the chances of successful treatment for MPM patients. Biomarkers to detect MPM in at-risk individuals are needed to implement early diagnosis technologies. Volatile organic compounds (VOCs) have previously shown diagnostic potential as biomarkers when analysed in MPM patient breath. In this study, chorioallantoic membrane (CAM) xenografts of MPM cell lines were used as models of MPM tumour development for VOC biomarker discovery with the aim of generating targets for investigation in breath, biopsies or other complex matrices. VOC headspace analysis of biphasic or epithelioid MPM CAM xenografts was performed using solid-phase microextraction and gas chromatography-mass spectrometry. We successfully demonstrated the capture, analysis and separation of VOC signatures from CAM xenografts and controls. A panel of VOCs was identified that showed discrimination between MPM xenografts generated from biphasic and epithelioid cells and CAM controls. This is the first application of the CAM xenograft model for the discovery of VOC biomarkers associated with MPM histological subtypes. These findings support the potential utility of non-invasive VOC profiling from breath or headspace analysis of tissues for detection and monitoring of MPM.


Assuntos
Membrana Corioalantoide , Cromatografia Gasosa-Espectrometria de Massas , Neoplasias Pulmonares , Mesotelioma Maligno , Neoplasias Pleurais , Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/análise , Animais , Humanos , Mesotelioma Maligno/patologia , Neoplasias Pleurais/patologia , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Biomarcadores Tumorais/análise , Mesotelioma/patologia , Linhagem Celular Tumoral , Xenoenxertos , Testes Respiratórios/métodos , Microextração em Fase Sólida/métodos
9.
Artigo em Inglês | MEDLINE | ID: mdl-39214166

RESUMO

Numerous studies report on the influence of temperature on blood gases in ectothermic vertebrates, but there is merely a cursory understanding of these effects in developing animals. Animals that develop in eggs are at the mercy of environmental temperature and are expected to lack the capacity to regulate gas exchange and may regulate blood gases by means of altered conductance for gas exchange. We, therefore, devised a series of studies to characterize the developmental changes in blood gases when embryonic alligators were exposed to 25, 30 and 35 °C. To determine how blood parameters were impacted by changes in embryonic temperature, blood was sampled from the chorioallantoic membrane artery. The blood in the chorioallantoic membrane artery is a mixture of oxygen-poor and oxygen-rich blood, which based on the embryonic vascular anatomy may reflect blood that perfuses the chemoreceptors of the developing animal. Our findings indicate that following a 48 h exposure to 25 °C or 35 °C, there was a positive relationship between CAM artery blood PO2, PCO2 and glucose. However, blood pH suggests embryonic alligators lack an acute regulatory mechanism for adjusting blood pH.


Assuntos
Jacarés e Crocodilos , Gasometria , Dióxido de Carbono , Oxigênio , Temperatura , Animais , Jacarés e Crocodilos/sangue , Jacarés e Crocodilos/embriologia , Jacarés e Crocodilos/fisiologia , Dióxido de Carbono/sangue , Oxigênio/sangue , Oxigênio/metabolismo , Embrião não Mamífero , Membrana Corioalantoide/irrigação sanguínea , Concentração de Íons de Hidrogênio , Glicemia/metabolismo
10.
Cytokine ; 182: 156706, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39053078

RESUMO

Oenothein B (OeB), a dimeric ellagitannin with a macrocyclic structure, is reported to have beneficial effects, including antioxidant, antitumor, antiviral, and antimutagenic effects, on human health. Despite the remarkable properties of OeB, its role in neovascularization process has not yet been evaluated. Thus, this study aimed to evaluate the angiogenic activity of OeB using a chorioallantoic membrane (CAM) assay at different concentrations (6.25, 12.5, and 25 µg/µL), employing digital imaging and histological analysis. Furthermore, to elucidate the mechanisms by which OeB influences angiogenesis, we assessed the levels of vascular endothelial growth factor (VEGF) and tumor necrosis factor-alpha (TNF-α) in CAM using immunohistochemical analysis. All concentrations of OeB significantly increased (p < 0.05) the percentage of vascularization as well as the levels of all the angiogenesis-associated parameters evaluated, indicating the pronounced pro-angiogenic activity of OeB. Our results showed that inflammation was one of the most relevant phenomena observed in CAM histology along with angiogenesis. In addition, a significant increase in VEGF and TNF-α levels was observed in all the CAMs compared to the negative control (p < 0.05). We suggest that OeB may induce the presence of inflammatory cells in CAM, leading to increased VEGF and TNF-α levels that result in the induction of angiogenesis. Therefore, OeB presents a favorable profile that could be further explored for the development of drugs for pro-angiogenic and tissue repair therapies.


Assuntos
Membrana Corioalantoide , Taninos Hidrolisáveis , Folhas de Planta , Fator de Necrose Tumoral alfa , Fator A de Crescimento do Endotélio Vascular , Fator de Necrose Tumoral alfa/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Folhas de Planta/química , Membrana Corioalantoide/efeitos dos fármacos , Taninos Hidrolisáveis/farmacologia , Embrião de Galinha , Eugenia/química , Indutores da Angiogênese/farmacologia , Neovascularização Fisiológica/efeitos dos fármacos
11.
Int J Pharm ; 661: 124468, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39013533

RESUMO

Cannabidiol (CBD) is the main non-psychotropic cannabinoid. It has attracted a great deal of interest in the treatment of several diseases such as inflammatory disorders and cancer. Despite its promising clinical interest, its administration is very challenging. In situ forming implants (ISFIs) could be a simple and cheap strategy to administer CBD while obtaining a prolonged effect with a single administration. This work aims to design, develop, and characterize for the first time ISFIs for the parenteral administration of CBD with potential application in cancer disease. Formulations made of PLGA-502, PLGA-502H, and PLA-202 in NMP or DMSO and PLA-203 in DMSO at a polymer concentration of 0.25 mg/µL and loaded with CBD at a drug: polymer ratio of 2.5:100 and 5:100 (w/w) were developed. The formulations prepared with NMP exhibited a faster drug release. CBD implants elaborated with PLGA-502 and DMSO with the highest CBD: polymer ratio showed the most suitable drug release for one month. This formulation was successfully formed in ovo onto the chorioallantoic chick membrane without exhibiting signs of toxicity and exhibited a superior antiangiogenic activity than CBD in solution administered at the same doses. Consequently, implants made of PLGA-502 and DMSO represent a promising strategy to effectively administer CBD subcutaneously as combination therapy in cancer disease.


Assuntos
Canabidiol , Liberação Controlada de Fármacos , Poliésteres , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Animais , Canabidiol/administração & dosagem , Canabidiol/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Poliésteres/química , Implantes de Medicamento , Embrião de Galinha , Membrana Corioalantoide/efeitos dos fármacos , Dimetil Sulfóxido/química , Dimetil Sulfóxido/administração & dosagem , Portadores de Fármacos/química , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos
12.
Dev Comp Immunol ; 159: 105229, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39004297

RESUMO

The complement system, composed of complement components and complement control proteins, plays an essential role in innate immunity. Complement system molecules are expressed at the maternal-conceptus interface, and inappropriate activation of the complement system is associated with various adverse pregnancy outcomes in humans and rodents. However, the expression, regulation, and function of the complement system at the maternal-conceptus interface in pigs have not been studied. In this study, we investigated the expression, localization, and regulation of complement system molecules at the maternal-conceptus interface in pigs. Complement components and complement control proteins were expressed in the endometrium, early-stage conceptus, and chorioallantoic tissues during pregnancy. The expression of complement components acting on the early stage of complement activation increased in the endometrium on Day 15 of pregnancy, with greater levels on that day compared with the estrous cycle. Localization of several complement components and complement control proteins was cell-type specific in the endometrium. The expression of C1QC, C2, C3, C4A, CFI, ITGB2, MASP1, and SERPING1 was increased by IFNG in endometrial explant tissues. Furthermore, cleaved C3 fragments were detected in endometrial tissues and uterine flushings on Day 15 of the estrous cycle and Day 15 of pregnancy, with greater levels on Day 15 of pregnancy. These results suggest that complement system molecules in pigs expressed at the maternal-conceptus interface play important roles in the establishment and maintenance of pregnancy by regulating innate immunity and modulating the maternal immune environment during pregnancy.


Assuntos
Ativação do Complemento , Proteínas do Sistema Complemento , Endométrio , Animais , Feminino , Gravidez , Proteínas do Sistema Complemento/imunologia , Proteínas do Sistema Complemento/metabolismo , Endométrio/imunologia , Endométrio/metabolismo , Suínos/imunologia , Ativação do Complemento/imunologia , Imunidade Inata , Membrana Corioalantoide/metabolismo , Membrana Corioalantoide/imunologia
13.
Cells ; 13(14)2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39056751

RESUMO

Uveal melanoma (UM) is the most common intraocular tumor in adults, and nearly 50% of patients develop metastatic disease with a high mortality rate. Therefore, the development of relevant preclinical in vivo models that accurately recapitulate the metastatic cascade is crucial. We exploited the chick embryo chorioallantoic membrane (CAM) xenograft model to quantify both experimental and spontaneous metastasis by qPCR analysis. Our study found that the transplanted UM cells spread predominantly and early in the liver, reflecting the primary site of metastasis in patients. Visible signs of pigmented metastasis were observed in the eyes, liver, and distal CAM. Lung metastases occurred rarely and brain metastases progressed more slowly. However, UM cell types of different origins and genetic profiles caused an individual spectrum of organ metastases. Metastasis to multiple organs, including the liver, was often associated with risk factors such as high proliferation rate, hyperpigmentation, and epithelioid cell type. The severity of liver metastasis was related to the hepatic metastatic origin and chromosome 8 abnormalities rather than monosomy 3 and BAP1 deficiency. The presented CAM xenograft model may prove useful to study the metastatic potential of patients or to test individualized therapeutic options for metastasis in different organs.


Assuntos
Membrana Corioalantoide , Melanoma , Neoplasias Uveais , Animais , Neoplasias Uveais/patologia , Neoplasias Uveais/genética , Membrana Corioalantoide/patologia , Membrana Corioalantoide/metabolismo , Melanoma/patologia , Melanoma/genética , Embrião de Galinha , Humanos , Metástase Neoplásica , Linhagem Celular Tumoral , Modelos Animais de Doenças , Neoplasias Hepáticas/secundário , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/genética , Xenoenxertos
14.
Methods Mol Biol ; 2811: 81-100, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39037651

RESUMO

Metastasis is a complex, multistep process. To study the molecular steps of the metastatic cascade, it is important to use an in vivo system that recapitulates the complex tumor microenvironment. The chicken embryo chorioallantoic membrane (CAM) is an in vivo system suitable for the implantation of xenograft tumor models. It allows the study of different aspects of the metastatic process, including the dormancy-awakening transition. The main advantages of this system are its high reproducibility, cost-effectiveness, and versatility. Here, by using two dormancy tumor models, one of head and neck squamous cell carcinoma and one of breast cancer, we described a detailed protocol for the use of the CAM model in metastasis assays and for the study of tumor growth and dormancy.


Assuntos
Membrana Corioalantoide , Metástase Neoplásica , Animais , Membrana Corioalantoide/metabolismo , Membrana Corioalantoide/patologia , Embrião de Galinha , Humanos , Linhagem Celular Tumoral , Feminino , Microambiente Tumoral , Neoplasias da Mama/patologia , Modelos Animais de Doenças , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Xenoenxertos
15.
Br J Cancer ; 131(5): 931-943, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38969866

RESUMO

BACKGROUND: Invadopodia facilitate cancer cell extravasation, but the molecular mechanism whereby invadopodia-specific proteases such as MT1-MMP are called to invadopodia is unclear. METHODS: Mass spectrometry and immunoprecipitation were used to identify interactors of MT1-MMP in metastatic breast cancer cells. After identification, siRNA and small molecule inhibitors were used to assess the effect these interactors had on cellular invasiveness. The chicken embryo chorioallantoic membrane (CAM) model was used to assess extravasation and invadopodia formation in vivo. RESULTS: In metastatic breast cancer cells, MT1-MMP was found to associate with plectin, a cytolinker and scaffolding protein. Complex formation between plectin and MT1-MMP launches invadopodia formation, a subtype we termed iplectin (i = invadopodial). iPlectin delivers MT1-MMP to invadopodia and is indispensable for regulating cell surface levels of the enzyme. Genetic depletion of plectin with siRNA reduced invadopodia formation and cell invasion in vitro. In vivo extravasation efficiency assays and intravital imaging revealed iplectin to be a key contributor to invadopodia ultrastructure and essential for extravasation. Pharmacologic inhibition of plectin using the small molecule Plecstatin-1 (PST-1) abrogated MT1-MMP delivery to invadopodia and extravasation efficiency. CONCLUSIONS: Anti-metastasis therapeutic approaches that target invadopodia are possible by disrupting interactions between MT1-MMP and iplectin. CLINICAL TRIAL REGISTRATION NUMBER: NCT04608357.


Assuntos
Neoplasias da Mama , Metaloproteinase 14 da Matriz , Invasividade Neoplásica , Podossomos , Animais , Embrião de Galinha , Feminino , Humanos , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Movimento Celular , Membrana Corioalantoide/metabolismo , Metaloproteinase 14 da Matriz/metabolismo , Metaloproteinase 14 da Matriz/genética , Plectina/metabolismo , Plectina/genética , Podossomos/metabolismo , RNA Interferente Pequeno/genética , Estudos Prospectivos , Cultura Primária de Células
16.
Int J Pharm ; 660: 124300, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-38851409

RESUMO

Uveal melanoma is one of the most common and aggressive intraocular malignancies, and, due to its great capability of metastasize, it constitutes the most incident intraocular tumor in adults. However, to date there is no effective treatment since achieving the inner ocular tissues still constitutes one of the greatest challenges in actual medicine, because of the complex structure and barriers. Uncoated and PEGylated nanostructured lipid carriers were developed to achieve physico-chemical properties (mean particle size, homogeneity, zeta potential, pH and osmolality) compatible for the ophthalmic administration of (S)-(-)-MRJF22, a new custom-synthetized prodrug for the potential treatment of uveal melanoma. The colloidal physical stability was investigated at different temperatures by Turbiscan® Ageing Station. Morphology analysis and mucoadhesive studies highlighted the presence of small particles suitable to be topically administered on the ocular surface. In vitro release studies performed using Franz diffusion cells demonstrated that the systems were able to provide a slow and prolonged prodrug release. In vitro cytotoxicity test on Human Corneal Epithelium and Human Uveal Melanoma cell lines and Hen's egg-chorioallantoic membrane test showed a dose-dependent cytotoxic effect of the free prodrug on corneal cells, whose cytocompatibility improved when encapsulated into nanoparticles, as also confirmed by in vivo studies on New Zealand albino rabbits. Antiangiogenic capability and preventive anti-inflammatory properties were also investigated on embryonated eggs and rabbits, respectively. Furthermore, preliminary in vivo biodistribution images of fluorescent nanoparticles after topical instillation in rabbits' eyes, suggested their ability to reach the posterior segment of the eye, as a promising strategy for the treatment of choroidal uveal melanoma.


Assuntos
Administração Oftálmica , Membrana Corioalantoide , Portadores de Fármacos , Melanoma , Nanopartículas , Pró-Fármacos , Neoplasias Uveais , Neoplasias Uveais/tratamento farmacológico , Neoplasias Uveais/patologia , Melanoma/tratamento farmacológico , Melanoma/patologia , Animais , Humanos , Coelhos , Linhagem Celular Tumoral , Membrana Corioalantoide/efeitos dos fármacos , Portadores de Fármacos/química , Nanopartículas/química , Nanopartículas/administração & dosagem , Pró-Fármacos/administração & dosagem , Pró-Fármacos/química , Lipídeos/química , Lipídeos/administração & dosagem , Liberação Controlada de Fármacos , Sobrevivência Celular/efeitos dos fármacos , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Polietilenoglicóis/química , Polietilenoglicóis/administração & dosagem , Embrião de Galinha , Epitélio Corneano/efeitos dos fármacos , Tamanho da Partícula
17.
ACS Appl Mater Interfaces ; 16(27): 34480-34495, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38923892

RESUMO

Clinical therapies, including dermatology and oncology, require safe application. In vitro experiments allow only limited conclusions about in vivo effects, while animal studies in, e.g., rodents have ethical constraints at a large scale. Chicken embryos lack pain reception until day 15 postfertilization, making the in ovo model a suitable alternative to in vivo safety assessment. In addition, the hen's egg test on chorioallantoic membrane assay allows irritation potential analysis for topical treatments, but standardized analysis has been limited so far. Medical gas plasma is a topical, routine, approved dermatology treatment. Recent work suggests the potential of this technology in oncology. Its main mode of action is the release of various reactive species simultaneously. Intriguingly, varying plasma feed gas compositions generates customized reactive species profiles previously shown to be optimized for specific applications, such as skin cancer treatment. To support clinical implications, we developed a novel chicken embryo CAM scoring and study scheme and employed the model to analyze 16 different plasma feed gas settings generated by the atmospheric pressure plasmajet kINPen, along with common anticancer drugs (e.g., cisplatin) and physiological mediators (e.g., VEGF). Extensive gas- and liquid-phase plasma reactive species profiling was done and was found to have a surprisingly low correlation with irritation potential parameters. Despite markedly different reactive species patterns, feed gas-modulated kINPen plasma was equally tolerated compared to standard argon plasma. CAM irritation with gas plasmas but not anticancer agents was reversed 48 h after treatment, underlining the only temporary tissue effects of medical gas plasma. Our results indicate a safe therapeutic application of reactive species.


Assuntos
Antineoplásicos , Membrana Corioalantoide , Gases em Plasma , Animais , Gases em Plasma/química , Embrião de Galinha , Membrana Corioalantoide/efeitos dos fármacos , Membrana Corioalantoide/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Humanos , Medição de Risco , Espécies Reativas de Oxigênio/metabolismo , Galinhas
18.
Int J Biol Macromol ; 273(Pt 1): 132824, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38857736

RESUMO

Herein, we synthesized hydrogel films from crosslinked polyethylene oxide (PEO) and guar gum (GG) which can offer hydrophilicity, antibacterial efficacy, and neovascularization. This study focuses on synthesis and material/biological characterization of rosemary (RM) and citric acid (CA) loaded PEO/GG hydrogel films. Scanning Electron Microscopy images confirmed the porous structure of the developed hydrogel film matrix (PEO/GG) and the dispersion of RM and CA within it. This porous structure promotes moisture adsorption, cell attachment, proliferation, and tissue layer formation. Fourier Transform Infrared Spectroscopy (FTIR) further validated the crosslinking of the PEO/GG matrix, as confirmed by the appearance of C-O-C linkage in the FTIR spectrum. PEO/GG and PEO/GG/RM/CA revealed similar degradation and release kinetics in Dulbecco's Modified Eagle Medium, Simulated Body Fluid, and Phosphate Buffer Saline (degradation of ∼55 % and release of ∼60 % RM in 168 h.). The developed hydrogel film exhibited a zone of inhibition against Escherichia. coli (2 mm) and Staphylococcus. aureus (9 mm), which can be attributed to the presence of RM in the hydrogel film. Furthermore, incorporating CA in the hydrogel film promoted neovascularization, as confirmed by the Chorioallantoic Membrane Assay. The developed RM and CA-loaded PEO/GG-based hydrogel films offered suitable in-vitro properties that may aid in potential wound healing applications.


Assuntos
Antibacterianos , Liberação Controlada de Fármacos , Galactanos , Hidrogéis , Mananas , Gomas Vegetais , Polietilenoglicóis , Mananas/química , Galactanos/química , Gomas Vegetais/química , Polietilenoglicóis/química , Hidrogéis/química , Animais , Antibacterianos/farmacologia , Antibacterianos/química , Cinética , Staphylococcus aureus/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Membrana Corioalantoide/efeitos dos fármacos , Portadores de Fármacos/química
19.
Lab Chip ; 24(13): 3233-3242, 2024 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-38835278

RESUMO

The impact of fluid flow shear stresses, generated by the movement of blood through vasculature, on the organization and maturation of vessels is widely recognized. Nevertheless, it remains uncertain whether external fluid flows outside of the vasculature in the surrounding tissue can similarly play a role in governing these processes. In this research, we introduce an innovative technique called superfusion-induced vascular steering (SIVS). SIVS involves the controlled imposition of external fluid flow patterns onto the vascularized chick chorioallantoic membrane (CAM), allowing us to observe how this impacts the organization of vascular networks. To investigate the concept of SIVS, we conducted superfusion experiments on the intact chick CAM cultured within an engineered eggshell system, using phosphate buffered saline (PBS). To capture and analyze the effects of superfusion, we employed a custom-built microscopy setup, enabling us to image both superfused and non-superfused regions within the developing CAM. This study provides valuable insights into the practical application of fluid superfusion within an in vivo context, shedding light on its significance for understanding tissue development and manipulation in an engineering setting.


Assuntos
Galinhas , Membrana Corioalantoide , Animais , Membrana Corioalantoide/metabolismo , Membrana Corioalantoide/irrigação sanguínea , Embrião de Galinha
20.
J Cancer Res Clin Oncol ; 150(5): 257, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38753184

RESUMO

PURPOSE: Breast cancer metastasis relies on cellular invasion and angiogenesis facilitated by the downregulation of metastatic suppressor proteins like Cluster of Differentiation 82 (CD82). Currently, no medicines target multiple systems to prevent metastatic progression through CD82 upregulation. This study screened for plant extracts displaying effects on cell proliferation, invasion, and CD82 expression in breast cancer cells, and in vivo angiogenesis, and further correlated between the biological activities and effect on CD82 expression. METHODS: Seventeen ethanolic plant extracts were screened for their effect on cell proliferation (against MDA-MB-231 and MCF-7 breast cancer and Hek293 kidney cells), cell invasion and effect on CD82 expression in metastatic MDA-MB-231 cells. Selected extracts were further evaluated for in vivo anti-angiogenesis. RESULTS: Extracts displayed varying antiproliferative activity against the different cell lines, and those that showed selectivity indexes (SI) > 0.5 against MDA-MB-231 were selected for anti-invasion evaluation. Buddleja saligna Willd. (BS), Combretum apiculatum Sond. (CA), Foeniculum vulgare, Greyia radlkoferi, Gunnera perpensa and Persicaria senegalensis (Meisn.) Soják (PS) displayed 50% inhibitory concentration (IC50) values of 44.46 ± 3.46, 74.00 ± 4.48, 180.43 ± 4.51, 96.97 ± 2.29, 55.29 ± 9.88 and 243.60 ± 2.69 µg/mL, respectively against MDA-MB-231, and compared to Hek293 showed SI of 0.9, 0.7, 1.4, 1.1, 2.2 and 0.5. Significant invasion inhibition was observed at both 20 and 40 µg/mL for BS (94.10 ± 0.74 and 96.73 ± 0.95%) and CA (87.42 ± 6.54 and 98.24 ± 0.63%), whereas GR (14.91 ± 1.62 and 41 ± 1.78%) and PS (36.58 ± 0.54 and 51.51 ± 0.83%), only showed significant inhibition at 40 µg/mL, and FV (< 5% inhibition) and GP (10 ± 1.03 and 22 ± 1.31%) did not show significant inhibition at both concentrations. Due to the significant anti-invasive activity of BS, CA and PS at 40 µg/mL, these extracts were further evaluated for their potential to stimulate CD82. BS showed significant (p < 0.05) reduction in CD82 at 20 and 40 µg/mL (13.2 ± 2.2% and 20.3 ± 1.5% decrease, respectively), whereas both CA and PS at 20 µg/mL increased (p < 0.05) CD82 expression (16.4 ± 0.8% and 5.4 ± 0.6% increase, respectively), and at 40 µg/mL significantly reduced CD82 expression (23.4 ± 3.1% and 11.2 ± 2.9% decrease, respectively). Using the yolk sac membrane assay, BS (59.52 ± 4.12 and 56.72 ± 3.13% newly formed vessels) and CA (83.33 ± 3.17 and 74.00 ± 2.12%) at both 20 and 40 µg/egg showed significant (p < 0.001) angiogenesis inhibition, with BS showing statistical similar activity to the positive control, combretastatin A4 (10 nmol/egg), whereas PS only displayed significant (p < 0.001) angiogenesis stimulation at 40 µg/egg (120.81 ± 3.34% newly formed vessels). CONCLUSION: BS exhibits antiproliferative, anti-invasive, and anti-angiogenic activity despite inhibiting CD82, suggesting an alternative mode of action. CA at 20 µg/mL shows moderate anti-invasive and anti-angiogenic potential by stimulating CD82, while at 40 µg/mL it still displays these properties but inhibits CD82, suggesting an additional mode of action. PS, with the least antiproliferative activity, stimulates CD82 and inhibits angiogenesis at 20 µg/mL but inhibits CD82 and increases angiogenesis at 40 µg/mL, indicating CD82 targeting as a major mode of action. Future studies should explore breast cancer xenograft models to assess the extracts' impact on CD82 expression and angiogenesis in the tumor microenvironment, along with isolating bioactive compounds from the extracts.


Assuntos
Neoplasias da Mama , Proliferação de Células , Proteína Kangai-1 , Invasividade Neoplásica , Neovascularização Patológica , Extratos Vegetais , Humanos , Neoplasias da Mama/patologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Proliferação de Células/efeitos dos fármacos , Extratos Vegetais/farmacologia , Feminino , Animais , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/patologia , Neovascularização Patológica/prevenção & controle , Proteína Kangai-1/metabolismo , Plantas Medicinais/química , Células HEK293 , Linhagem Celular Tumoral , Etanol/química , Etanol/farmacologia , Embrião de Galinha , Metástase Neoplásica , Membrana Corioalantoide/efeitos dos fármacos , Angiogênese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...